/* Copyright 2005, 2006, 2007 Dennis van Weeren Copyright 2008, 2009 Jakub Bednarski This file is part of Minimig Minimig is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Minimig is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // 2009-10-10 - any length (any multiple of 8 bytes) fpga core file support // 2009-12-10 - changed command header id // 2010-04-14 - changed command header id #include #include #include #include "errors.h" #include "hardware.h" #include "fdd.h" #include "user_io.h" #include "config.h" #include "boot.h" #include "osd.h" #include "fpga.h" #include "tos.h" #include "mist_cfg.h" #include "settings.h" #include "usb/joymapping.h" #ifndef DEFAULT_CORE_NAME #define DEFAULT_CORE_NAME "CORE.RBF" #endif uint8_t rstval = 0; #define CMD_HDRID 0xAACA // TODO! #define SPIN() asm volatile ( "mov r0, r0\n\t" \ "mov r0, r0\n\t" \ "mov r0, r0\n\t" \ "mov r0, r0"); extern char s[FF_LFN_BUF + 1]; extern adfTYPE df[4]; char minimig_ver_beta; char minimig_ver_major; char minimig_ver_minor; char minimig_ver_minion; char BootPrint(const char *text); #ifdef XILINX_CCLK // single byte serialization of FPGA configuration datastream void ShiftFpga(unsigned char data) { AT91_REG *ppioa_codr = AT91C_PIOA_CODR; AT91_REG *ppioa_sodr = AT91C_PIOA_SODR; // bit 0 *ppioa_codr = XILINX_DIN | XILINX_CCLK; if (data & 0x80) *ppioa_sodr = XILINX_DIN; *ppioa_sodr = XILINX_CCLK; // bit 1 *ppioa_codr = XILINX_DIN | XILINX_CCLK; if (data & 0x40) *ppioa_sodr = XILINX_DIN; *ppioa_sodr = XILINX_CCLK; // bit 2 *ppioa_codr = XILINX_DIN | XILINX_CCLK; if (data & 0x20) *ppioa_sodr = XILINX_DIN; *ppioa_sodr = XILINX_CCLK; // bit 3 *ppioa_codr = XILINX_DIN | XILINX_CCLK; if (data & 0x10) *ppioa_sodr = XILINX_DIN; *ppioa_sodr = XILINX_CCLK; // bit 4 *ppioa_codr = XILINX_DIN | XILINX_CCLK; if (data & 0x08) *ppioa_sodr = XILINX_DIN; *ppioa_sodr = XILINX_CCLK; // bit 5 *ppioa_codr = XILINX_DIN | XILINX_CCLK; if (data & 0x04) *ppioa_sodr = XILINX_DIN; *ppioa_sodr = XILINX_CCLK; // bit 6 *ppioa_codr = XILINX_DIN | XILINX_CCLK; if (data & 0x02) *ppioa_sodr = XILINX_DIN; *ppioa_sodr = XILINX_CCLK; // bit 7 *ppioa_codr = XILINX_DIN | XILINX_CCLK; if (data & 0x01) *ppioa_sodr = XILINX_DIN; *ppioa_sodr = XILINX_CCLK; } // Xilinx FPGA configuration // was before unsigned char ConfigureFpga(void) unsigned char ConfigureFpga(const char *name) { unsigned long t; unsigned long n; unsigned char *ptr; FIL file; UINT br; // set outputs *AT91C_PIOA_SODR = XILINX_CCLK | XILINX_DIN | XILINX_PROG_B; // enable outputs *AT91C_PIOA_OER = XILINX_CCLK | XILINX_DIN | XILINX_PROG_B; // reset FGPA configuration sequence // specs: PROG_B pulse min 0.3 us t = 15; while (--t) *AT91C_PIOA_CODR = XILINX_PROG_B; *AT91C_PIOA_SODR = XILINX_PROG_B; // now wait for INIT to go high // specs: max 2ms t = 100000; while (!(*AT91C_PIOA_PDSR & XILINX_INIT_B)) { if (--t == 0) { iprintf("FPGA init is NOT high!\r"); FatalError(3); } } iprintf("FPGA init is high\r"); if (*AT91C_PIOA_PDSR & XILINX_DONE) { iprintf("FPGA done is high before configuration!\r"); FatalError(3); } if(!name) // name = "CORE.BIN"; name = "X7A102T.BIN"; // open bitstream file if (f_open(&file, name, FA_READ) != FR_OK) { iprintf("No FPGA configuration file found!\r"); FatalError(4); } iprintf("FPGA bitstream file %s opened, file size = %llu\r", name, f_size(&file)); iprintf("["); // send all bytes to FPGA in loop t = 0; n = f_size(&file) >> 3; ptr = sector_buffer; do { // read sector if 512 (64*8) bytes done if ((t & 0x3F) == 0) { if (t & (1<<10)) DISKLED_OFF else DISKLED_ON if ((t & 0x1FF) == 0) iprintf("*"); if (f_read(&file, sector_buffer, 512, &br) != FR_OK) { f_close(&file); return(0); } ptr = sector_buffer; } // send data in packets of 8 bytes ShiftFpga(*ptr++); ShiftFpga(*ptr++); ShiftFpga(*ptr++); ShiftFpga(*ptr++); ShiftFpga(*ptr++); ShiftFpga(*ptr++); ShiftFpga(*ptr++); ShiftFpga(*ptr++); t++; } while (t < n); f_close(&file); // return outputs to a state suitable for user_io.c *AT91C_PIOA_SODR = XILINX_CCLK | XILINX_DIN | XILINX_PROG_B; iprintf("]\r"); iprintf("FPGA bitstream loaded\r"); DISKLED_OFF; // check if DONE is high if (*AT91C_PIOA_PDSR & XILINX_DONE) return(1); iprintf("FPGA done is NOT high!\r"); FatalError(5); return 0; } #endif #ifdef ALTERA_DCLK static inline void ShiftFpga(unsigned char data) { unsigned char i; for ( i = 0; i < 8; i++ ) { /* Dump to DATA0 and insert a positive edge pulse at the same time */ ALTERA_DATA0_RESET; ALTERA_DCLK_RESET; if(data & 1) ALTERA_DATA0_SET; ALTERA_DCLK_SET; data >>= 1; } } // Altera FPGA configuration unsigned char ConfigureFpga(const char *name) { unsigned long i; unsigned char *ptr; FIL file; UINT br; // set outputs ALTERA_DCLK_SET; ALTERA_NCONFIG_SET; ALTERA_DATA0_SET; if(!name) name = DEFAULT_CORE_NAME; // open bitstream file if (f_open(&file, name, FA_READ) != FR_OK) { iprintf("No FPGA configuration file found!\r"); FatalError(ERROR_BITSTREAM_OPEN); } iprintf("FPGA bitstream file %s opened, file size = %llu\r", name, f_size(&file)); iprintf("["); // send all bytes to FPGA in loop ptr = sector_buffer; ALTERA_START_CONFIG /* Drive a transition of 0 to 1 to NCONFIG to indicate start of configuration */ for(i=0;i<10;i++) ALTERA_NCONFIG_RESET; // must be low for at least 500ns ALTERA_NCONFIG_SET; // now wait for NSTATUS to go high // specs: max 800us i = 1000000; while (!ALTERA_NSTATUS_STATE) { if (--i == 0) { ALTERA_STOP_CONFIG iprintf("FPGA NSTATUS is NOT high!\r"); f_close(&file); FatalError(ERROR_UPDATE_INIT_FAILED); } } DISKLED_ON; int t = 0; int n = f_size(&file) >> 3; /* Loop through every single byte */ for ( i = 0; i < f_size(&file); ) { // read sector if SECTOR_BUFFER_SIZE bytes done if ((i & (SECTOR_BUFFER_SIZE-1)) == 0) { if (i & (1<<13)) DISKLED_OFF else DISKLED_ON if ((i & (SECTOR_BUFFER_SIZE*4-1)) == 0) iprintf("*"); if (f_read(&file, sector_buffer, SECTOR_BUFFER_SIZE, &br) != FR_OK) { f_close(&file); FatalError(ERROR_READ_BITSTREAM_FAILED); } ptr = sector_buffer; } int bytes2copy = (i < f_size(&file) - 8)?8:f_size(&file)-i; i += bytes2copy; while(bytes2copy) { ShiftFpga(*ptr++); bytes2copy--; } /* Check for error through NSTATUS for every 10KB programmed and the last byte */ if ( !(i % 10240) || (i == f_size(&file) - 1) ) { if ( !ALTERA_NSTATUS_STATE ) { ALTERA_STOP_CONFIG iprintf("FPGA NSTATUS is NOT high!\r"); f_close(&file); FatalError(ERROR_UPDATE_PROGRESS_FAILED); } } } ALTERA_STOP_CONFIG f_close(&file); iprintf("]\r"); iprintf("FPGA bitstream loaded\r"); DISKLED_OFF; // check if DONE is high if (!ALTERA_DONE_STATE) { iprintf("FPGA Configuration done but contains error... CONF_DONE is LOW\r"); FatalError(ERROR_UPDATE_FAILED); } /* Start initialization */ /* Clock another extra DCLK cycles while initialization is in progress through internal oscillator or driving clock cycles into CLKUSR pin */ /* These extra DCLK cycles do not initialize the device into USER MODE */ /* It is not required to drive extra DCLK cycles at the end of configuration */ /* The purpose of driving extra DCLK cycles here is to insert some delay while waiting for the initialization of the device to complete before checking the CONFDONE and NSTATUS signals at the end of whole configuration cycle */ for ( i = 0; i < 50; i++ ) { ALTERA_DCLK_RESET; ALTERA_DCLK_SET; } /* Initialization end */ if ( !ALTERA_NSTATUS_STATE || !ALTERA_DONE_STATE ) { iprintf("FPGA Initialization finish but contains error: NSTATUS is %s and CONF_DONE is %s.\r", ALTERA_NSTATUS_STATE?"HIGH":"LOW", ALTERA_DONE_STATE?"HIGH":"LOW" ); FatalError(ERROR_UPDATE_FAILED); } return 1; } #endif void SendFile(FIL *file) { unsigned char c1, c2; unsigned long j; unsigned long n; unsigned char *p; iprintf("["); n = (f_size(file) + 511) >> 9; // sector count (rounded up) while (n--) { // read data sector from memory card FileReadBlock(file,sector_buffer); do { // read FPGA status EnableFpga(); c1 = SPI(0); c2 = SPI(0); SPI(0); SPI(0); SPI(0); SPI(0); DisableFpga(); } while (!(c1 & CMD_RDTRK)); if ((n & 15) == 0) iprintf("*"); // send data sector to FPGA EnableFpga(); c1 = SPI(0); c2 = SPI(0); SPI(0); SPI(0); SPI(0); SPI(0); p = sector_buffer; for (j = 0; j < 512; j++) SPI(*p++); DisableFpga(); } iprintf("]\r"); } void SendFileEncrypted(FIL *file,unsigned char *key,int keysize) { UINT br; unsigned char c1, c2; unsigned char headersize; unsigned int keyidx=0; unsigned long j; unsigned long n; unsigned char *p; int badbyte=0; iprintf("["); headersize=f_size(file)&255; // ROM should be a round number of kilobytes; overspill will likely be the Amiga Forever header. f_read(file,sector_buffer,headersize, &br); // Read extra bytes n = (f_size(file) + (511-headersize)) >> 9; // sector count (rounded up) while (n--) { FileReadBlock(file,sector_buffer); for (j = 0; j < 512; j++) { sector_buffer[j]^=key[keyidx++]; if(keyidx>=keysize) keyidx-=keysize; } do { // read FPGA status EnableFpga(); c1 = SPI(0); c2 = SPI(0); SPI(0); SPI(0); SPI(0); SPI(0); DisableFpga(); } while (!(c1 & CMD_RDTRK)); if ((n & 15) == 0) iprintf("*"); // send data sector to FPGA EnableFpga(); c1 = SPI(0); c2 = SPI(0); SPI(0); SPI(0); SPI(0); SPI(0); p = sector_buffer; for (j = 0; j < 512; j++) SPI(*p++); DisableFpga(); } iprintf("]\r"); } char kick1xfoundstr[] = "Kickstart v1.x found\n"; const char applymemdetectionpatchstr[] = "Applying Kickstart 1.x memory detection patch\n"; const char *kickfoundstr = NULL, *applypatchstr = NULL; void PatchKick1xMemoryDetection() { int applypatch = 0; if (!strncmp(sector_buffer + 0x18, "exec 33.192 (8 Oct 1986)", 24)) { kick1xfoundstr[13] = '2'; kickfoundstr = kick1xfoundstr; goto applypatch; } if (!strncmp(sector_buffer + 0x18, "exec 34.2 (28 Oct 1987)", 23)) { kick1xfoundstr[13] = '3'; kickfoundstr = kick1xfoundstr; goto applypatch; } goto out; applypatch: if ((sector_buffer[0x154] == 0x66) && (sector_buffer[0x155] == 0x78)) { applypatchstr = applymemdetectionpatchstr; sector_buffer[0x154] = 0x60; } out: return; } // SendFileV2 (for minimig_v2) void SendFileV2(FIL* file, unsigned char* key, int keysize, int address, int size) { UINT br; int i,j; unsigned int keyidx=0; iprintf("File size: %dkB\r", size>>1); iprintf("["); if (keysize) { // read header f_read(file, sector_buffer, 0xb, &br); } for (i=0; i= keysize) keyidx -= keysize; } } // patch kickstart 1.x to force memory detection every time the AMIGA is reset if (minimig_cfg.kick1x_memory_detection_patch && (i == 0 || i == 512)) { kickfoundstr = NULL; applypatchstr = NULL; PatchKick1xMemoryDetection(); } EnableOsd(); unsigned int adr = address + i*512; SPI(OSD_CMD_WR); SPIN(); SPIN(); SPIN(); SPIN(); SPI(adr&0xff); adr = adr>>8; SPI(adr&0xff); adr = adr>>8; SPIN(); SPIN(); SPIN(); SPIN(); SPI(adr&0xff); adr = adr>>8; SPI(adr&0xff); adr = adr>>8; SPIN(); SPIN(); SPIN(); SPIN(); for (j=0; j<512; j=j+4) { SPI(sector_buffer[j+0]); SPI(sector_buffer[j+1]); SPIN(); SPIN(); SPIN(); SPIN(); SPIN(); SPIN(); SPIN(); SPIN(); SPI(sector_buffer[j+2]); SPI(sector_buffer[j+3]); SPIN(); SPIN(); SPIN(); SPIN(); SPIN(); SPIN(); SPIN(); SPIN(); } DisableOsd(); } iprintf("]\r"); if (kickfoundstr) { iprintf(kickfoundstr); } if (applypatchstr) { iprintf(applypatchstr); } } // draw on screen char BootDraw(char *data, unsigned short len, unsigned short offset) { DEBUG_FUNC_IN(); unsigned char c1, c2, c3, c4; unsigned char cmd; const char *p; unsigned short n; unsigned short i; n = (len+3)&(~3); i = 0; cmd = 1; while (1) { EnableFpga(); c1 = SPI(0x10); // track read command c2 = SPI(0x01); // disk present unsigned char x = SPI(0); unsigned char y = SPI(0); c3 = SPI(0); c4 = SPI(0); // iprintf("FPGA state: %d %d (%d %d) %d %d\n", c1, c2, x, y, c3, c4); if (c1 & CMD_RDTRK) { if (cmd) { // command phase if (c3 == 0x80 && c4 == 0x06) // command packet size must be 12 bytes { cmd = 0; SPI(CMD_HDRID >> 8); // command header SPI(CMD_HDRID & 0xFF); SPI(0x00); // cmd: 0x0001 = print text SPI(0x01); // data packet size in bytes SPI(0x00); SPI(0x00); SPI((n)>>8); SPI((n)&0xff); // +2 because only even byte count is possible to send and we have to send termination zero byte // offset SPI(0x00); SPI(0x00); SPI(offset>>8); SPI(offset&0xff); } else break; } else { // data phase if (c3 == 0x80 && c4 == ((n) >> 1)) { p = data; n = c4 << 1; while (n--) { c4 = *p; SPI((i>=len) ? 0 : c4); p++; i++; } DisableFpga(); return 1; } else break; } } DisableFpga(); } DisableFpga(); return 0; DEBUG_FUNC_OUT(); } // print message on the boot screen char BootPrint(const char *text) { if(!minimig_v1()) { iprintf("%s\n", text); return 0; } unsigned char c1, c2, c3, c4; unsigned char cmd; const char *p; unsigned char n; return 0; p = text; n = 0; while (*p++ != 0) n++; // calculating string length cmd = 1; while (1) { EnableFpga(); c1 = SPI(0x10); // track read command c2 = SPI(0x01); // disk present SPI(0); SPI(0); c3 = SPI(0); c4 = SPI(0); if (c1 & CMD_RDTRK) { if (cmd) { // command phase if (c3 == 0x80 && c4 == 0x06) // command packet size must be 12 bytes { cmd = 0; SPI(CMD_HDRID >> 8); // command header SPI(CMD_HDRID & 0xFF); SPI(0x00); // cmd: 0x0001 = print text SPI(0x01); // data packet size in bytes SPI(0x00); SPI(0x00); SPI(0x00); SPI(n+2); // +2 because only even byte count is possible to send and we have to send termination zero byte // don't care SPI(0x00); SPI(0x00); SPI(0x00); SPI(0x00); } else break; } else { // data phase if (c3 == 0x80 && c4 == ((n + 2) >> 1)) { p = text; n = c4 << 1; while (n--) { c4 = *p; SPI(c4); if (c4) // if current character is not zero go to next one p++; } DisableFpga(); return 1; } else break; } } DisableFpga(); } DisableFpga(); return 0; } char PrepareBootUpload(unsigned char base, unsigned char size) // this function sends given file to Minimig's memory // base - memory base address (bits 23..16) // size - memory size (bits 23..16) { unsigned char c1, c2, c3, c4; unsigned char cmd = 1; while (1) { EnableFpga(); c1 = SPI(0x10); // track read command c2 = SPI(0x01); // disk present SPI(0); SPI(0); c3 = SPI(0); c4 = SPI(0); if (c1 & CMD_RDTRK) { if (cmd) { // command phase if (c3 == 0x80 && c4 == 0x06) // command packet size 12 bytes { cmd = 0; SPI(CMD_HDRID >> 8); // command header SPI(CMD_HDRID & 0xFF); SPI(0x00); SPI(0x02); // cmd: 0x0002 = upload memory // memory base address SPI(0x00); SPI(base); SPI(0x00); SPI(0x00); // memory size SPI(0x00); SPI(size); SPI(0x00); SPI(0x00); } else break; } else { // data phase DisableFpga(); iprintf("Ready to upload ROM file...\r"); // send rom image to FPGA // SendFile(file); // iprintf("ROM file uploaded.\r"); return 0; } } DisableFpga(); } DisableFpga(); return -1; } void BootExit(void) { unsigned char c1, c2, c3, c4; while (1) { EnableFpga(); c1 = SPI(0x10); // track read command c2 = SPI(0x01); // disk present SPI(0); SPI(0); c3 = SPI(0); c4 = SPI(0); if (c1 & CMD_RDTRK) { if (c3 == 0x80 && c4 == 0x06) // command packet size 12 bytes { SPI(CMD_HDRID >> 8); // command header SPI(CMD_HDRID & 0xFF); SPI(0x00); // cmd: 0x0003 = restart SPI(0x03); // don't care SPI(0x00); SPI(0x00); SPI(0x00); SPI(0x00); // don't care SPI(0x00); SPI(0x00); SPI(0x00); SPI(0x00); } DisableFpga(); return; } DisableFpga(); } } void ClearMemory(unsigned long base, unsigned long size) { unsigned char c1, c2, c3, c4; while (1) { EnableFpga(); c1 = SPI(0x10); // track read command c2 = SPI(0x01); // disk present SPI(0); SPI(0); c3 = SPI(0); c4 = SPI(0); if (c1 & CMD_RDTRK) { if (c3 == 0x80 && c4 == 0x06)// command packet size 12 bytes { SPI(CMD_HDRID >> 8); // command header SPI(CMD_HDRID & 0xFF); SPI(0x00); // cmd: 0x0004 = clear memory SPI(0x04); // memory base SPI((unsigned char)(base >> 24)); SPI((unsigned char)(base >> 16)); SPI((unsigned char)(base >> 8)); SPI((unsigned char)base); // memory size SPI((unsigned char)(size >> 24)); SPI((unsigned char)(size >> 16)); SPI((unsigned char)(size >> 8)); SPI((unsigned char)size); } DisableFpga(); return; } DisableFpga(); } } unsigned char GetFPGAStatus(void) { unsigned char status; EnableFpga(); status = SPI(0); SPI(0); SPI(0); SPI(0); SPI(0); SPI(0); DisableFpga(); return status; } void fpga_init(const char *name) { unsigned long time = GetRTTC(); int loaded_from_usb = USB_LOAD_VAR; unsigned char ct; // load the global MISTCFG.INI here // loading between the FPGA init and detect_core_type breaks with some SD-Cards. Reason unknown. virtual_joystick_remap_init(false); settings_load(true); iprintf("loaded_from_usb = %d\n", USB_LOAD_VAR == USB_LOAD_VALUE); USB_LOAD_VAR = 0; if((loaded_from_usb != USB_LOAD_VALUE) && !user_io_dip_switch1()) { if (ConfigureFpga(name)) { time = GetRTTC() - time; iprintf("FPGA configured in %lu ms\r", time); } else { // should not reach this code iprintf("FPGA configuration failed\r"); FatalError(ERROR_UPDATE_FAILED); } } // wait max 100 msec for a valid core type time = GetTimer(100); do { EnableIO(); ct = SPI(0xff); DisableIO(); SPI_MINIMIGV1_HACK } while( ((ct == 0) || (ct == 0xff)) && !CheckTimer(time)); iprintf("ident = %x\n", ct); user_io_detect_core_type(); user_io_init_core(); mist_ini_parse(); user_io_send_buttons(true); InitDB9(); if((user_io_core_type() == CORE_TYPE_MINIMIG)|| (user_io_core_type() == CORE_TYPE_MINIMIG2)) { puts("Running minimig setup"); if(minimig_v2()) { user_io_8bit_set_status(minimig_cfg.clock_freq << 1, 0xffffffff); WaitTimer(100); EnableOsd(); SPI(OSD_CMD_VERSION); minimig_ver_beta = SPI(0xff); minimig_ver_major = SPI(0xff); minimig_ver_minor = SPI(0xff); minimig_ver_minion = SPI(0xff); DisableOsd(); SPIN(); SPIN(); SPIN(); SPIN(); EnableOsd(); SPI(OSD_CMD_RST); rstval = (SPI_RST_USR | SPI_RST_CPU | SPI_CPU_HLT); SPI(rstval); DisableOsd(); SPIN(); SPIN(); SPIN(); SPIN(); EnableOsd(); SPI(OSD_CMD_RST); rstval = (SPI_RST_CPU | SPI_CPU_HLT); SPI(rstval); DisableOsd(); SPIN(); SPIN(); SPIN(); SPIN(); WaitTimer(100); BootInit(); WaitTimer(500); char rtl_ver[45]; siprintf(rtl_ver, "**** MINIMIG-AGA%s v%d.%d.%d for MiST ****", minimig_ver_beta ? " BETA" : "", minimig_ver_major, minimig_ver_minor, minimig_ver_minion); BootPrintEx(rtl_ver); BootPrintEx(" "); BootPrintEx("MINIMIG-AGA for MiST by Rok Krajnc (rok.krajnc@gmail.com)"); BootPrintEx("Original Minimig by Dennis van Weeren"); BootPrintEx("Updates by Jakub Bednarski, Tobias Gubener, Sascha Boing, A.M. Robinson & others"); BootPrintEx("MiST by Till Harbaum (till@harbaum.org)"); BootPrintEx("For updates & code see https://github.com/rkrajnc/minimig-mist"); BootPrintEx(" "); WaitTimer(1000); } ChangeDirectoryName("/"); //eject all disk df[0].status = 0; df[1].status = 0; df[2].status = 0; df[3].status = 0; config.kickstart[0]=0; SetConfigurationFilename(0); // Use default config LoadConfiguration(0, 1); // Use slot-based config filename } // end of minimig setup if((user_io_core_type() == CORE_TYPE_MIST) || (user_io_core_type() == CORE_TYPE_MIST2)) { puts("Running mist setup"); tos_upload(NULL); // end of mist setup } if(user_io_core_type() == CORE_TYPE_ARCHIE) { puts("Running archimedes setup"); } // end of archimedes setup }