1
0
mirror of https://github.com/mist-devel/mist-firmware.git synced 2026-01-13 15:17:43 +00:00
2020-10-18 20:36:19 +02:00

1006 lines
25 KiB
C

/*
Copyright 2005, 2006, 2007 Dennis van Weeren
Copyright 2008, 2009 Jakub Bednarski
This file is part of Minimig
Minimig is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
Minimig is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// 2009-10-10 - any length (any multiple of 8 bytes) fpga core file support
// 2009-12-10 - changed command header id
// 2010-04-14 - changed command header id
#ifdef __GNUC__
#include "AT91SAM7S256.h"
#endif
#include "stdio.h"
#include "string.h"
#include "errors.h"
#include "hardware.h"
#include "fat.h"
#include "fdd.h"
#include "rafile.h"
#include "user_io.h"
#include "config.h"
#include "boot.h"
#include "osd.h"
#include "fpga.h"
#include "tos.h"
#include "mist_cfg.h"
#define CMD_HDRID 0xAACA
// TODO!
#define SPIN() asm volatile ( "mov r0, r0\n\t" \
"mov r0, r0\n\t" \
"mov r0, r0\n\t" \
"mov r0, r0");
extern fileTYPE file;
extern unsigned long iCurrentDirectory;
extern char s[40];
extern adfTYPE df[4];
char minimig_ver_beta;
char minimig_ver_major;
char minimig_ver_minor;
char minimig_ver_minion;
char BootPrint(const char *text);
#ifdef XILINX_CCLK
// single byte serialization of FPGA configuration datastream
void ShiftFpga(unsigned char data)
{
AT91_REG *ppioa_codr = AT91C_PIOA_CODR;
AT91_REG *ppioa_sodr = AT91C_PIOA_SODR;
// bit 0
*ppioa_codr = XILINX_DIN | XILINX_CCLK;
if (data & 0x80)
*ppioa_sodr = XILINX_DIN;
*ppioa_sodr = XILINX_CCLK;
// bit 1
*ppioa_codr = XILINX_DIN | XILINX_CCLK;
if (data & 0x40)
*ppioa_sodr = XILINX_DIN;
*ppioa_sodr = XILINX_CCLK;
// bit 2
*ppioa_codr = XILINX_DIN | XILINX_CCLK;
if (data & 0x20)
*ppioa_sodr = XILINX_DIN;
*ppioa_sodr = XILINX_CCLK;
// bit 3
*ppioa_codr = XILINX_DIN | XILINX_CCLK;
if (data & 0x10)
*ppioa_sodr = XILINX_DIN;
*ppioa_sodr = XILINX_CCLK;
// bit 4
*ppioa_codr = XILINX_DIN | XILINX_CCLK;
if (data & 0x08)
*ppioa_sodr = XILINX_DIN;
*ppioa_sodr = XILINX_CCLK;
// bit 5
*ppioa_codr = XILINX_DIN | XILINX_CCLK;
if (data & 0x04)
*ppioa_sodr = XILINX_DIN;
*ppioa_sodr = XILINX_CCLK;
// bit 6
*ppioa_codr = XILINX_DIN | XILINX_CCLK;
if (data & 0x02)
*ppioa_sodr = XILINX_DIN;
*ppioa_sodr = XILINX_CCLK;
// bit 7
*ppioa_codr = XILINX_DIN | XILINX_CCLK;
if (data & 0x01)
*ppioa_sodr = XILINX_DIN;
*ppioa_sodr = XILINX_CCLK;
}
// Xilinx FPGA configuration
// was before unsigned char ConfigureFpga(void)
RAMFUNC unsigned char ConfigureFpga(char *name)
{
unsigned long t;
unsigned long n;
unsigned char *ptr;
// set outputs
*AT91C_PIOA_SODR = XILINX_CCLK | XILINX_DIN | XILINX_PROG_B;
// enable outputs
*AT91C_PIOA_OER = XILINX_CCLK | XILINX_DIN | XILINX_PROG_B;
// reset FGPA configuration sequence
// specs: PROG_B pulse min 0.3 us
t = 15;
while (--t)
*AT91C_PIOA_CODR = XILINX_PROG_B;
*AT91C_PIOA_SODR = XILINX_PROG_B;
// now wait for INIT to go high
// specs: max 2ms
t = 100000;
while (!(*AT91C_PIOA_PDSR & XILINX_INIT_B))
{
if (--t == 0)
{
iprintf("FPGA init is NOT high!\r");
FatalError(3);
}
}
iprintf("FPGA init is high\r");
if (*AT91C_PIOA_PDSR & XILINX_DONE)
{
iprintf("FPGA done is high before configuration!\r");
FatalError(3);
}
if(!name)
// name = "CORE BIN";
name = "X7A102T BIN";
// open bitstream file
if (FileOpenDir(&file, name, iCurrentDirectory) == 0)
{
iprintf("No FPGA configuration file found!\r");
FatalError(4);
}
iprintf("FPGA bitstream file opened, file size = %d\r", file.size);
iprintf("[");
// send all bytes to FPGA in loop
t = 0;
n = file.size >> 3;
ptr = sector_buffer;
do
{
// read sector if 512 (64*8) bytes done
if ((t & 0x3F) == 0)
{
if (t & (1<<10))
DISKLED_OFF
else
DISKLED_ON
if ((t & 0x1FF) == 0)
iprintf("*");
if (!FileRead(&file, sector_buffer))
return(0);
ptr = sector_buffer;
}
// send data in packets of 8 bytes
ShiftFpga(*ptr++);
ShiftFpga(*ptr++);
ShiftFpga(*ptr++);
ShiftFpga(*ptr++);
ShiftFpga(*ptr++);
ShiftFpga(*ptr++);
ShiftFpga(*ptr++);
ShiftFpga(*ptr++);
t++;
// read next sector if 512 (64*8) bytes done
if ((t & 0x3F) == 0)
FileNextSector(&file);
}
while (t < n);
// return outputs to a state suitable for user_io.c
*AT91C_PIOA_SODR = XILINX_CCLK | XILINX_DIN | XILINX_PROG_B;
iprintf("]\r");
iprintf("FPGA bitstream loaded\r");
DISKLED_OFF;
// check if DONE is high
if (*AT91C_PIOA_PDSR & XILINX_DONE)
return(1);
iprintf("FPGA done is NOT high!\r");
FatalError(5);
return 0;
}
#endif
#ifdef ALTERA_DCLK
static inline void ShiftFpga(unsigned char data)
{
unsigned char i;
for ( i = 0; i < 8; i++ )
{
/* Dump to DATA0 and insert a positive edge pulse at the same time */
*AT91C_PIOA_CODR = ALTERA_DATA0 | ALTERA_DCLK;
if((data >> i) & 1) *AT91C_PIOA_SODR = ALTERA_DATA0;
*AT91C_PIOA_SODR = ALTERA_DCLK;
}
}
// Altera FPGA configuration
RAMFUNC unsigned char ConfigureFpga(char *name)
{
unsigned long i;
unsigned char *ptr;
// set outputs
*AT91C_PIOA_SODR = ALTERA_DCLK | ALTERA_DATA0 | ALTERA_NCONFIG;
// enable outputs
*AT91C_PIOA_OER = ALTERA_DCLK | ALTERA_DATA0 | ALTERA_NCONFIG;
if(!name)
name = "CORE RBF";
// open bitstream file
if (FileOpenDir(&file, name, iCurrentDirectory) == 0)
{
iprintf("No FPGA configuration file found!\r");
FatalError(4);
}
iprintf("FPGA bitstream file opened, file size = %d\r", file.size);
iprintf("[");
// send all bytes to FPGA in loop
ptr = sector_buffer;
/* Drive a transition of 0 to 1 to NCONFIG to indicate start of configuration */
for(i=0;i<10;i++)
*AT91C_PIOA_CODR = ALTERA_NCONFIG; // must be low for at least 500ns
*AT91C_PIOA_SODR = ALTERA_NCONFIG;
// now wait for NSTATUS to go high
// specs: max 800us
i = 1000000;
while (!(*AT91C_PIOA_PDSR & ALTERA_NSTATUS))
{
if (--i == 0)
{
iprintf("FPGA NSTATUS is NOT high!\r");
FatalError(3);
}
}
DISKLED_ON;
int t = 0;
int n = file.size >> 3;
/* Loop through every single byte */
for ( i = 0; i < file.size; )
{
// read sector if 512 (64*8) bytes done
if ((i & 0x1FF) == 0)
{
if (i & (1<<13))
DISKLED_OFF
else
DISKLED_ON
if ((i & 0x3FFF) == 0)
iprintf("*");
if (!FileRead(&file, sector_buffer))
return(0);
ptr = sector_buffer;
}
int bytes2copy = (i < file.size - 8)?8:file.size-i;
i += bytes2copy;
while(bytes2copy) {
ShiftFpga(*ptr++);
bytes2copy--;
}
/* Check for error through NSTATUS for every 10KB programmed and the last byte */
if ( !(i % 10240) || (i == file.size - 1) ) {
if ( !*AT91C_PIOA_PDSR & ALTERA_NSTATUS ) {
iprintf("FPGA NSTATUS is NOT high!\r");
FatalError(5);
}
}
// read next sector if 512 (64*8) bytes done
if ((i & 0x1FF) == 0)
FileNextSector(&file);
}
iprintf("]\r");
iprintf("FPGA bitstream loaded\r");
DISKLED_OFF;
// check if DONE is high
if (!(*AT91C_PIOA_PDSR & ALTERA_DONE)) {
iprintf("FPGA Configuration done but contains error... CONF_DONE is LOW\r");
FatalError(5);
}
/* Start initialization */
/* Clock another extra DCLK cycles while initialization is in progress
through internal oscillator or driving clock cycles into CLKUSR pin */
/* These extra DCLK cycles do not initialize the device into USER MODE */
/* It is not required to drive extra DCLK cycles at the end of configuration */
/* The purpose of driving extra DCLK cycles here is to insert some delay
while waiting for the initialization of the device to complete before
checking the CONFDONE and NSTATUS signals at the end of whole
configuration cycle */
for ( i = 0; i < 50; i++ )
{
*AT91C_PIOA_CODR = ALTERA_DCLK;
*AT91C_PIOA_SODR = ALTERA_DCLK;
}
/* Initialization end */
if ( !(*AT91C_PIOA_PDSR & ALTERA_NSTATUS) ||
!(*AT91C_PIOA_PDSR & ALTERA_DONE)) {
iprintf("FPGA Initialization finish but contains error: NSTATUS is %s and CONF_DONE is %s.\r",
((*AT91C_PIOA_PDSR & ALTERA_NSTATUS)?"HIGH":"LOW"), ((*AT91C_PIOA_PDSR & ALTERA_DONE)?"HIGH":"LOW") );
FatalError(5);
}
return 1;
}
#endif
void SendFile(RAFile *file)
{
unsigned char c1, c2;
unsigned long j;
unsigned long n;
unsigned char *p;
iprintf("[");
n = (file->file.size + 511) >> 9; // sector count (rounded up)
while (n--)
{
// read data sector from memory card
RARead(file,sector_buffer,512);
do
{
// read FPGA status
EnableFpga();
c1 = SPI(0);
c2 = SPI(0);
SPI(0);
SPI(0);
SPI(0);
SPI(0);
DisableFpga();
}
while (!(c1 & CMD_RDTRK));
if ((n & 15) == 0)
iprintf("*");
// send data sector to FPGA
EnableFpga();
c1 = SPI(0);
c2 = SPI(0);
SPI(0);
SPI(0);
SPI(0);
SPI(0);
p = sector_buffer;
for (j = 0; j < 512; j++)
SPI(*p++);
DisableFpga();
}
iprintf("]\r");
}
void SendFileEncrypted(RAFile *file,unsigned char *key,int keysize)
{
unsigned char c1, c2;
unsigned char headersize;
unsigned int keyidx=0;
unsigned long j;
unsigned long n;
unsigned char *p;
int badbyte=0;
iprintf("[");
headersize=file->size&255; // ROM should be a round number of kilobytes; overspill will likely be the Amiga Forever header.
RARead(file,sector_buffer,headersize); // Read extra bytes
n = (file->size + (511-headersize)) >> 9; // sector count (rounded up)
while (n--)
{
RARead(file,sector_buffer,512);
for (j = 0; j < 512; j++)
{
sector_buffer[j]^=key[keyidx++];
if(keyidx>=keysize)
keyidx-=keysize;
}
do
{
// read FPGA status
EnableFpga();
c1 = SPI(0);
c2 = SPI(0);
SPI(0);
SPI(0);
SPI(0);
SPI(0);
DisableFpga();
}
while (!(c1 & CMD_RDTRK));
if ((n & 15) == 0)
iprintf("*");
// send data sector to FPGA
EnableFpga();
c1 = SPI(0);
c2 = SPI(0);
SPI(0);
SPI(0);
SPI(0);
SPI(0);
p = sector_buffer;
for (j = 0; j < 512; j++)
SPI(*p++);
DisableFpga();
}
iprintf("]\r");
}
char kick1xfoundstr[] = "Kickstart v1.x found\n";
const char applymemdetectionpatchstr[] = "Applying Kickstart 1.x memory detection patch\n";
const char *kickfoundstr = NULL, *applypatchstr = NULL;
void PatchKick1xMemoryDetection() {
int applypatch = 0;
if (!strncmp(sector_buffer + 0x18, "exec 33.192 (8 Oct 1986)", 24)) {
kick1xfoundstr[13] = '2';
kickfoundstr = kick1xfoundstr;
goto applypatch;
}
if (!strncmp(sector_buffer + 0x18, "exec 34.2 (28 Oct 1987)", 23)) {
kick1xfoundstr[13] = '3';
kickfoundstr = kick1xfoundstr;
goto applypatch;
}
goto out;
applypatch:
if ((sector_buffer[0x154] == 0x66) && (sector_buffer[0x155] == 0x78)) {
applypatchstr = applymemdetectionpatchstr;
sector_buffer[0x154] = 0x60;
}
out:
return;
}
// SendFileV2 (for minimig_v2)
void SendFileV2(RAFile* file, unsigned char* key, int keysize, int address, int size)
{
int i,j;
unsigned int keyidx=0;
iprintf("File size: %dkB\r", size>>1);
iprintf("[");
if (keysize) {
// read header
RARead(file, sector_buffer, 0xb);
}
for (i=0; i<size; i++) {
if (!(i&31)) iprintf("*");
RARead(file, sector_buffer, 512);
if (keysize) {
// decrypt ROM
for (j=0; j<512; j++) {
sector_buffer[j] ^= key[keyidx++];
if(keyidx >= keysize) keyidx -= keysize;
}
}
// patch kickstart 1.x to force memory detection every time the AMIGA is reset
if (minimig_cfg.kick1x_memory_detection_patch && (i == 0 || i == 512)) {
kickfoundstr = NULL;
applypatchstr = NULL;
PatchKick1xMemoryDetection();
}
EnableOsd();
unsigned int adr = address + i*512;
SPI(OSD_CMD_WR);
SPIN(); SPIN(); SPIN(); SPIN();
SPI(adr&0xff); adr = adr>>8;
SPI(adr&0xff); adr = adr>>8;
SPIN(); SPIN(); SPIN(); SPIN();
SPI(adr&0xff); adr = adr>>8;
SPI(adr&0xff); adr = adr>>8;
SPIN(); SPIN(); SPIN(); SPIN();
for (j=0; j<512; j=j+4) {
SPI(sector_buffer[j+0]);
SPI(sector_buffer[j+1]);
SPIN(); SPIN(); SPIN(); SPIN(); SPIN(); SPIN(); SPIN(); SPIN();
SPI(sector_buffer[j+2]);
SPI(sector_buffer[j+3]);
SPIN(); SPIN(); SPIN(); SPIN(); SPIN(); SPIN(); SPIN(); SPIN();
}
DisableOsd();
}
iprintf("]\r");
if (kickfoundstr) {
iprintf(kickfoundstr);
}
if (applypatchstr) {
iprintf(applypatchstr);
}
}
// draw on screen
char BootDraw(char *data, unsigned short len, unsigned short offset)
{
DEBUG_FUNC_IN();
unsigned char c1, c2, c3, c4;
unsigned char cmd;
const char *p;
unsigned short n;
unsigned short i;
n = (len+3)&(~3);
i = 0;
cmd = 1;
while (1)
{
EnableFpga();
c1 = SPI(0x10); // track read command
c2 = SPI(0x01); // disk present
unsigned char x = SPI(0);
unsigned char y = SPI(0);
c3 = SPI(0);
c4 = SPI(0);
// iprintf("FPGA state: %d %d (%d %d) %d %d\n", c1, c2, x, y, c3, c4);
if (c1 & CMD_RDTRK)
{
if (cmd)
{ // command phase
if (c3 == 0x80 && c4 == 0x06) // command packet size must be 12 bytes
{
cmd = 0;
SPI(CMD_HDRID >> 8); // command header
SPI(CMD_HDRID & 0xFF);
SPI(0x00); // cmd: 0x0001 = print text
SPI(0x01);
// data packet size in bytes
SPI(0x00);
SPI(0x00);
SPI((n)>>8);
SPI((n)&0xff); // +2 because only even byte count is possible to send and we have to send termination zero byte
// offset
SPI(0x00);
SPI(0x00);
SPI(offset>>8);
SPI(offset&0xff);
}
else
break;
}
else
{ // data phase
if (c3 == 0x80 && c4 == ((n) >> 1))
{
p = data;
n = c4 << 1;
while (n--)
{
c4 = *p;
SPI((i>=len) ? 0 : c4);
p++;
i++;
}
DisableFpga();
return 1;
}
else
break;
}
}
DisableFpga();
}
DisableFpga();
return 0;
DEBUG_FUNC_OUT();
}
// print message on the boot screen
char BootPrint(const char *text)
{
if(!minimig_v1()) {
iprintf("%s\n", text);
return 0;
}
unsigned char c1, c2, c3, c4;
unsigned char cmd;
const char *p;
unsigned char n;
return 0;
p = text;
n = 0;
while (*p++ != 0)
n++; // calculating string length
cmd = 1;
while (1)
{
EnableFpga();
c1 = SPI(0x10); // track read command
c2 = SPI(0x01); // disk present
SPI(0);
SPI(0);
c3 = SPI(0);
c4 = SPI(0);
if (c1 & CMD_RDTRK)
{
if (cmd)
{ // command phase
if (c3 == 0x80 && c4 == 0x06) // command packet size must be 12 bytes
{
cmd = 0;
SPI(CMD_HDRID >> 8); // command header
SPI(CMD_HDRID & 0xFF);
SPI(0x00); // cmd: 0x0001 = print text
SPI(0x01);
// data packet size in bytes
SPI(0x00);
SPI(0x00);
SPI(0x00);
SPI(n+2); // +2 because only even byte count is possible to send and we have to send termination zero byte
// don't care
SPI(0x00);
SPI(0x00);
SPI(0x00);
SPI(0x00);
}
else
break;
}
else
{ // data phase
if (c3 == 0x80 && c4 == ((n + 2) >> 1))
{
p = text;
n = c4 << 1;
while (n--)
{
c4 = *p;
SPI(c4);
if (c4) // if current character is not zero go to next one
p++;
}
DisableFpga();
return 1;
}
else
break;
}
}
DisableFpga();
}
DisableFpga();
return 0;
}
char PrepareBootUpload(unsigned char base, unsigned char size)
// this function sends given file to Minimig's memory
// base - memory base address (bits 23..16)
// size - memory size (bits 23..16)
{
unsigned char c1, c2, c3, c4;
unsigned char cmd = 1;
while (1)
{
EnableFpga();
c1 = SPI(0x10); // track read command
c2 = SPI(0x01); // disk present
SPI(0);
SPI(0);
c3 = SPI(0);
c4 = SPI(0);
if (c1 & CMD_RDTRK)
{
if (cmd)
{ // command phase
if (c3 == 0x80 && c4 == 0x06) // command packet size 12 bytes
{
cmd = 0;
SPI(CMD_HDRID >> 8); // command header
SPI(CMD_HDRID & 0xFF);
SPI(0x00);
SPI(0x02); // cmd: 0x0002 = upload memory
// memory base address
SPI(0x00);
SPI(base);
SPI(0x00);
SPI(0x00);
// memory size
SPI(0x00);
SPI(size);
SPI(0x00);
SPI(0x00);
}
else
break;
}
else
{ // data phase
DisableFpga();
iprintf("Ready to upload ROM file...\r");
// send rom image to FPGA
// SendFile(file);
// iprintf("ROM file uploaded.\r");
return 0;
}
}
DisableFpga();
}
DisableFpga();
return -1;
}
void BootExit(void)
{
unsigned char c1, c2, c3, c4;
while (1)
{
EnableFpga();
c1 = SPI(0x10); // track read command
c2 = SPI(0x01); // disk present
SPI(0);
SPI(0);
c3 = SPI(0);
c4 = SPI(0);
if (c1 & CMD_RDTRK)
{
if (c3 == 0x80 && c4 == 0x06) // command packet size 12 bytes
{
SPI(CMD_HDRID >> 8); // command header
SPI(CMD_HDRID & 0xFF);
SPI(0x00); // cmd: 0x0003 = restart
SPI(0x03);
// don't care
SPI(0x00);
SPI(0x00);
SPI(0x00);
SPI(0x00);
// don't care
SPI(0x00);
SPI(0x00);
SPI(0x00);
SPI(0x00);
}
DisableFpga();
return;
}
DisableFpga();
}
}
void ClearMemory(unsigned long base, unsigned long size)
{
unsigned char c1, c2, c3, c4;
while (1)
{
EnableFpga();
c1 = SPI(0x10); // track read command
c2 = SPI(0x01); // disk present
SPI(0);
SPI(0);
c3 = SPI(0);
c4 = SPI(0);
if (c1 & CMD_RDTRK)
{
if (c3 == 0x80 && c4 == 0x06)// command packet size 12 bytes
{
SPI(CMD_HDRID >> 8); // command header
SPI(CMD_HDRID & 0xFF);
SPI(0x00); // cmd: 0x0004 = clear memory
SPI(0x04);
// memory base
SPI((unsigned char)(base >> 24));
SPI((unsigned char)(base >> 16));
SPI((unsigned char)(base >> 8));
SPI((unsigned char)base);
// memory size
SPI((unsigned char)(size >> 24));
SPI((unsigned char)(size >> 16));
SPI((unsigned char)(size >> 8));
SPI((unsigned char)size);
}
DisableFpga();
return;
}
DisableFpga();
}
}
unsigned char GetFPGAStatus(void)
{
unsigned char status;
EnableFpga();
status = SPI(0);
SPI(0);
SPI(0);
SPI(0);
SPI(0);
SPI(0);
DisableFpga();
return status;
}
void fpga_init(char *name) {
unsigned long time = GetTimer(0);
int loaded_from_usb = USB_LOAD_VAR;
iprintf("loaded_from_usb = %d\n", USB_LOAD_VAR == USB_LOAD_VALUE);
USB_LOAD_VAR = 0;
if((loaded_from_usb != USB_LOAD_VALUE) && !user_io_dip_switch1()) {
unsigned char ct;
if (ConfigureFpga(name)) {
time = GetTimer(0) - time;
iprintf("FPGA configured in %lu ms\r", time >> 20);
} else {
iprintf("FPGA configuration failed\r");
FatalError(8); // 3
}
// wait max 100 msec for a valid core type
time = GetTimer(100);
do {
EnableIO();
ct = SPI(0xff);
DisableIO();
SPI(0xff); // for old minimig core
} while( ((ct == 0) || (ct == 0xff)) && !CheckTimer(time));
iprintf("ident = %x\n", ct);
}
user_io_detect_core_type();
mist_ini_parse();
user_io_send_buttons(1);
if((user_io_core_type() == CORE_TYPE_MINIMIG)||
(user_io_core_type() == CORE_TYPE_MINIMIG2)) {
unsigned long OldDirectory = iCurrentDirectory;
puts("Running minimig setup");
if(minimig_v2()) {
user_io_8bit_set_status(minimig_cfg.clock_freq << 1, 0xffffffff);
WaitTimer(100);
EnableOsd();
SPI(OSD_CMD_VERSION);
minimig_ver_beta = SPI(0xff);
minimig_ver_major = SPI(0xff);
minimig_ver_minor = SPI(0xff);
minimig_ver_minion = SPI(0xff);
DisableOsd();
SPIN(); SPIN(); SPIN(); SPIN();
SPI(OSD_CMD_RST);
rstval = (SPI_RST_USR | SPI_RST_CPU | SPI_CPU_HLT);
SPI(rstval);
DisableOsd();
SPIN(); SPIN(); SPIN(); SPIN();
EnableOsd();
SPI(OSD_CMD_RST);
rstval = (SPI_RST_CPU | SPI_CPU_HLT);
SPI(rstval);
DisableOsd();
SPIN(); SPIN(); SPIN(); SPIN();
WaitTimer(100);
BootInit();
WaitTimer(500);
char rtl_ver[45];
siprintf(rtl_ver, "**** MINIMIG-AGA%s v%d.%d.%d for MiST ****", minimig_ver_beta ? " BETA" : "", minimig_ver_major, minimig_ver_minor, minimig_ver_minion);
BootPrintEx(rtl_ver);
BootPrintEx(" ");
BootPrintEx("MINIMIG-AGA for MiST by Rok Krajnc (rok.krajnc@gmail.com)");
BootPrintEx("Original Minimig by Dennis van Weeren");
BootPrintEx("Updates by Jakub Bednarski, Tobias Gubener, Sascha Boing, A.M. Robinson & others");
BootPrintEx("MiST by Till Harbaum (till@harbaum.org)");
BootPrintEx("For updates & code see https://github.com/rkrajnc/minimig-mist");
BootPrintEx(" ");
WaitTimer(1000);
}
ChangeDirectory(DIRECTORY_ROOT);
//eject all disk
df[0].status = 0;
df[1].status = 0;
df[2].status = 0;
df[3].status = 0;
config.kickstart.name[0]=0;
SetConfigurationFilename(0); // Use default config
LoadConfiguration(0, 1); // Use slot-based config filename
ChangeDirectory(OldDirectory);
} // end of minimig setup
if((user_io_core_type() == CORE_TYPE_MIST) || (user_io_core_type() == CORE_TYPE_MIST2)) {
puts("Running mist setup");
tos_upload(NULL);
// end of mist setup
}
if(user_io_core_type() == CORE_TYPE_ARCHIE) {
puts("Running archimedes setup");
} // end of archimedes setup
}