¢

BREXX/370 User's Guide
Release: V2R5M1

é‘)“ig

Peter Jacob (pej), Mike GroBmann (mig)

Jan 06, 2023

Table of Contents

Installation Guide 1
1.1 Introduction e 1
1.2 Prerequisites. e e e 1
1.3 Preparation of your target MVS38J System, 2
1.4 Installation. e 3
1.5 Additional Settings (optional) 8
BREXX Usage 9
2.1 TSOonline e 9
2.2 TSOBatch (start REXXJCL Procedure) 10
Tokens and Terms 12
3T comment. . .. e e e 12
3.2 SHiNg e 12
3.3 number . .. e, 12
3.4 symbol . .. e 12
3.5 function-call 12
Expressions 14
A1 Prefix+-2 . 14
A R 14
A3 K/ BN e e 14
S 14
45 (blank) [l . . . 14
4.6 =><>=<== /== ><<>==5><<>>=<<= A== f== == e 15
A7 & e 15
A8 J8& 15
Instructions 16
5.1 General Guidelines. e 16
5.2 Instructions. e 16
Templates for ARG, PULL, and PARSE 23
Compound Variable Names 25
Special Variables 26
8.1 SIGL. . . . 26
8.2 RC . . . e 26
8.3 RESULT . . . o e, 26

10

1

12

13

14

15

16

17

18

19

20

21

22

23

Interactive Debugging

Built-in Functions

10.1 Rexx Functions.
10.2 String Functions
10.3 Word Functions
10.4 Math Functions
10.5 Data Convert Functions
10.6 File Functions

Calling external REXX Scripts or Functions

11.1 Primary REXX Script location via fully qualified DSN.
11.2 Location of the Main REXX script via PDS search (TSO environments)
11.3 Runningscriptsinbatch
11.4 Calling external REXX SCripts. e
11.5 Variable Scope of external REXX scripts
BREXX MVS Functions

12.1 HostEnvironmentCommands e
Added BREXX Kernel functions and Commands

T13.T FUNnCtions. e e
GLOBAL Variables

Dataset Functions

TCP Functions

TSO REXX Functions

Matrix and Integer Array functions

RXLIB functions

Building TSO Commands

20.1 LAlListallallocated Libraries.o
20.2 WHOAMIDisplaycurrentUserId. e
20.3 TODAY e
20.4 USERS. e
20.5 REPL e

Callable External Functions

21.1 BREXX Callanexternal Program.
21.2 BREXX Programming Services e e e e

21.3 Called Program.
21.4 Benefits.

VSAM User’s Guide

22.1 Integration of the VSAM
22.2 VSAM Commands in BR
22.3 BREXX VSAM Example

Formatted screens

Interface in BREXX
EXX .

27

28
28
33
35
36
38
39

43
43
43
43
43
44

45
45

48
48

64

65

69

73

76

79

85
85
85
85
85
86

87
87
87
87
88

89
89
91
93

95

24

25

26

27

28

29

23.1 DeliveredSamples. e
23.2 FSSLimitation e
23.3 FSSFunction Overview e e
23.4 CreatingaDialogManager e
23.5 Simple Screen Applications. e
23.6 FSSMENU SupportingMenu Screens e
23.7 FSSFunctionsasHostCommands 0o....

Implementation Restrictions

241 Variables
242 STEMS . . . e e e e e
243 Funclions e e e e e

Migration and Upgrade Notices

25.1 Upgrade from a previous BREXX/370 Version.
252 BREXXV2RTMO e
25.3 BREXXV2R2MO e
254 BREXXV2R3MO e
255 BREXXV2RAMO e
25.6 BREXXV2RAMT e

About

26.T BREXX/370 e
26.2 LICENSE e e
26.3 BREXX/370documentation.
26.4 DISCLAIMER e

Credits
BREXX/370 Source Code
Some Notes on BREXX Arithmetic Operations

Index

129

130

131

Chapter 1

Installation Guide

1.1 Introduction

This document covers the installation process of BREXX/370.
BREXX/370 is provided as-is, please test carefully in test systems only!

BREXX/370 is not the same as IBM's REXX; there are many similarities, but also differences, espe-
cially when using MVS-specific functions.

The next TK4- Update 9 release contains BREXX/370.

1.2 Prerequisites

1.2.1 MVS TK4- / MVS/CE

This version of BREXX/370 has been developed and tested within Jirgen Winkelmann's TK4-
(https://wotho.ethz.ch/tk4-/). It also comes pre-installed in MVS/CE
(https://github.com/MVS-sysgen/sysgen). It may work in other versions of MVS, such as http-
s://www.jaymoseley.com/hercules/installMVS/iSYSGENv7.htm but can't be guaranteed.

1.2.2 Non MVS TK4- Installation

Users who run a non TK4- MVS installation should pay attention to the following differences:
XMIT RECEIVE STEPLIB DD Statement

It might be necessary to add a STEPLIB DD statement to locate the library containing the RECV370:

//RECV370
//STEPLIB

EXEC PGM=RECV370
DD

DSN=l1ibrary

Please add it to the Jobs where needed.

IN TK4- RECV370 is contained in a system library; therefore, a STEPLIB DD statement is not needed!
REGION SIZE

For non-TK4- MVS versions it might be necessary to reduce the REGION size parameter to 4 MB or

6MB, as MVS may reject the REGION=8192Kparameter with the message: "REGION UNAVAILABLE,
ERROR CODE=20". TK4- supports 8MB regions size:

https://wotho.ethz.ch/tk4-/
https://github.com/MVS-sysgen/sysgen
https://www.jaymoseley.com/hercules/installMVS/iSYSGENv7.htm
https://www.jaymoseley.com/hercules/installMVS/iSYSGENv7.htm

BREXX/370 User's Guide, Release: V2R5M1

//stepname EXEC PGM=xxxxx,REGION=6144K
ISPF support (optional)

BREXX/370 also supports Wally McLaughlin’s version of ISPF and its contained SPF panels.
1.2.3 Recommendations
We recommend testing BREXX/370 in an isolated test system to avoid any impact on your current

system. To achieve this, you can easily copy the entire Hercules/MVS directory to another location
and install BREXX/370 there.

1.3 Preparation of your target MVS38J System

1.3.1 BREXX Catalogue

Make sure that your MVS system has a BREXX Alias pointing to a user catalogue defined in
the master catalogue. To determine it, run the command:

listcat entries('brexx') all

The result must look like this:

ALIAS --------- BREXX
IN-CAT --- SYS1.VSAM.MASTER.CATALOG
HISTORY

RELEASE———————————————— >
ASSOCIATIONS

USERCAT--UCPUB0O1

If the BREXX Alias is not defined, add it:

/ /ADDBREXX EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=x
//SYSIN DD *
DEFINE ALIAS (NAME(BREXX) RELATE(your-user-catalog))

If the submitted job is not running, it might be necessary to enter the password of the master-cata-
logue in the MVS console (in TK4- not needed).

If you omit this step, all BREXX data sets are catalogued in the Master Catalog. In this case, it may
require the use of the Master Catalog password during the catalogue process. If you are running TK4-
you do not see such requests as RAKF is providing the access authorisation of the Master Catalog,
which therefore is not password protected. In the default TK4- configuration, only users HERC0O1 and
HERCO2 are authorised to update the master catalogue.

Important All JCLs in the installation and sample library contain now a NOTIFY=&SYSUID parameter in
the JOB card. If the patch, to resolve it during the Submit process by the current user-id, is not applied,
you need to change &SYSUID to your userid, or remove it from the JOB card!

The patch can be found on: http://prycroft6.com.au/vs2mods/index.html#zp60034

Make sure that dataset BREXX.V2R5M1.INSTALL is not already catalogued from a previous run. It is
the recommended dataset name and will be created during the receiving process of RECV370.

Important If a previous version of this dataset name is still catalogued, the new version ends up as
not catalogued: with a NOT CATLG 2 message! The Job output does not reveal by a ccod. Any later job
which is accessing BREXX.V2R5M1.INSTALL will use the old version of the dataset.

2 Chapter 1. Installation Guide

http://prycroft6.com.au/vs2mods/index.html#zp60034

BREXX/370 User's Guide, Release: V2R5M1

1.4 Installation

1.4.1 Step 0 - Unzip BREXX/370 Installation File

The ZIP installation file consists of several files:
« BREXX370_Users_guide.pdf - This user guide
+ BREXX370_V2R5M1.XMIT - XMIT File containing BREXX modules and Installation JCL

1.4.2 Step 1 - Upload XMIT File

Use the appropriate upload facility of your terminal emulation. Such as INDSFILE or using rdrprep and
inline JCL.

The file created during upload must have RECFM FB and LRECL 80. If the DCB does not match,
the subsequent unpacking process fails.

1.4.3 Step 2 - Unpack XMIT File

Unpack the XMIT file with an appropriate JCL. If you don't have one you can use the following sample,
just cut and paste it in one of your JCL libraries.

//BRXXREC JOB 'XMIT RECEIVE',CLASS=A,MSGCLASS=H

o e e e e e e e 5 0 5 e e e e e e e e
//* RECEIVE XMIT FILE AND CREATE DSN OR PDS

5% e e e o e e e e e 0 0 0 0 0 2 2 0 0 0 0 0 0 o o e e e e e e e e
//RECV370 EXEC PGM=RECV370,REGION=8192K

//RECVLOG DD SYSOUT=x

//XMITIN DD DSN=HERCO1.BREXX.version.XMIT,DISP=SHR

//SYSPRINT DD SYSOUT=x

//SYSUT1 DD DSN=&&XMIT2,

// UNIT=3390,

// SPACE=(TRK, (300,60)),

// DISP=(NEW,DELETE,DELETE)
//SYSUT2 DD DSN=BREXX.version.INSTALL,
// UNIT=3390,

// SPACE=(TRK, (300,60,20)),

// DISP=(NEW,CATLG,CATLG)

//SYSIN DD DUMMY

+ HERCO1.UPLOAD.XMIT represents the uploaded XMIT File - please change it accordingly to
the name you have chosen during the upload process.

« BREXX.V2R5M1.INSTALL is the name of the unpacked library (created during the UNPACK
process). It is recommendable to remain with this DSN as it is used in later processes. Make
sure there is no previous version of this PDS catalogued.

Important If you use a different JCL to unpack the XMIT file, use UNIT=3390 in the JCL. The unit type
3390 was the only reliably UNIT that ran in all tested TK4- environments. Other units may sometimes
lead to various errors during the unpacking process.

Once the submitted job has successfully unpacked the XMIT file into the target PDS, you can proceed
with STEP 3. The created library BREXX.version.INSTALL contains all JCL to pursue with unpacking
and installing.

The next steps make usage of the unpacked library (in this example BREXX.V2R5M1.INSTALL)

1.4. Installation 3

BREXX/370 User's Guide, Release: V2R5M1

Please run the JCL in the given order (refer to the Step x reference in the table). Submit Step 3 as
the first JCL of the installation sequence. Entries without a Step reference are used from the JCLs as
input datasets.

Filename Description Used in Step

SCLEANUP | Cleanup: Remove unnecessary installation files ->Step 6
SINSTALL | Install BREXX/370 ->Step 4
SREADME | Read me file

STESTRX | Test job to verify the BREXX/370 installation ->Step 5
SUNPACK | Unpack subsequent libraries -> Step 3
BUILD Contains BREXX/370 Version and date and XMIT date

CMDLIB xmit packed command proc
SAMPLES | xmit packed BREXX commands

JCL xmit packed example JCL

LINKLIB xmit packed BREXX Load library
PROCLIB xmit packed BREXX JCL procedures
RXINSTDL | Internal CLIST used during Installation
RXLIB xmit packed include library

Activating the new BREXX V2R5M1 Release

The next steps describe how to enable your new BREXX Release. In summary, you must run
the following jobs out of the above library in the listed sequence:

+ SUNPACK - mandatory

+ SINSTALL - mandatory

+ STESTRX - optional, recommended
+ SCLEANUP - optional

See details in the step descriptions below.
1.4.4 Step 3 - Submit SUNPACK JCL of the unpacked Library

In the unpacking process, the contained installation files will be expanded into different partitioned
datasets.

Important Before submitting the SUNPACK JCL, the XMITLIB parameter must match the dataset name
used in the expand JCL of Step2.

If you followed the dataset naming recommendations it is: BREXX.V2R5SM1.INSTALL and no change
is required.

//BRXXUNP JOB 'XMIT UNPACK',CLASS=A,MSGCLASS=H,NOTIFY=&SYSUID

//*

//*RELEASE SET 'V2R5M1'

//* ... BREXX Version V2R5M1 Build Date 6. May 2022

//%* ... INSTALLER DATE 06/05/2022 16:31:35

Do e e e e e e e e e e e e e e e e e o e e e e e o o e e e e e e e e e S S S e

//* UNPACK XMIT FILES INTO INSTALL LIBRARIES
//* *x* CHANGE XMITLIB= TO THE EXPANDED XMIT LIBRARY OF INSTALLATION

Y e e e et
//* -——=> CHANGE XMITLIB TO YOUR UNPACKED XMIT FILE <----
//* XXXXXXXXXXX

//* X X X

//* X X X

//* X X X

4 Chapter 1. Installation Guide

BREXX/370 User's Guide, Release: V2R5M1

//XMITLOAD PROC XMITLIB='BREXX.V2R5M1.INSTALL',
// HLQ="BREXX.V2R5M1"',
// MEMBER=

Important If the job does not run and waits, check with option 3.8 the status. It is most likely
"WAITING FOR DATASETS". The simplest method to resolve this is to LOGOFF and re-LOGON to your
TSO session.

After completion of the SUNPACK JCL the following new Libraries are available:

Dataset Description
BREXX.V2R5M1.CMDLIB | REXX commands are directly executable
BREXX.V2R5M1.SAMPLE | REXX Samples scripts
BREXX.V2R5M1.JCL REXX Job Control
BREXX.V2R5M1.LINKLIB | BREXX Load Modules
BREXX.V2R5M1.APFLLIB | BREXX authorised Load Modules
BREXX.V2R5M1.PROCLIB | BREXX JCL Procedures
BREXX.V2R5M1.RXLIB BREXX include Libraries

The unpacking process removes any old version of the above libraries, before the creation of the new
version. If no old version of these libraries is available, the delete steps end with RC=4, as well as
the job ends with RC=4. Ignore these errors, if the individual unpack steps return with RC=0. Therefore
please carefully check the output of this job.

Important Before you install BREXX, you must decide either on the normal BREXX installation or
the authorised BREXX installation.

With the authorised version you can call from BREXX utilities as IEBGENER, IEBCOPY, NJE38, etc.
which run in authorised mode. This requires that the environment in which you start BREXX is autho-
rised, meaning Wally Mclaughlin’s ISPF, or RFE must be authorised. Plain TSO is already authorised.

Both installations are copied into the same partitioned datasets; they are, therefore, mutually exclu-
sive!

If the standard installation is sufficient, continue with Step 4 If you plan to use the authorised,
continue with Step 4A. In this case, the MVS authorisation table needs to be updated as well.

1.4.5 Step 4 - Submit SINSTALL JCL for the Standard Installation
The SINSTALL JCL copies all member from the following two partitioned datasets into the appro-
priate SYS2 datasets.

* BREXX.LINKLIB -> SYS2.LINKLIB
* BREXX.PROCLIB -> SYS2.PROCLIB

All these members are BREXX/370 specific and do not conflict with existing members. Members of
the system libraries remain untouched.

Important Please log off and re-login to your TSO session before performing any online testing; this
enforces the new loading of modules used during the testing, else you might see an 0C4. In rare situa-
tions, the installation of the BREXX Linklib members may create a new dataset extent in SYS2.LIN-
KLIB. In this case, you must also restart your TK4- MVS session.

Continue with STEP 5

1.4. Installation 5

BREXX/370 User's Guide, Release: V2R5M1

1.4.6 Step 4A- Submit SINSTAPF JCL for the Authorised Installation
The SINSTPAPF JCL copies all member from the following two partitioned datasets into the appro-
priate SYS2 datasets.

« BREXX.LINKLIB -> SYS2.LINKLIB

+ BREXX.PROCLIB -> SYS2.PROCLIB

All these members are BREXX/370 specific and do not conflict with existing members. Members of
the system libraries remain untouched.

To authorise the Modules to change the following Modules:

SYS1.UMODSRC (IKJEFTE2)
SYS1.UMODSRC (IKJEFTES)

Add the BREXX modules to the sources:

DC C'BREXX ! BREXX/370
DC C'REXX ! BREXX/370
DC C'RX ! BREXX/370

To activate the changes submit the Jobs:
+ SYS1.UMODCNTL(ZUM0001)
+ SYS1.UMODCNTL(ZUMO0014)

Aftewards you must restart your MVS:
+ Shut down your MVS
+ Re-IPL your job with the CLPA option
+ Shut Down MVS again
+ Perform normal IPL

Important If you run Wally McLaughlin’s ISPF the ISPF libraries must be authorised, otherwise calling
a rexx from within ISPF will abend (usually S306).

1.4.7 Step 5 - Submit STESTRX JCL of the unpacked Library
Submit STESTRX start a test to verify the installation of BREXX/370. All steps should return with RC=0
1.4.8 Step 6 - Submit SCLEANUP JCL of the unpacked Library

The SCLEANUP job removes all unnecessary installation files they are no longer needed, as they were
merged into the appropriate SYS2.xxx library.

« BREXX.V2R5M1.LINKLIB

+ BREXX.V2R5M1.PROCLIB

You may also wish to remove the uploaded XMIT File, which was used for the first unpack process.
1.4.9 Step 7 - ADD BREXX Libraries into TSO Logon

To run BREXX with its shortcut RX, REXX, BREXX you must allocate the BREXX libraries into your
Logon procedure. There are several ways to achieve this. The easiest and recommended method for
TK4 users is to add lines into SYS7.CMDPROC(USRLOGON). Non TK4 installation may use different
libraries. MVS/CE and Jay Moseley sysgen use SYS7.CMDPROC(TSOLOGON).

6 Chapter 1. Installation Guide

BREXX/370 User's Guide, Release: V2R5M1

/* ALLOCATE RXLIB IF PRESENT x/
IF &SYSDSN('BREXX.V2R5M1.RXLIB') EQ &STR(OK) THEN DO
FREE FILE(RXLIB)
ALLOC FILE(RXLIB) +
DSN('BREXX.V2R5M1.RXLIB') SHR

/* ALLOCATE SYSEXEC TO SYS2 EXEC x/

IF &SYSDSN('SYS2.EXEC') EQ &STR(OK) THEN DO
FREE FILE(SYSEXEC)

ALLOC FILE(SYSEXEC) DSN('SYS2.EXEC') SHR
END

/* ALLOCATE SYSUEXEC TO USER EXECS x/

IF &SYSDSN('&SYSUID..EXEC') EQ &STR(OK) THEN DO
FREE FILE(SYSUEXEC)

ALLOC FILE(SYSUEXEC) DSN('&SYSUID..EXEC') SHR
END

insert the clist above before the line %STDLOGON in SYS1.CMDPROC(USRLOGON).

The update of the TSO Logon CLIST is an entirely manual process! Please take a backup of USRL-
OGON CLIST first to allow a recovery in case of errors!

Important Users who upgrade from a previous release of BREXX need to update the logon clist and
replace the RXLIB allocation with the current dataset name: BREXX.V2R5M1.RXLIB.

1.4.10 Step 8 - Your Tests

It is advised to LOGOFF and LOGON again to your system to make sure that the newly installed
modules become active.

Now it's your turn to test BREXX/370! Please be advised BREXX/370 is not z/OS REXX, so you might
miss some functions but find also functions not available in the “original”.

1.4.11 Step 9 - Remove old BREXX Libraries (optional)

If you had a previous BREXX/370 version installed and your tests ran successfully, you can remove
the libraries of the earlier BREXX version, for example, V2R2MO.

Dataset Description
BREXX.V2R2MO0.CMDLIB | REXX commands
BREXX.V2R2MO0.SAMPLE | REXX Samples scripts
BREXX.V2R2MO0.JCL REXX Job Control
BREXX.V2R2MO.LINKLIB | BREXX Load Modules
BREXX.V2R2MO0.PROCLIB | BREXX JCL Procedures
BREXX.V2R2MO0.RXLIB BREXX include Libraries

If you upgraded from the very first BREXX/370 version, you can remove the following libraries:

Dataset Description
BREXX.CMDLIB | REXX commands
BREXX.SAMPLE | REXX Samples scripts
BREXX.JCL REXX Job Control
BREXX.LINKLIB | BREXX Load Modules
BREXX.PROCLIB | BREXX JCL Procedures
BREXX.RXLIB BREXX include Libraries

1.4. Installation 7

BREXX/370 User's Guide, Release: V2R5M1

1.5 Additional Settings (optional)

If you want to communicate with the control program of the host system (either Hercules or VM) you
can do so, by running:

ADDRESS COMMAND 'CP cp-parameter ...'

For VM you need to use a valid CP command. Example:

ADDRESS COMMAND 'CP QUERY TIME'

If your system is running within Hercules your CP commands are routed to Hercules and need to be
Hercules commands. Example:

ADDRESS COMMAND 'CP DEVLIST'

To communicate with Hercules you need to enable the DIAG8 commands DIAGEBCMD ENABLE in
the Hercules console. In TK4- systems it is already enabled. If it is not enabled and you run
an ADDRESS COMMAND “CP command” BREXX will abend typically with an 0C6.

8 Chapter 1. Installation Guide

Chapter 2

BREXX Usage

There are JCL Procedures delivered, which facilitate the test and execution of REXX scripts.
The installation process merges them into SYS2.PROCLIB.

The delivered RXLIB PDS contains several REXX functions, which are usable as if they were a BREXX
internal function.

The delivered JCL procedures allocate the RXLIB library, and it is recommended to add it also into
the TSO Logon procedures (Step 8).

2.1 TSO online

Executing rexx scripts in TSO uses either RX or REXX. You can either call scripts from dataset libraries
or fully qualified dataset names.

To call a script from a library:

RX rexx-script-name
REXX rexx-script-name

BREXX performs all necessary allocations. It is advised to add a user-specific REXX library, naming
convention: &SYSUID.EXEC (RECFM=VB, LRECL255). If available, the REXX-script searches path starts
from there. The REXX library search sequence is:

1. SYSUEXEC - typically & YSUID.EXEC
2. SYSUPROC - (optional)

3. SYSEXEC - (optional)

4. SYSPROC - (optional)

At least one of these libraries needs to be pre-allocated during the TSO logon process. It is not
mandatory to have all of them allocated. It depends on your planned REXX development environment.
The allocations may consist of concatenated datasets. If you followed the instructions above then
SYSEXEC is assigned to SYS2.EXEC and SYSUEXEC is assigned to &SYSUID.EXEC.

Alternatively, you can specify a fully qualified dataset-name and member name (if the dataset is
a PDS):

RX 'dataset-name(rexx-script-name)'
REXX 'dataset(rexx-script-name)'

BREXX/370 User's Guide, Release: V2R5M1

2.2 TSO Batch (start REXX JCL Procedure)

There is a JCL Procedure defined that allows you to run REXX Scripts in a TSO Batch environment.
The Procedure performs all necessary BREXX and TSO allocations.

Some ADDRESS TSO commands as ALLOC/FREE are supported.

//DATETEST JOB CLASS=A,MSGCLASS=H,REGION=8192K,NOTIFY=&SYSUID

/7%

Y e e *
//* TEST REXX DATE AS TSO BATCH

5 e e e e e 0 0 5 2 0 e e e e e e e e *

//REXX EXEC RXTSO,EXEC='DATE#T',SLIB='BREXX.SAMPLES'

« EXEC= defines the rexx script to run
+ SLIB= defines the library/partitioned dataset containing the rexx script defined in EXEC

Additionally, you can add a P='input-parameters’ JCL Parameter field, if your rexx receives input param-
eters.

2.2.1 Plain Batch (start REXX JCL Procedure)

There is a JCL Procedure defined that allows you to run REXX Scripts in a plain Batch environment.
The Procedure performs all necessary BREXX allocations

Warning ADDRESS TSO commands are not supported here!

//DATETEST JOB CLASS=A,MSGCLASS=H,REGION=8192K,NOTIFY=&SYSUID

//*

Do e o e e e e e e e e e S S e *
//* TEST REXX DATE AS TSO BATCH

Y I *

//REXX EXEC RXBATCH,EXEC='ETIME#T',SLIB='BREXX.SAMPLES'

+ EXEC= defines the rexx script to run
+ SLIB= defines the library/partitioned dataset containing the rexx script defined in EXEC

Additionally, you can add a P='input-parameters’ JCL Parameter field, if your rexx receives input param-
eters.

2.2.2 BREXX/370 Sample Library

The Library BREXX.version.SAMPLES contains a variety of REXX scripts that cover the following areas:
- Basic functionality in Members starting with ‘S’
+ FSS samples, starting with ‘#
+ VSAM samples beginning with ‘@’
+ All other scripts are original samples delivered with Vasilis Vlachoudis BREXX installation.

2.2.3 BREXX/370 Hints

Please make sure that your REXX files do not contain line numbering! They are not wiped out by
BREXX/370 and therefore treated as the content of the script. This lead to errors during interpretation,
sometimes even system abends! Use UNNUM as a primary command in the RFE editor to switch line

10 Chapter 2. BREXX Usage

BREXX/370 User's Guide, Release: V2R5M1

numbering off and remove existing numbers.

If the BREXX/370 call leads to an S106 Abend, the most likely reason is the creation of a new extent in
SYS2.LINKLIB during the installation process. Its size and number of extents are loaded during IPL
and kept while MVS is up and running. The creation of new extents will therefore not be discovered.

You can either re-IPL your system or better REORG SYS2.LINKLIB with IEBCOPY.

2.2. TSO Batch (start REXX JCL Procedure) 11

BREXX/370 User's Guide, Release: V2R5M1

3 Tokens and Terms

REXX expressions and instructions may contain the following items:

3.1 comment

A comment is a sequence of characters (on one or more lines) delimited by /* and */. Nested
comments are also valid, as /* hello /* joe */ */

3.2 string

A string is a sequence of characters delimited by a single quote or double quote. Use two
guotes to obtain one quote inside a string. A string may be specified in binary or hexadecimal if
the final quote is followed by a B or X. If it followed by an H then is treated as a hexadecimal
number. Some valid strings are:

"Marmita"
'0100 0001'b
'He''s here'
'2ed3'x
'10'h (=16)

3.3 number

A number is a string of decimal digits with or without a decimal point. A number may be
prefixed with a plus or minus sign, and/or written in exponential notation. Some valid humbers

are:

23

12.07

141

12.2e6

+5

'-3.14'
3.4 symbol

A symbol refers to any group of characters from the following selection: A-Z, a-z, 0-9, @ #S_. ?
!

Symbols are always translated to uppercase. Variables are symbols but the first character must
not be a digit 0-9 or a dot '.. Each symbol may consist of up to 250 characters.

3.5 function-call

A function-call invokes an internal, external, or built-in routine with 0 to 10 argument strings.
The called routine returns a character string. A function-call has the format:

function-name([expr][[expr]...)

12 Chapter 3. Tokens and Terms

BREXX/370 User's Guide, Release: V2R5M1

function-name must be adjacent to the left parenthesis, and may be a symbol or a string.

All procedures can be called as functions or procedures. If a function is called as a procedure
CALL left ‘Hello',4 then the return string will be returned in the variable RESULT (where in this
example will contain the string ‘Hell’)

copies(‘ab’,3) /* will return ‘ababab’ */

3.5. function-call 13

BREXX/370 User's Guide, Release: V2R5M1

4 Expressions

Most REXX instructions permit the use of expressions, following normal algebraic style. Expressions
can consists of strings, symbols, or functions calls. Expressions are evaluated from left to right, modi-
fied by parentheses and the priority of the operators (as ordered below). Parentheses may be used to
change the order of evaluation.

All operations (except prefix operations) act on two items and result in a character string.

4.1 Prefix +- 1\

Prefix operations: Plus; Minus; and Not. (For + and -, the item must evaluate to a number; for 4
and \, the item must evaluate to “1"” or “0".)

4 /4%

4.2 %+

Exponentiate. (Both items must evaluate to numbers, and the right-hand item must be a whole
number.)

2 x% 3 /x 8 %/

2 xx -3 /% 0.125 %/
4.3*/ %/
Multiply; Divide; Integer Divide; Divide and return the remainder. (Both items must evaluate to
numbers.)
4 x 3 /*x 12 *x/
4 / 3 /* 1.333.. *x/
5% 3 /x 1 x/
5//3 /x2~x/
4.4 + -

Add; Subtract. (Both items must evaluate to numbers.)

2 + 3.02 /* 5.02 */
4.5 (blank) /|
Concatenate: with or without a blank. Abuttal of items causes direct concatenation.
a = 'One'
a 'two' /* ""One two" */
a || "two' /* "Onetwo' */
a'two' /*x "Onetwo" *x/

14 Chapter 4. Expressions

BREXX/370 User's Guide, Release: V2R5M1

46=><>=<=A=/==2A> M >< <> ==>><< >>=<<= == /=

===A

>> Mg

Comparisons (arithmetic compare if both items evaluate to a number.) The ==, >>, << etc. opera-

tors checks for an exact match.

'marmita’ = ' marmita ' /* 1 (spaces are striped) x*/
'marmita' == ' marmita ' /*x 0 %/

'marmita'’ A= ' marmita ' /* 0 (spaces are striped) x/
'marmita’ A==' marmita ' /*x 1 %/

2' =" 2! /* 1 (arithmetic comparison) x/

12! == ' 2 ! /* O (string comparison) x*/

20 >> ' 2! /* 1 (string comparison) x*/

4.7 &
Logical And. (Both items must evaluate to “0” or “1”.)
'a'='p' & 'c'='c! /*O*/
4.8/ &&
Logical Or; Logical Exclusive Or. (Both items must evaluate to “0” or “1”.)
1q'='p! | tcl="¢c! /*l */
'A'="h' && 'c'='c' /*l */

In Ansi REXX the results of arithmetic operations are rounded according the setting to NUMERIC
DIGITS (default is 9). Here all arithmetic operations follow C arithmetics. For a more detail description

look at the Implementation Restrictions document.

4.6. =><>5=<==[==52<>< <> == 5> << >>=<<= A== [===

15

BREXX/370 User's Guide, Release: V2R5M1

5 Instructions

Each REXX instruction is one ore more clauses, the first clause is the one that identifies the instruc-
tion. Instructions end with a semicolon or with a new line. One instruction may be continued from one
line to the next by using a comma at the end of the line. Open strings or comments are not affected by
line ends.

5.1 General Guidelines

name;
refers to a variable, which can be assigned any value. name is a symbol with the following excep-
tion: the first character may not be a digit or a period. The value of name is translated to upper-
case before use, and forms the initial value of the value of the variable. Some valid names are:

* Fred

+ COST?
* next

+ index
Aj

name:
is a form of labels for CALL instructions, SIGNAL instructions, and internal function calls.
The colon acts as a clause separator.

template;
is a parsing template, described in a later section.

instr;
is any one of the listed instructions.

5.2 Instructions

expression;
the value of expression is issued as a command, normally to the command interpreter or to
the specified environment specified by the ADDRESS instruction. Look also the section “Issuing
Commands to Host System.”

name = [expr];
is an assignment: the variable name is set to the value of expr.

fred = 'sunset'
1+ 2 % 3

a
a

ADDRESS [<symbol | string> [expr]] | VALUE expr | (env);
redirect commands or a single command to a new environment. ADDRESS VALUE expr may be
used for an evaluated environment name.

|address int2e 'dir’

16 Chapter 5. Instructions

BREXX/370 User's Guide, Release: V2R5M1

address system /x all the following command will be addressed to system */
env = 'dos'

address value env /* change address to dos */

address (env) /* change address to dos x/

ARG <template>;

parse argument string(s) given to program or in an internal routine into variables according to
template. Arguments are translated into uppercase before the parsing. Short for PARSE UPPER
ARG.

/* program is called with args "autoexec.bat auto.old" */
arg src dest

/* src = "AUTOEXEC.BAT", dest="AUTO.OLD" x/

/* a function is called MARMITA('Bill',3) x/

marmita:

arg firstarg, secondarg

/* firstarg = "BILL", secondarg = "3" x/

CALL [symbol | string] [<expr>] [,<expr>]... 3

[ON|OFF <condition> [NAME label]];
call an internal routine, an external routine or program, or a built-in function. Depending on
the type of routine called, the variable RESULT contains the result of the routine. RESULT is unini-
tialized if no result is returned.

CALL SUBSTR 'makedonia',2,3

/* now. variable result = 'ake' *x/
/* the same can be obtained with *x/
result = SUBSTR('makedonia',2,3)

In the following sections there is a description of all the built-in rexx functions.

Internal functions are sequence of instructions inside the same program starting at the label that
matches the name in the CALL instruction.

If the function is not found in the current program, then REXX will search for a file that matches
the name in the CALL instruction and the same extension like the current program, and will load it
as an external rexx function.

External routines are like internal but written in a separate module that can be used as a library.
Rexx libraries are rexx files with many external routines which must be loaded with the built-in
function LOAD before they are used (see below).

As external routines can be used any DOS command or program that uses standard input and
output.

/* external programs can be called as routines x/

/* and the output of the program (to stdout) will x*/
/* be returned as the result string of the function */
CALL "dir" "x.exe","/w" /* or *x/

files = "dir"('*x.exe',"/w")

current_directory = 'cd'()

For CALL ON/OFF condition look below at the SIGNAL instruction.

DO [name=expri [TO exprt] [BY exprb] [FOR exprf]l] | [FOREVER | exprr]
[UNTIL expru | WHILE exprw] 3
[instr]... 3
END[symbol] 3
DO is used to group many instructions together and optionally executes them repetively.
Simple DO loop are used to execute a block of instructions often used with IF-THEN statements.

Note Simple DO loops are not affected with ITERATE or LEAVE instructions (see below)

5.2. Instructions 17

BREXX/370 User's Guide, Release: V2R5M1

IF name = 'Vivi' THEN DO
i=d+ 1
SAY 'Hello Vivi'
END

Simple repetitive loops.

Note in DO expr, expr must evaluate to an integer number.

DO 3 /* would display 3 'hello' #*/
SAY 'hello'
END

Inifinite loops

DO FOREVER /* infinite loop, display always *x/
SAY 'lupe forever' /* 'hello' x/
END

Loops with control variable. name is stepped from expri to exprt in steps of exprb, for a maximum
of exprf iterations.

DO i = 1 TO 10 BY 3 /* would display the numbers */
SAY 1 /*x 1, 4, 7, 10 */
END

Note all the expressions are evaluated before the loop is executed and may result to any kind of
number, integer or real.

Conditional loops

a =2 /* would display */
DO WHILE a < 5 /x 2 %/

SAY a /* 4 x/

a=a+ 2
END

Note exprw and expru are evaluated in each iteration and must result to 0 or 1. WHILE expression
is evaluated before each iteration, where UNTIL expression is evaluated at the end of each itera-
tion.

You can combine them like:

a=1 /* would display */
DO FOR 3 WHILE a < 5 /x 1 %/
SAY a /x 2 x/
a=a+1 /* 3 x/
END

DROP <name | (nameind)> [<name | (nameind)>]... ;

DROP (reset) the named variables or group of variables by freeing their memory. It returns them
in their original uninitialized state. If a variable is enclosed in parenthesis then DROP resets all
the variables that nameind contains as separate words. If an exposed variable is named, the vari-
able itself in the older generation will be dropped! If a stem is specified all variables starting with
that stem will be dropped.

j=2
vars="j b stem."

18

Chapter 5. Instructions

BREXX/370 User's Guide, Release: V2R5M1

DROP a x.1
DROP z.

/* resets variables A X.1 and Y.2 x/
/* resets all variables with names

y.J

starting with Z. */
DROP (name) /* resets variables j b and stem.

*/

EXIT [expr] 3
leave the program (with return data, expr). EXIT is the same as RETURN except that all internal
routines are terminated.

EXIT 12%3 /* will exit the program with RC=36 x/

IF expr [;] THEN [;] dinstr ;

[ELSE [3] instr];
if expr evaluates to “1”, executes the instruction following the THEN. Otherwise, when expr evalu-
ates to “0”, the instruction after ELSE is executed, if ELSE is present.

IF name="Vivi" THEN SAY "Hello Vivian"
ELSE SAY "Hello stranger"

INTERPRET expr ;
expr is evaluated and then is processed, as it was a part of the program.

cmd = ""SAY
INTERPRET

'Hello'"
cmd /* displayes "Hello" x/

ITERATE [name] 3
start next iteration of the innermost repetitive loop (or loop with control variable name).

DO i=1T05 /* would display: 1 %/
IF i=3 THEN ITERATE /* 2 %/
SAY i /* 4 */

END /* 5 %/

°

LEAVE [name] 3
terminate innermost repetitive loop (or loop with control variable name).

i 1T0 5
IF i=3 THEN LEAVE
SAY i
END

DO 1 %/

/* would display:
/* 2/

LOWER name [name]...
translate the values of the specified individual variables to lowercase.

name AAAAR

LOWER name /* now, name = 'vivi' x/

o

b
dummy instruction, has no effect.

NOP

IF name”='Vivi' THEN NOP; ELSE SAY 'Hello Vivi.'

NUMERIC DIGITS [expr] | FORM [SCIENTIFIC | ENGINEERING] H

Set the number of significant digits used for all arithmetic operations.

| FUZZ [expr]

Note In BRexx all numerical operations are performed either with the 32bit integer type or 64

5.2. Instructions 19

BREXX/370 User's Guide, Release: V2R5M1

double precission, so the numeric digits is limited for floating point operations to maximum 22
digits.

PARSE [type] + ARG + [template] ;
Parse is used to assign data from various sources to one or more variables according to
the template (see below for template patterns) where the optional type is one of:

* ARG, parses the argument string(s) passed to the program, subroutine, or function. UPPER
first translates the strings to uppercase. See also the ARG instruction.

« AUTHOR parse the author string.

« EXTERNAL, prompts for input and parses the input string
* LINEIN, same as EXTERNAL

* NUMERIC, parse the current NUMERIC settings.

« PULL, read and parse the next string from REXX stack if not empty otherwise prompts for
input. See the PULL instruction.

+ SOURCE, parse the program source description e.g. “MSDOS COMMAND prog.r C:REXX.EXE
C:DOSCOMMAND.COM”

« VALUE, parse the value of expr.
* VAR, parse the value of name.
* VERSION, parse the version string of the interpreter.

PROCEDURE [EXPOSE name| (varind) [name|(varind)]...] ;
start a new generation of variables within an internal routine. Optionally named variables or
groups of variables from an earlier generation may be exposed. If a stem is specified (variable
ending in ‘. dot, ie ‘A’) then every variable starting with this stem will be exposed. Indirect expo-
sure is also posible by enclosing inside parenthesis the variable varind which contains contains
as separate words all variables to be exposed

i=1; j =2
ind = "i j"
CALL myproc
CALL myproc2

EXIT

myproc: PROCEDURE EXPOSE i /* would display */

SAY 1 j /* 1 J %/

RETURN

myproc2: PROCEDURE EXPOSE (ind) /* would display x/
say i j /* 1 2 x/

RETURN

PULL [template] ;
pops the next string from rexx internal stack. If stack is empty then it prompts for input. Trans-
lates it to uppercase and then parses it according to template. Short for PARSE UPPER PULL.

PUSH 'Vassilis Vlachoudis'

PULL name surname

PUSH [expr] 3
push expr onto head of the rexx queue (stack LIFO)

20 Chapter 5. Instructions

BREXX/370 User's Guide, Release: V2R5M1

QUEUE [expr] 3
add expr to the tail of the rexx queue (stack FIFO)

RETURN [expr] 3
return control from a procedure to the point of its invocation. if expr exits, then it is returned as
the result of the procedure.

num = 6
SAY num || '"! = ' fact(num)
EXIT

fact: PROCEDURE
IF arg(l) = © THEN RETURN 1
RETURN fact(ARG(1)-1) * ARG(1)

SAY [expr]s
evaluate expr and then writes the result to standard output (normally user’s console) followed by
a newline.

SELECT ;

WHEN expr [3] THEN [;] dinstr;

[WHEN expr [3] THEN [3] dinstr; 1]

[OTHERWISE [;] [instr]... 1;

END ;
SELECT is used to conditionally process one of several alternatives. Each WHEN expression is
evaluated in sequence until one results in “1”. instr, immediately following it, is executed and
control leaves the block. If no expr evaluated to “1”, control passes to the instructions following
the OTHERWISE expression that must then be present.

num = 10

SELECT
WHEN num > O THEN SAY num 'is positive'
WHEN num < © THEN SAY num 'dis negative'
OTHERWISE SAY num 'is zero'

END
SIGNAL [name] |
[VALUE] expr |
<ON | OFF> + condition + [NAME label];

Parameters condition — Can be one of ERROR HALT NOTREADY NOVALUE SYNTAX

* name, jump to the label name specified. Any pending instructions, DO ... END, IF, SELECT,
and INTERPRET are terminated.

* VALUE, may be used for an evaluated label name.
* ON|OFF, enable or disable exception traps.

+ Condition must be ERROR, HALT, NOTREADY, NOVALUE, or SYNTAX. Control passes to
the label of the condition name if the event occurs while ON or to label if NAME label is
specified.

SIGNAL vivi

vivi:
SAY 'Hi!'

A condition example:

5.2. Instructions 21

BREXX/370 User's Guide, Release: V2R5M1

SIGNAL ON SYNTAX NAME syntax_error;
SAY 1/0 /* Control passes to label syntax_error x/

syntax_error:
SAY 'Syntax error in line:' SIGL

TRACE option | VALUE expr;
Trace according to following option. Only first letter of option is significant.

« A (All) trace all clauses.

+ C (Commands) trace all commands.

« E (Error) trace commands with non-zero return codes after execution.

« | (Intermediates) trace intermediate evaluation results and name substitutions also.
+ L (Labels) trace only labels.

+ N (Negative or Normal) trace commands with negative return codes after execution (default
setting).

+ 0 (Off) no trace.

* R (Results) trace all clauses and expressions.

+ S (Scan) display rest of program without any execution (shows control nesting).

* ? turn interactive debug (pause after trace) on or off, and trace according to next character.
null restores the default tracing actions.

TRACE VALUE expr may be used for an evaluated trace setting.

UPPER name [name]...
translate the values of the specified individual variables to uppercase.

name = 'Vivi'
UPPER name

22 Chapter 5. Instructions

Chapter 6

Templates for ARG, PULL, and PARSE

The PULL, ARG and PARSE instructions use a template to parse a string.

The simplest template is a list of variables where each of them is assigned one word from the string,
except the last variable in the list which will contain the rest of the string.

PARSE VALUE "one two three four " WITH a b c

now a="one"; b="two"; c="three four"

PARSE VALUE "one two three four " WITH a b c d e
now a="one"; b="two"; c="three"; d="four" and e=""

A dot ‘! can be in the place of one or more variables, it is used as a place-holder.

PARSE VALUE "one two three four " WITH a . . d
now a="one"; d="four"

A more complex parsing is to use patterns for triggering:
+ number which specifies an absolute position in string 1 - is the first character in string
+ =(name) as a position may be a variable enclosed in parenthesis after an equal symbol
* [+|-Inumber signed numbers are used as a relative positioning

PARSE VALUE "one two three four " WITH 2 a 6 b

now a="ne t"; b="wo three four " pos=6;

PARSE VALUE "one two three four " WITH 2 a =(pos) b

now a="ne t"; b="wo three four " PARSE VALUE "one two three four " WITH
2 a+2b

now a="ne"; b=" two three four "

« string - may be used as a target position.

PARSE VALUE "marmita/bill/vivi' WITH a '/' b '/' c
now a="marmita"; b="bill"; c="vivi"

+ (name) - also as a target may be used a variable encolsed in parenthesis

— 1rozozN
—_ 7070
PARSE VALUE "aabbcc%%ddeeff%%gg%%" WITH . (t) middle (t) . now
middle="ddeeff"

A comma can be used as a “trigger” to move to the next string when there is more than one to be
parsed (e.g. when there is more than one argument string to a routine).

CALL MyProc 'Hi',3,4
EXIT
MyProc:

23

BREXX/370 User's Guide, Release: V2R5M1

PARSE ARG first, second, third
v /* second=3 */
/* third=4 */

/* now first="Hi" %/

24

Chapter 6. Templates for ARG, PULL, and PARSE

Chapter 7

Compound Variable Names

name may be “compound” in that it may be composed of several parts (separated by periods) some
of which may have variable values. The parts are then substituted independently, to generate a fully
resolved name. In general,

s0.s1.s2.---.sn /* 1s substituted to form x/
do.vi.v2.---.vn /* where dO is uppercase of s0O, and
vi-vn are values of sl-sn *x/

This facility may be used for traditional arrays, content-addressable arrays, and other indirect
addressing modes. As an example, the sequence:

J =5; a.j = "fred";

would assign fred to the variable A.5.

“n

The stem of name (i.e. that part up to and including the first “.") may be specified on the DROP and
PROCEDURE EXPOSE instructions and affect all variables starting with that stem. An assignment to
a stem assigns the new value to all possible variables with that stem.

25

BREXX/370 User's Guide, Release: V2R5M1

8 Special Variables

There are three special variables:

8.1 SIGL

holds the line number of the instruction that was last executed before control of program was trans-
ferred to another place. This can be caused by a SIGNAL instruction, a CALL instruction or a trapped
error condition.

8.2RC

is set to the errorlevel (return-code) after execution of every command (to host).

8.3 RESULT

is set by a RETURN instruction in a CALLed procedure.

26 Chapter 8. Special Variables

Chapter 9

Interactive Debugging

You can enter the interactive debuging either by executing a TRACE instruction with a prefix ‘?’ or
when calling REXX from command line issuing as a first argument the trace option:

rexx ?A’ ‘HLQ.DATASET(MEMBER)’

In interactive debug, interpreter pauses before the execution of the instructions that are to be traced
and prompts for input. You may do one of following things:

« Enter a null line to continue execution.

- Enter a list of REXX instructions, which are interpreted immediately (DO-END instructions must
be complete, etc.).

During the execution of the string, no tracing takes place, except that non-zero return codes from host
commands are displayed. Execution of a TRACE instruction with the “?” prefix turns off interactive
debug mode. Other TRACE instructions affect the tracing that occurs when normal execution contin-
ues.

27

BREXX/370 User's Guide, Release: V2R5M1

10 Built-in Functions

The following are the built-in REXX functions. Which are divided into the following categories:
* Rexx
+ String
+ Word
+ Math
+ Data Convert

* File Functions

10.1 Rexx Functions

ADDR (symbol[,[option][pool]])
returns the physical address of symbol contents. Option can be ‘Data’ (default) variables data
‘Lstring’ Istring structure pointer ‘Variable’ variable structure.
If pool exist, the specific rexx pool is searched for the symbol. Valid pools are numbers from 0 up
to current procedure nesting. (The result is normalized for MSDOS, ie seg:ofs = seg*16+0fs)

i=5;

SAY addr('i') /* something like 432009 decimal */

SAY addr('i','L") /* something like 433000 x/

SAY addr('i','V') /* something like 403004 */

SAY addr('i','V',0) /* something like 403004 */

SAY addr('j"') /* -1, is J variable doesn't exist */
ADDRESS ()

return the current environment for commands.

SAY address() /* would display: SYSTEM */

ARG ([, n[, option] 1)
« ARG() returns the number of arguments
+ ARG(n) return then nth argument
+ ARG(n,option) option may be Exist or Omitted (only the first letter is significant) test whether
the nth argument Exists or is Omitted.

Returns “0” or “1”

call myproc 'a',,2

myproc:

SAY arg() /* 3 x/
SAY arg(1l) /* 'a' x/
SAY arg(2,'0"') /x 1 */
SAY arg(2,'E') /x O *x/

DATATYPE (string [, type])
DATATYPE(string) - returns “NUM" is string is a valid REXX number, otherwise returns “CHAR".
DATATYPE(string,type) - returns “0” or “1” if string is of the specific type:

28 Chapter 10. Built-in Functions

BREXX/370 User's Guide, Release: V2R5M1

+ Alphanumeric: characters A-Z, a-z and 0-9
+ Binary: avalid BINARY number
+ Lowercase: characters a-z
* Mixed: characters A-Z, a-z
* Number: is a valid REXX number
+ Symbol: characters A-Z, a-z, 0-9, @%_.!#
* Uppercase: characters A-Z
* Whole-number: a valid REXX whole number
+ X (heXadecimal): a valid HEX number
(only the first letter of type is required)

The special type ‘Type' returns the either INT, REAL, or STRING the way the variable is hold into
memory. Usefull when you combine that with INTR function.

SAY datatype('123') /* NUM x/

SAY datatype('2la') /* CHAR x/

SAY datatype(01001,'B'") /x 1 x/

SAY datatype(i,'T') /* maybe STRING */

DATE ([, option])
return current date in the format: dd Mmm yyyy

SAY date() /* 14 Feb 1993 */

or formats the output according to option

» Days returns number of days since 1-Jan as an integer
* European returns date in format dd/mm/yy
+ Month returns the name of current month, ie. March
* Normal returns the date in the default format dd Mmm yyyy
+ Ordered returns the date in the format yy/mm/dd
+ (useful for sorting)
+ Sorted returns the date in the format yyyymmdd
* (suitable for sorting)
+ USA returns the date in the format mm/dd/yy
+ Weekday returns the name of current day of week ie. Monday
DESBUF ()
destroys the all system stacks, and returns the number of lines in system stacks.
PUSH 'hello' /* now stack has one item x/
CALL desbuf /* stack is empty, and RESULT=1 x/

DROPBUF ([, num])
destroys num top stacks, and returns the number of lines destroyed.

PUSH 'in stackl' /* first stack has one item *x/
CALL makebuf /* create a new buffer */

PUSH 'in stack2' /* new stack has one item x/
CALL dropbuf /* one stack remains x/

10.1. Rexx Functions 29

BREXX/370 User's Guide, Release: V2R5M1

DIGITS ()
returns the current setting of NUMERIC DIGITS.

ERRORTEXT (n)
returns the error message for error number n.

SAY errortext(8) /* "Unexpected THEN or ELSE" */

FORM ()
returns the current setting of NUMERIC FORM.

Fuzz ()
returns the current setting of NUMERIC FUZZ.

GETENV (varname)
returns the environment variable varname

SAY getenv ("PATH")

HASHVALUE (string)
return an integer hashvalue of the string like Java hash = s[0/*314(n-1) + s[1]*314(n-2) + ... + s[n-1]

SAY hashvalue("monday") /* —1068502768 *x/

IMPORT (file)
import a shared library file using dynamic linking with rexx routines. If it fails, then try to load
a rexx file so it can be used as a library. import first searches the current directory, if not found it
searches the directories pointed by the environment variable RXLIB.
returns

“
o o

1" if already imported
+ “0” on success

* “1” on error opening the file

CALL IMPORT FSSAPI
call import "veclib"

MAKEBUF ()
create a new system stack, and returns the number of system stacks created until now (plus
the initial one).

PUSH 'hello'; SAY queued() queued(T) /* display 1 1 %/
CALL makebuf /* create a new buffer x/
PUSH 'aloha; SAY queued() queued(T) /* display again 2 1 x/

QUEUED ([, option])
return the number of lines in the rexx stack (all stacks or the topmost) or the number of stacks.
Option can be (only first letter is significant):

< All lines in All stacks (default)
* Buffers number of buffers created with MAKEBUF
* Topstack lines in top most stack

30 Chapter 10. Built-in Functions

BREXX/370 User's Guide, Release: V2R5M1

PUSH 'hi'

SAY queued(A) queued(B) queued(T) /* 111 %/
CALL makebuf

SAY queued(A) queued(B) queued(T) /* 1 2 0 x/
PUSH 'hello'

SAY queued(A) queued(B) queued(T) /* 2 2 1 %/
CALL desbuf

SAY queued(A) queued(B) queued(T) /* 01 0 x/

SOUNDEX (word)
return a 4 character soundex code of word in the format “ANNN" (used for phonetic comparison

of words)
SAY soundex ("monday') /* M530 x/
SAY soundex("Mandei') /* M530 *x/

SOURCELINE ([,n])
return the number of lines in the program, or the nth line.

SAY sourceline() /* maybe 100 */
SAY sourceline(1) /% maybe "/x*x/" %/

STORAGE ([address[[length][,data]]])
returns the current free memory size expressed as a decimal string if no arguments are specified.
Otherwise, returns length bytes from the user’'s memory starting at address. The length is in deci-
mal; the default value is 1 byte. The address is a decimal number (Normalized address for
MSDOS ie. seg:ofs = seg*16+ofs) If data is specified, after the “old” value has been retrieved,
storage starting at address is overwritten with data (the length argument has no effect on this).

SAY storage() /* maybe 31287 */

SAY storage(1000,3) /* maybe "MZa'" x/
a = "Hello"

SAY storage(addr('a'),5,'aaa') /* "Hello" */

SAY a /* aaalo */

SYMBOL (name)
return “BAD” if name is not a valid REXX variable name, “VAR” if name has been used as a vari-
able, or “LIT” if it has not.

i =5

SAY symbol('i') /* VAR x/

SAY symbol(i) /* LIT x/

SAY symbol(':asd') /* BAD x/

TIME ([, option])
return the local time in the format: hh:mm:ss if option is specified time is formated as:

« Civil returns time in format hh:mmxx ie. 10:32am

* Elapsed returns elapsed time since rexx timer was reset or from begging of program in
format ssssss.uuuuuu

* Hours returns number of hours since midnight

* Long returns time and milliseconds hh:mm:ss.uu

* Minutes returns number of minutes since midnight

* Normal returns time in format hh:mm:ss

10.1. Rexx Functions 31

BREXX/370 User's Guide, Release: V2R5M1

* Reset returns elapsed time in format ssssss.uuuuuu (like Elapsed) and resets rexx
internal timer.

+ Seconds returns number of seconds since midnight

TRACE ([, option])
returns current tracing option. If option is specified then sets to new tracing option. Look up
instruction TRACE.

SAY trace() /* normally 'N' %/

VALUE (namel[newvalue][,pool]])
returns the value of the variable name. If newvalue is specified then after the retrieval of the old
value the newvalue will be set to the variable. If pool is specified then the operation takes place at
the specific pool. Pool initially exist in this version of Rexx are:

+ 0 up to the current PROCEDURE nesting specifing the pool of each PROCEDURE

* Negative values from -1 to minus current PROCEDURE nesting, shows relative values from
current procedure.

+ SYSTEM is the system pool (like GETENV,PUTENV)
+ User can create his own POOLs, Look Programing Rexx

q = 5; J = n4n

SAY value(j) /*x 5 %/
SAY value('j',10) J*x "' %/
SAY j /* 10 %/

CALL Procedure

Procedure: PROCEDURE

i = "I-var"

SAY value('i') /* I-var x/

SAY value('i',,0) /*x 5 %/

SAY value('i',,1) /* I-var x/
SAY value('i',,-1) /* 5 %/

VARDUMP ([symbol][option])
returns the binary tree of the variables in the format

var = "value" \n

option can be “Depth” which prints out the binary tree in the format

depth var = "value" \n (used for balancing of variables)

symbol may be nothing for main bin-tree or a stem for an array bin-tree ie. “B.”
VARDUMP is an easy way to store the variables in a file or in stack and restores them later.

CALL write "vars.$$$", vardump() /* stores all variables */ /* in the file

"vars.S$SS" x/

on a later run you can do

DO UNTIL eof("vars.$$s") /* this will read all variables */
INTERPRET read('"vars.$$S$") /* from file, and restore

them *x/

END

32 Chapter 10. Built-in Functions

BREXX/370 User's Guide, Release: V2R5M1

Warning VARDUMP is not fully implemented and may not work when variables have non-print-
able characters.

10.2 String Functions

ABBREV (information, info [, length])
tests whether info is an abbreviation of information. returns “1” on true, else returns “0”. If length
is specified then searching takes place only for the first length characters.

abbrev ("billy","bill") /*x 1 %/
abbrev("billy","bila") /* 0 %/
abbrev("billy","bila",3) /* 1 x/

CENTRE (string, length [, pad])
returns string centered in a padded string of length length.

center ("rexx",2) /x 'ex' %/
center ("rexx",8) /* ' rexx ' x/
center ("rexx",8,'-") /% '——rexx--"' */

CHANGESTR (target, string, replace)
replaces all occurrences of the target in string, replacing them with the replace.

changestr("aa","aabbccaabbccaa","--") /* ——bbcc—-bbcc—- *x/

COMPARE (string1, string2 [, pad])
returns “0” if string1==string2, else it returns the index of the first nonmatching character. Shorter
string is padded with pad if necessary

compare('bill','bill"') /* 0 x/
compare('bill','big') /* 3 %/
compare('bi ','bi'") /* 0 */
compare('bi--x"','bi',"'-") /* 5 %/
COUNTSTR (target, string)
counts all the appearances of target in string
countstr("aa'","aabbccaabbccaa") /* 3 x/
COPIES (string,n)
returns n concatenated copies of string.
copies('Vivi',3) /* '"ViviViviVivi' x/

DELSTR (string,n [, length])
delete substring of string starting at the nth character and of length length.

delstr('bill',3) /*x 'bi' x/
delstr('bill',2,2) /* 'bl' x/

INDEX (haystack, needle [, start])
return the position of needle in haystack, beginning at start.

10.2. String Functions 33

BREXX/370 User's Guide, Release: V2R5M1

index('bilil','il'")
index('bilil','il',3)

/* 2 %/
/x4 */

INSERT (newtarget[[n][[length][pad]l])
insert the string new of length length into the string target, after the nth character (n can be 0)

insert('.','BNV',2)
insert('.','BNV',2,2)
insert('','BNV',2,2,'.")

/* 'BN.V' %/
/* 'BN. V' x/
/* 'BN..V' x/

LASTPOS (needle, haystack [, start])
return the position of the last occurrence of needle in haystack, beginning at start.

lastpos('il','bilil')
lastpos('il','bilil',4)

/x4 */
/* 2/

LEFT (string, length [, pad])
return a string of length length with string left justified in it.

left('Hello',2) /* 'He' x/
left('Hello,10,'.") /* 'Hello..... ' x/
LENGTH (string)
return the length of string
length('Hello') /* 5 %/

OVERLAY (newtarget[[n][[length][pad]]])
overlay the string new of length length onto string target, beginning at the nth character.

overlay('.','abcd',2)
overlay('.','abcd')
overlay('.','abcd',6,3,'+'")

/* 'a.cd' */
/* '.bcd' */
/* 'abcd+.++!" */

POS (needle, haystack |, start])
return the position of needle in haystack, beginning at start.

pos('ll','Bill'") /* 3 x/
REVERSE (string)
swap string, end-to-end.
reverse('Bill') /* '"ULLiB' x/

RIGHT (string, length [, pad])
returns length righmost characters of string.

right('abcde',2) /*x 'de' x/

SUBSTR (string,n[[length][,pad]])
return the substring of string that begins at the nth character and is of length length. Default pad
is space.

| substr('abcde',2,2) /* 'bc' %/

34 Chapter 10. Built-in Functions

BREXX/370 User's Guide, Release: V2R5M1

substr('abcde',2) /* 'bcde' *x/
substr('abcde',4,3,'-") /* 'de-' x/

STRIP (string[[<"L'|"T"|"B">][,char]])

returns string stripped of Leading, Trailing, or Both sets of blanks or other chars. Default is “B”.

strip(' abc ') /* 'abc! x/
strip(' abc ','t') /* ! abc' *x/
strip('-abc—-"',,'-") /* 'abc' *x/

TRANSLATE (string[[tableo][[tableil[pad]]])
translate characters in tablei to associated characters in tableo. If neither table is specified,
convert to uppercase.

translate('abc') /* 'ABC' x/
translate('aabc','-','a") /* '—-—bc' x/
translate('aabc','-+','ab") /* '——+c' x/

VERIFY (string,referencel,[option][start]])
return the index of the first character in string that is not also in reference. if “Match” is given,
then return the result index of the first character in string that is in reference.

verify('abc', 'abcdef"') /* 0 x/
verify('a0c', 'abcdef"') /x 2 x/
verify('12a','abcdef','m'") /* 3 x/

XRANGE ([start][end])
return all characters in the range start through end.

xrange('a','e') /* 'abcde' */
xrange('fe'x,'02"'x) /* 'feffeOO102'x *x/

10.3 Word Functions

DELWORD (string, n [, length])
delete substring of string starting at the nth word and of length length words.

delword('one day in the year',3) /* 'one day' */
delword('one day 1in the year',3,2) /* 'one day year' x/

FIND (string, phrase |, start])
returns the word number of the first word of phrase in string. Returns “0” if phrase is not found. if
start exists then search start from start word.

find('one day in the year','in the') /* 3 */

JUSTIFY (string, length [, pad])
justify string to both margins (the width of margins equals length), by adding pads between
words.

justify('one day 1in the year',22) /*'one day in the year'

10.3. Word Functions 35

BREXX/370 User's Guide, Release: V2R5M1

SUBWORD (string, n [, length])
return the substring of string that begins at the nth word and is of length length words.

subword('one day in the year',2,2) /* 'day in' x/

SPACE (string[[n][pad]])
formats the blank-delimited words in string with n pad characters between each word.

space('one day in the year',2) /*'one day in the year' x/

WORDS (string)
return the number of words in string

words('One day in the year') /*x 5 %/

WORD (string, n)
return the nth word in string

word('one day in the year',2) /* 'day' x/

WORDINDEX (string, n)
return the position of the nth word in string

wordindex('one day in the year',2) /* 5 */

WORDLENGTH (string, i)
return the length of the nth word in string

wordlength('one day in the year',2) /* 3 */

WORDPOS (phrase, string [, start])
returns the word number of the first word of phrase in string. Returns “0” if phrase is not found

wordpos('day 1in','one day in the year') /x 2 x/

10.4 Math Functions

ABS (number)
return absolute value of number

abs(-2.3) /x 2.3 x/

FORMAT (number][before][[after][[exppl[,expt]l]])
rounds and formats number with before integer digits and after decimal places. expp accepts
the values 1 or 2 (WARNING Totally differen’t from the Ansi-REXX spec) where 1 means to use
the “G” (General) format of C, and 2 the “E” exponential format of C. Where the place of the total-
width specifier in C is replaced by before+after+1. (expt is ignored!)

format(2.66) /* 3 */
format(2.66,1,1) /*x 2.7 */
format(26.6,1,1,1) /* 3.E+01 */
format(26.6,1,1,2) /* 2.7TE+01 */

36 Chapter 10. Built-in Functions

BREXX/370 User's Guide, Release: V2R5M1

IAND (n,m)
return bitwise AND of the integers n and m

iand(2,3) /* 2 %/

INOT (n)
return bitwise complement of integers n

inot(2) /x -3 %/

IOR(n,m)
return bitwise OR of the integers n and m

ior(2,3) /x 3 x/

IXOR (n,m)
return bitwise XOR of the integers n and m

ixor(2,3) /*x 1 */

MAX (number [, number]..])
returns the largest of given numbers.

max(2,3,1,5) /* 5 */

MIN (number [, number]..])
returns the smallest of given numbers.

min(2,3,1,5) /* 1 */

RANDOM ([min][[max][seed]])

returns a pseudorandom nonnegative whole number in the range min to max inclusive.

SIGN (number)
return the sign of number (“-1","0” or “1”).

sign(-5.2) /* =1 %/
sign(0.0) /* 0 x/
sign(5.2) /x 1 x/

TRUNC (number[,n])

returns the integer part of number, and n decimal places. The default n is zero.

trunc(2.6) /*x 2 */

ACOS (num)
Arc-cosine

ASIN (num)
Arc-sine

ATAN (num)
Arc-tangent

10.4. Math Functions

37

BREXX/370 User's Guide, Release: V2R5M1

cos (num)
Cosine

COSH (num)
Hyperbolic cosine

EXP (num)
Exponiate

LOG (num)
Natural logarithm

LOG10 (num)
Logarithm of base 10

POW10 (num)
Power with base 10

SIN (num)
Sine function

SINH (num)
Hyperbolic sine

SQRT (num)
Square root

TAN (num)
Tangent

TANH (num)
Hyperbolic tangent

Pow (a,b)
Raises a to power b

10.5 Data Convert Functions

B2X (string)
Binary to Hexadecimal

b2x('01100001"') /* 'a' *x/

BITAND (string1[[string2][,pad]])
logically AND the strings, bit by bit

bitand('61'x,'52"'x) /* '40'x x/
bitand('6162'x,'5253'x) Jx 14042'x */
bitand('6162"'x,,'FE'x) /* '6062'x *x/

BITOR (string1[[string2][pad]])
logically OR the strings, bit by bit

BITXOR (string1[[string2][,pad]])
logically XOR the strings, bit by bit

38

Chapter 10. Built-in Functions

BREXX/370 User's Guide, Release: V2R5M1

c2p (string[,n])
Character to Decimal. The binary representation of string is converted to a number (unsigned
unless the length n is specified).

c2d('09'x) /* 9 x/
c2d('ff40") /* 65344 x/
c2d('81'x,1) /x =127 *x/
c2d('81'x,2) /* 129 *x/

C2X (string)
Character to Hexadecimal

c2x('abc'") /* '616263' x/
c2x('0506"'x) /% '0506' */

D2C (wholenumber [, n])
Decimal to Character. Return a string of length n, which is the binary representation of

the number.
d2c(5) /* '5'x x/
d2c(97) Jx tal x/

D2X (wholenumber [, n])
Decimal to Hexadecimal. Return a string of length n, which is the hexadecimal representation of

the number.
d2x(5) /* 105" *x/
d2x(97) /* 61" %/

B2X (string)
Hexadecimal to Binary

x2b('a') /* '01100001' %/

X2C (string)
Hexadecimal to Character

x2c('616263"'") /* 'abc! x/

X2D (hex-string [, n])
Hexadecimal to Decimal. hex-string is converted to a number (unsigned unless the length n is
specified)

x2d('61") J* 97 %/

10.6 File Functions

General
There are two sets of 1/0 functions, the REXX-STEAM functions and the BREXX I/0 routines.

Files can be referenced as a string containing the name of the file ie “TEST.DAT" or the file handle that
is returned from OPEN function. (Normally the second way if prefered when you want to open 2 or
more files with the same name).

10.6. File Functions 39

BREXX/370 User's Guide, Release: V2R5M1

There are always 3 special files:

Handle FileName Description
0 <STDIN> Standard input
1 <STDOUT> | Standard output
2 <STDERR> | Standard error

All open files are closed at the end of the program from REXX interpreter except in the case of

an error.

CHARIN ([stream[[start][[length]]]])
reads length bytes (default=1) from stream (default="<STDIN>") starting at position start

ch
ch

charin("new.dat") /* read one byte */

charin("new.dat",3,2) /* read two bytes from position in file 3 *x/

CHAROUT ([stream[[string][[start]]]])
write string to stream (default="<STDOUT>") starting at position start

CALL charout '"new.dat","hello" /* writes "hello" to file */
CALL charout "new.dat","hi",2) /x writes "hi'" at position 2 */

CHARS ([, stream])
returns the number of characters remaining in stream.

CHARS ("new.dat™") /* maybe 100 */

CLOSE (file)
closes an opened file. file may be string or the handle number

CALL close 'new.dat' /* these two cmds are exactly the same *x/
CALL close hnd /* where hnd=open('new.dat', 'w') */

EOF (file)
returns 1 at eof, -1 when file is not opened, 0 otherwise

DO UNTIL eof(hnd)=1
SAY read(hnd) /* type file */
END

FLUSH (file)
flush file stream to disk

CALL flush 'new.dat'

LINEIN ([stream[[start][[lines]]]])
reads lines lines (default=1) from stream (default="<STDIN>") starting at line position start

line = linein("new.dat") /* read one line x/
line = linein("new.dat",3,2) /* read two lines from new.dat starting at
line 3 *x/

LINEOUT ([stream[[string][[start]]]])

write string with newline appended at the end to stream (default="<STDOUT>") starting at line

position start

40 Chapter 10. Built-in Functions

BREXX/370 User's Guide, Release: V2R5M1

CALL lineout "new.dat","hello"
CALL lineout "new.dat","hi",2)

/* writes line "hello" to file x/
/* writes line "hi'" at line position 2 */

LINES ([, stream])
returns the number of lines remaining in stream. start

LINES("new.dat") /* maybe 10 *x/

OPEN (file, mode)
opens a file. mode follows C prototypes:

“r" | forread “w” | for write
“t” | for text, “b” | for binary
“a” | for append | “+” | for read/write

and returns the handle number for that file. -1 if file is not found!

hnd = open('new.dat','w')
IF hnd = -1 THEN DO
SAY 'Error: opening file "new.dat".'
END
irda = open('com3:115200,8,N,1,128',"'rw")

READ ([file][<length | "Char" | "Line" | "File">])
reads one line from file. If the second argument exists and it is a number it reads length bytes
from file otherwise reads a Char, Line or the entire File. If file is not opened, it will be opened auto-

matically in “r" mode. If file is ommited, it is assumed to be <STDIN>

/* reads one line from stdin x/

/* =//- char -//- %/

kbdin = READ()
keypressed = read(,1)

linein = read('new.dat"') /* reads one line from file x/
linein = read(hnd) /*x =)/ */
ch = read('new.dat',"C") /* 1f file 'data' is not opened

then it will be opened in '"r'" mode */
CALL write "new",read("old","F") /* copy file */

SEEK (file [, offset [, <"TOF" | "CUR" | "EOF">]])
move file pointer to offset relative from TOF Top Of File (default), CUR Current position, EOF End
Of File and return new file pointer. This is an easy way to determine the filesize, by seeking at

the end,
filesize = seek(file,0,"EOF") /* return file size */
CALL seek 'data',0,"TOF" /* sets the pointer to the start of the file
*/
filepos = seek('data',-5,"CUR") /* moves pointer 5 bytes backwards x/

STREAM (stream[[option][,command]])
STREAM returns a description of the state, or the result of an operation upon the stream named
by the first argument.
option can be “Command”, “Description”, “Status”
When option is “Command” the third argument must exist and can take on of the following
values:

Command
READ

Description

open in read-only mode ASCII

10.6. File Functions

41

BREXX/370 User's Guide, Release: V2R5M1

READBINARY open in read-only mode BINARY

WRITE open in write-only mode ASCII

WRITEBINARY open in write-only mode BINARY

APPEND open in read/write-append mode ASCI|
APPENDBINARY | open in read/write-append mode BINARY
UPDATE open in read/write mode (file must exist) ASCII
UPDATEBINARY | open in read/write mode BINARY

When option is “Status”, STREAM returns the current status of the stream can be on of the follow-
ings: “READY”, “ERROR”, “UNKNOWN"
When option is “Description”, STREAM returns a description of the last error.

CALL stream "new.dat","C","WRITE"
CALL stream "new.dat","C","CLOSE"
CALL stream "new.dat","S"

WRITE ([file][string[newline]])
writes the string to file. returns the number of bytes written. If string doesn’t exist WRITE will write
a newline to file. If a third argument exists a newline will be added at the end of the string. If file is

not opened, it will be opened automatically with “w” mode. If file is ommited, it is assumed to be
<STDOUT>

CALL write 'data','First line',nl;

CALL write ,'a’ /* writes 'a' to stdout x/

CALL write '','one line',nl /* write 'one line' to stdout x*/

CALL write 'output.dat','blah blah' /* writes 'blah blah' to 'output.dat'
filex/

42 Chapter 10. Built-in Functions

Chapter 11

Calling external REXX Scripts or Functions

Due to the extended calling functionality in the new version, importing of required REXX scripts is no
longer necessary. You can now call any external REXX script directly.

11.1 Primary REXX Script location via fully qualified DSN

If you call a REXX script using a fully qualified partitioned dataset (PDS) member name, it must be
present in the specified PDS. You can also use a fully qualified sequential dataset name that holds
your script. If it is not available, an error message terminates the call. In TSO you can invoke your
script using the REXX or RX commands. Example:

1. RX ‘MY.EXEC(MYREX)' if the script resides in a PDS, alternatively:
2. RX ‘MY.SAMPLE.REXX' if it is a sequential dataset

11.2 L)ocation of the Main REXX script via PDS search (TSO environ-
ments

In TSO environments the main script can be called with the RX or REXX command. The search path
for finding your script is SYSUEXEC, SYSUPROC, SYSEXEC, SYSPROC. At least one of these need to be
pre-allocated during the TSO logon. It is not mandatory to have all of them allocated. It depends on
your planned REXX development environment. The allocations may consist of concatenated datasets.

11.3 Running scripts in batch

In batch, you can use the delivered RXTSO or RXBATCH JCL procedure and specify the REXX script
and its location to execute it. There is no additional search path used to locate it.

11.4 Calling external REXX scripts

It is now possible to call external REXX scripts, either by: CALL your-script parm1,parm2... or by func-
tion call: value=your-script(parm1,parm2,..) The call might take place from within your main REXX, or
from a called subroutine. The search of the called script is performed in the following sequence:

« Internal sub-procedure or label (contained in the running REXX script)
« current PDS (where the calling REXX is originated)

1 only from the 1st library within a concatenation (this limitation may be lifted in a forthcoming release)

43

BREXX/370 User's Guide, Release: V2R5M1

+ from the delivered BREXX.RXLIB library, which then needs to be allocated with the DD-name
RXLIB

11.5 Variable Scope of external REXX scripts

If the called external REXX does not contain a procedure definition, all variables of the calling REXX
are accessible (read and update). If the called REXX creates new variables, they are available in

the calling REXX after control is returned.

44 Chapter 11. Calling external REXX Scripts or Functions

Chapter 12

BREXX MVS Functions

12.1 Host Environment Commands

12.1.1 ADDRESS MVS

Interface to certain REXX environments as VSAM and EXECIO
12.1.2 ADDRESS TSO
Interface to the TSO commands, e.g. LISTCAT, ALLOC, FREE, etc.
12.1.3 ADDRESS COMMAND ‘CP host-command’

Interface to the Host system in which your MVS3.8 is running. Typically it is Hercules or VM370.
The result of the command is displayed on screen, but can be trapped in a stem by the OUTTRAP

command:

call outtrap('myresult.')

ADDRESS COMMAND 'CP help'

call outtrap('off")

/* result is stored in stem myresult. */
do i=1 to myresult.0

Say mayresult.i

end

Some Hercules commands:
ADDRESS COMMAND ‘CP HELP' to get a list of Hercules commands:

HHC0160603I

HHC01602I Command Description

HHCO01602I -—————————————=—
HHCO1602I !message *SCP priority message

HHC01602I # Silent comment

HHC01602I * Loud comment

HHCO1602I .reply *SCP command

HHC01602I ? alias for help

HHC01602I abs *Display or alter absolute storage
HHC01602I aea Display AEA tables

HHC01602I aia Display AIA fields

ADDRESS COMMANSD ‘CP DEVLIST shows a list of all active devices:

45

BREXX/370 User's Guide, Release: V2R5M1

HHC022791 0:0009 3215 *syscons cmdpref(/) IO[1541] open

HHC022791 0:000C 3505 0.0.0.0:3505 sockdev ascii autopad trunc eof IO[3]
HHC02279I (no one currently connected)

HHC022791 0:000D 3525 /punchcards/pch@0d.txt ebcdic IO[2] open

HHC022791 0:000E 1403 /printers/prt00e.txt IO[6] open

HHC022791 0:000F 3211 /printers/prtoof.txt IO[2] open

HHC022791 0:0010 3270 GROUP=CONSOLE IO[3]

HHC02279I 0:0015 1403 /logs/mvslog.txt IO[2106] open

HHC022791 0:001A 3505 0.0.0.0:3506 sockdev ebcdic autopad eof IO[3]
HHC02279I (no one currently connected)

And many others: ADDRESS COMMAND ‘CP clocks”.

HHC02274I tod = DC8F485DBB377093 2022.349 21:07:20.582007
HHC02274I h/w = DC8F485DBB377093 2022.349 21:07:20.582007
HHC02274I off = 0000OOOOOOOOOOOO 0.000 00:00:00.000000
HHC02274I ckc = DC8F485DC0400000 2022.349 21:07:20.602624
HHC02274I cpt = 7FFFFF7A®1C85F00

HHCO02274I +itm = 7COE1623 07:31:40.233415

If you run under control of VM370 you can run VM commands: ADDRESS COMMAND ‘CP vm-com-
mand’

12.1.4 ADDRESS FSS

Interface to the Formatted Screen Services. Please refer to formatted_screens.rst contained in
the installation zip file.

Note The following host environments enable you to call external programs. The difference is
the linkage conventions, and how input parameters are treated.

12.1.5 ADDRESS LINK/LINKMVS/LINKPGM

Call external an external program. The linkage convention of the called program can be found here:
The LINK and ATTACH host command environments

12.1.6 ADDRESS LINKMVS

Call an external program. The linkage convention of the called program can be found here:
The LINKMVS and ATTCHMVS host command environments

Example:

/* REXX — INVOKE IEBGENER WITH ALTERNATE DDNAMES. %/

PROG = 'IEBGENER'

PARM = '! /% STANDARD PARM, AS FROM JCL %/
DDLIST = COPIES('00'X,8) ||, /* DDNAME 1 OVERRIDE: SYSLIN */
COPIES('00'X,8) ||, /* DDNAME 2 OVERRIDE: N/A */
COPIES('00'X,8) ||, /* DDNAME 3 OVERRIDE: SYSLMOD */
COPIES('00'X,8) ||, /* DDNAME 4 OVERRIDE: SYSLIB */
LEFT('CTL', 8) ||, /* DDNAME 5 OVERRIDE: SYSIN */
LEFT('REP', 8) ||, /% DDNAME 6 OVERRIDE: SYSPRINT %/
COPIES('00'X,8) ||, /% DDNAME 7 OVERRIDE: SYSPUNCH %/
LEFT('INP', 8) ||, /% DDNAME 8 OVERRIDE: SYSUT1 %/
LEFT('OUT', 8) ||, /% DDNAME 9 OVERRIDE: SYSUT2 %/
COPIES('00'X,8) ||, /% DDNAME 10 OVERRIDE: SYSUT3 %/
COPIES('00'X,8) ||, /* DDNAME 11 OVERRIDE: SYSUT4 %/
COPIES('00'X,8) ||, /* DDNAME 12 OVERRIDE: SYSTERM */
|, /% DDNAME 13 OVERRIDE: N/A */

COPIES('00'X,8)

46 Chapter 12. BREXX MVS Functions

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ikja300/ikja30030.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ikja300/ikja30031.htm

BREXX/370 User's Guide, Release: V2R5M1

COPIES('00'X,8) /* DDNAME 14 OVERRIDE: SYSCIN x/
ADDRESS 'LINKMVS' PROG 'PARM DDLIST'

12.1.7 ADDRESS LINKPGM

Call an external program. The linkage convention of the called program can be found here:
The LINKPGM and ATTCHPGM host command environments

12.1.8 ADDRESS ISPEXEC

Support calls functions to Wally Mclaughlin ISPF for MVS on Hercules. The functions supported
depend on the functionality implemented in his API. Example:

ADDRESS ISPEXEC
""CONTROL ERRORS RETURN"
"DISPLAY PANEL(PANEL1)"

12.1.9 OUTTRAP

If the commands writes output to terminal you can trap the output using the OUTTRAP command.
This will redirect it to a stem variable of your choice. Output produced by TSO full-screen macros
cannot be trapped:

call outtrap('lcat.')

ADDRESS TSO 'LISTCAT LEVEL “BREXX”'

call outtrap('off')

/* listcat result is stored in stem lcat. *x/
do i=1 to lcat.0

Say lcat.i

end

12.1. Host Environment Commands 47

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ikja300/ikja30034.htm

BREXX/370 User's Guide, Release: V2R5M1

13 Added BREXX Kernel functions and Commands

These are MVS-specific BREXX functions implemented and integrated into the BREXX kernel code.
For the standard BREXX functions take a look into the BREXX User’s Guide.

Note When reading the function descriptions between parentheses the argument/parameter is
required unless surrounded by [] brackets.

13.1 Functions

ABEND (user-abend-code)
ABEND Terminates the program with specified User-Abend-Code. Valid values for the user
evening abend-code are values between 0 and 4095.

Parameters user—abend-code - specified User-Abend-Code

Return type n/a

AFTER (search-string, string)

The remaining portion of the string that follows the first occurrence of the search-string
within the string. If search-string is not part of string an empty string is returned.

Parameters * search-string — search string

* string — string to search

Return type string
A2E (ascii-string)
Translates an ASCII string into EBCDIC. Caveat: not all character translations are biunique!

Parameters ascii-string — string to translate
Return type string

E2A (ebcdic-string)
Translates an EBCDIC string into ASCII. Caveat: not all character translations are biunique!
Parameters ebcdic-string — string to translate
Return type string
BEFORE (search-string, string)

The portion of the string that precedes the first occurrence of search-string within the string. If
search-string is not part of string an empty string is returned.

Parameters * search-string — search string

+ string — string to search

Return type string
Example:

string='The quick brown fox jumps over the lazy dog'

say 'String 'string
say 'Before Fox 'before('fox',string)
say 'After Fox 'after (' fox',string)

48 Chapter 13. Added BREXX Kernel functions and Commands

BREXX/370 User's Guide, Release: V2R5M1

Result:

STRING THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
BEFORE FOX THE QUICK BROWN

AFTER FOX JUMPS OVER THE LAZY DOG

BLDL (program-name)
Reports 1 if the program is callable via the active program library assignments (STEPLIB, JOBLIB,
etc. DD statements). If it is not found, 0 is returned.

Parameters program—name — program name
Return type int
BASEG4ENC (string)

Encodes a string or a binary string into a Base 64 encoded string. It is not an encryption process;
it is, therefore, not usable for storing passwords.

Parameters string — string to encode
Return type string
BASEG4DEC (base64-string)
Decodes a base64 string into a string or binary string.
Parameters base64-string — string to decode

Return type string
Example:

str="'The quick brown fox jumps over the lazy dog'
stre=base64Enc(str)

say 'Encoded 'stre

strd=base64Dec(stre)

say 'Original "'strd'"'

say 'Decoded "'strd'"'

Result:

Encoded 44iFQJikiYOSQIKZ1qaVQIaWpOCRpISXokCWpYWZQKOIhUCTgamoQISWhw==
Original "The quick brown fox jumps over the lazy dog"
Decoded "The quick brown fox jumps over the lazy dog"

B2C (bit-string)
Converts bit string into a Character string

Parameters bit-string — string to decode
Return type string

Examples:

say B2C('1111000111110000') -> 10
say B2c('1100000111000010') -> AB

C2B (character-string)
Converts a character string into a bit string
Example:

say c2x('64'x) c2B('64'x) -> 64 01100100
say c2x(10) c2B(10) -> F1F@ 1111000111110000
say c2x('AB') c2B('AB') -> C1C2 1100000111000010

13.1. Functions 49

BREXX/370 User's Guide, Release: V2R5M1

C2U (character-string)
Converts a character string into an unsigned Integer string
Example:

say c2d(' B5918B39'x) -1248752839
say c2u(' B5918B39'x) 3046214457

D2P (number, length [, fraction-digit])
D2P converts a number (integer or float) into a decimal packed field. The created field is in binary
format. The fraction digit parameter is non-essential, as the created decimal does not contain any
fraction information, for symmetry reasons to the P2D function it has been added.

P2D (number, length, fraction-digit)
P2D converts a decimal packed field (binary format) into a number.

CEIL (decimal-number)
CEIL returns the smallest integer greater or equal than the decimal number.

CONSOLE (operator-command)
Performs an operator command, but does not return any output. If you need the output for
checking the result, please use the RXCONSOL function.

ENCRYPT (string, password)
Encrypts a string via a password. The encryption/decryption method is merely XOR-ing the string
with the password in several rounds. This means the process is not foolproof and has not
the quality of an RSA encryption.

DECRYPT (string, password)
Decrypts an encrypted string via a password. The encryption/decryption method is merely
XOR-ing the string with the password in several rounds. This means the process is not foolproof
and has not the quality of an RSA encryption.

Example:

al0='The quick brown fox jumps over the lazy dog'
all=encrypt(al®,"myPassword")
al2=decrypt(all,"myPassword")

say "ordiginal "al@

say "encrypted "c2x(all)

say "decrypted "al2

Result:

original The quick brown fox jumps over the lazy dog
encrypted

E361A8D7F001D537DOD6CDCAF9EFD83CCAOOF984897FBD538AAF964CA80E2806D4310205CEFACTO9COEACB43
decrypted The quick brown fox jumps over the lazy dog

DEFINED ('variable-name")
Tests if variable or STEM exists, to avoid variable substitution, the variable-name must be
enclosed in quotes. return values:

Return Value Description

-1 not defined, but would be an invalid variable name

0 variable-name is not a defined variable

1 variable-name is defined it contains a string

2 variable-name is defined it contains a numeric value

50 Chapter 13. Added BREXX Kernel functions and Commands

BREXX/370 User's Guide, Release: V2R5M1

To test whether a variable is defined, you can use: If defined(‘myvar’)> 0 then ..

DUMPIT (address, dump-length)
DUMPIT displays the content at a given address of a specified length in hex format. The address
must be provided in hex format; therefore, a conversion with the D2X function is required.

Example:

call mvschs

/* load MVS CB functions x*/

call dumpit d2x(tcb()),256

Result:

009B8148 (+00000OOO) | OO9AE448 00O0OOOOO OO9AD99C 009BFO20 | ..U....... R...0.
009B8158 (+000LEO10) | 00000000 00OOOOOO 009B2578 800000 |
009B8168 (+00000020) | OOOOFFFF 009C7C88 0013B908 00OOOOEO | [CLo
009B8178 (+00000030) | 40D871CO OO9DA1E® 002C13CO 002C1434 | Q.{...\...{....
009B8188 (+00000040) | 002C1434 002C30A8 00000085 OO9ADA3C | S - P
009B8198 (+00000O50) | OOEEEOO2 00158000 00262F88 4025EBDO | h ..}
009B81A8 (+00000060) | OOBF52CO 0027F268 4026306E 00000000 | ...{..2. ..>....
009B81B8 (+000OOO70) | OOLD4FB8 00OOOOOO 0OOOOOOO OO9DC330 | ..|.eeeeeeen.. C.
Q09B81C8 (+0OOOOO80O) | 00000000 009B8730 0OOOOOOO OOOOEOOOO | flocooooo000
009B81D8 (+000ONO90) | 0O1D3048 0OOOOOOO OOIDF548 00OOOOOO |5.....
OO9B81E8 (+0OOOOOAG) | ©009B23C4 809D5F88 0OOOOOOO 000OOEO | ...D..-h........
009B81F8 (+0OO0OOBO) | 0OOEEEOO OOIDCGEC 0OOOOOOO 00OOOOOO | Focooooooo
009B8208 (+0000NOCO) | OOOEEOOO OOEEOONO OOEOOOOO OO0 | ...ivveeeeeennn.
009B8218 (+000OOODO) | 0O9B8270 OOEEEOOO OEEEOOOO 0O9B8730 | ..b........... g.
009B8228 (+OOOOOOED) | OOOOOOOO OOOOOOOO OOOOOOOO OOOOOOOO |ceveeeeeeenn.
009B8238 (+OOOOOOFO) | 80000040 OOOOOOOO OOIB2ES8 00OOOOOO |eveeeeeenn.

DUMPVAR ('variable-name")
DUMPVAR displays the content of a variable or stem-variable in hex format; the displayed length
is variable-length +16 bytes. The variable name must be enclosed in quotes. If no variable is
specified, all so far allocated variables are printed.
Example:

v21.1='Stem Variable, -item 1'
v21.2="'Stem Variable, item 2'
v21.3='Stem Variable, item 3'
call DumpVAR('v21.1")

Result:

002C2818 (+0000000O) | E2A38594 40E58199 89818293 856B4089 | Stem Variable, i
002C2828 (+00000010) | A3859440 F1000000 00000000 OOOOOOOO | tem 1...........

DATE ([, date-target-format])
The integrated DATE function replaces the RXDATE version stored in RXLIB. RXDATE will be avail-
able to guarantee consistency of existing REXX scripts. It may be removed in a future release.
The three arguments are options. date defaults to today,
Supported input formats:

Format Description
Base days since 01.01.0001
JDN days since Monday 24. November 4714 BC
UNIX days since 1. January 1970
DEC 01-JAN-20 DEC format (Digital Equipment Corporation)
XDEC 01-JAN-2020 extended DEC format (Digital Equipment Corporation)
Julian yyyyddd e.g. 2018257

13.1. Functions 51

BREXX/370 User's Guide, Release: V2R5M1

European dd/mm/yyyy e.g. 11/11/18

XxEuropean dd/mm/yyyy e.g. 11/11/2018, extended European (4 digits year)
German dd.mm.yyyy e.g. 20.09.2018

USA mm/dd/yyyy e.g. 12.31.18

xUSA mm/dd/yyyy e.g. 12.31.2018, extended USA (4 digits year)
STANDARD yyyymmdd e.g. 20181219

ORDERED yyyy/mm/dd e.g. 2018/12/19

dd month-name yyyy e.g. 12 March 2018, month is translated into month

LONG number (first 3 letters)

NORMAL dd 3-letter-month yyyy e.g. 12 Mar 2018, month is translated into month
number

QUALIFIED Thursday, December 17, 2020

INTERNATIONAL | date format 2020-12-01

TIME date since 1.1.1970 in seconds

Supported output formats:

Format Description

Base days since 01.01.0001

Days ddd days in this year e.g. 257

Weekday weekday of day e.g. Monday

Century dddd days in this century

JDN days since Monday 24. November 4714 BC

UNIX days since 1. January 1970

DEC 01-JAN-20 DEC format (Digital Equipment Corporation)

XDEC 01-JAN-2020 extended DEC format (Digital Equipment Corporation)

Julian yyyyddd e.g. 2018257

European dd/mm/yyyy e.g. 11/11/18

xEuropean dd/mm/yyyy e.g. 11/11/2018, extended European (4 digits year)

German dd.mm.yyyy e.g. 20.09.2018

USA mm/dd/yyyy e.g. 12.31.18

XUSA mm/dd/yyyy e.g. 12.31.2018, extended USA (4 digits year)

STANDARD yyyymmdd e.g. 20181219

ORDERED yyyy/mm/dd e.g. 2018/12/19
dd month-name yyyy e.g. 12 March 2018, month is translated into month

LONE number (first 3 letters)

NORMAL dd 3-letter-month yyyy e.g. 12 Mar 2018, month is translated into month
number

QUALIFIED Thursday, December 17, 2020

INTERNATIONAL | date format 2020-12-01

TIME date since 1.1.1970 in seconds

DATETIME ([, target-format])
Formats a timestamp into various representations.

Parameters + target-format — optional target-format defaults to Ordered
+ timestamp - optional timestamp defaults to today current time

« input-format - optional input-format defaults to Timestamp

Return type string
Formats are:

52 Chapter 13. Added BREXX Kernel functions and Commands

BREXX/370 User's Guide, Release: V2R5M1

Format Description Example

T is timestamp in seconds 1615310123 (seconds since 1. January 1970)
E timestamp European format | 09/12/2020-11:41:13

u timestamp US format 12.09.2020-11:41:13

0 Ordered Time stamp 2020/12/09-11:41:13

B Base Time stamp Wed Dec 09 07:40:45 2020

Time (string)
Time has gotten new input parameters. String can be one of:

+ MS Time of today in seconds.milliseconds
+ US Time of today in seconds.microseconds

* CPU Used CPU time in seconds.milliseconds

FILTER (string, character-table |, filter-type])

The filter function removes all characters defined in the character table if ‘drop’ is used as
filter-type. If ‘keep’ is specified, just those characters which are in the character table are
kept. Filter-type defaults to drop.

Parameters * string - string to filter

* character-table - filter table

« filter-type - optional either drop or keep

Return type string

For example, remove ‘0’ and ‘blank’:

say FILTER('The quick brown fox jumps over the lazy dog',' o')
Thequickbrwnfxjumpsverthelazydg

FLOOR (decimal-number)
FLOOR returns the smallest integer less or equal to the decimal number.

INT (decimal-number)
INT returns the integer value of a decimal number. Fraction digits are stripped off. There is no
rounding in place. It's faster than saying intValue=number%1

JOBINFO ()
Returns jobname and additional information about currently running job or TSO session in REXX
variables, like JOB.NAME, JOB.NUMBER, STEP.NAME, PROGRAM.NAME
Example:

say jobinfo()
say job.name
say job.number
say job.step
say job.program

Result:

PEJ

PEJ
TSU02077
ISPFTSO.IS

13.1. Functions 53

BREXX/370 User's Guide, Release: V2R5M1

JOIN (string, target-string [, join-table])
Join merges a string into a target-string. The merge occurs byte by byte; if the byte in target-string
is defined in the join-table. The join-table consists of one or more characters, which may be over-
written. If it is in the target-string, it is replaced by the equivalent byte of the string. If it is not part
of the join-table, it remains as it is. If the length of the string is greater than the target-string size
is appending the target-string. The join-table is an optional parameter and defaults to blank.
Example:

SAY JOIN(' PETER MUNICH', 'NAME= CITY= ")
NAME=PETER CITY=MUNICH

LEVEL ()

Level returns the current procedure level. The level information is increased by +1 for every CALL
statement or function call.

Example:

say 'Entering MAIN 'Level()

call procl
say 'Returning from procl 'Level()
return
procl:

say 'Entering procl 'Level()

call proc2

say 'Returning from proc2 'Level()
return 0

proc2: procedure
if level()>5 then return 4
say 'Entering proc2 'Level()
prc=procl()
say 'Returning from procl 'Level()
return 0

Result:

ENTERING MAIN O
ENTERING PROC1
ENTERING PROC2
ENTERING PROC1
ENTERING PROC2
ENTERING PROC1 5

RETURNING FROM PROC2
RETURNING FROM PROC1
RETURNING FROM PROC2
RETURNING FROM PROC1
RETURNING FROM PROC2
RETURNING FROM PROC1

A WODN PR

O NW,M_OM

LINKMVS (load-module, parms)
Starts a load module. Parameters work according to standard conventions.

LINKPGM (load-module, parms)
Starts a load module. Parameters work according to standard conventions.

LISTIT ('variable-prefix')
Returns the content of all variables and stem-variables starting with a specific prefix. The prefix
must be enclosed in quotes. If no prefix is defined all variables are printed
Example:

54 Chapter 13. Added BREXX Kernel functions and Commands

BREXX/370 User's Guide, Release: V2R5M1

v2="simple Variable'

v21.0=3

v21.1="'Stem Variable, item 1'
v21.2='Stem Variable, item 2'
v21.3='Stem Variable, item 3'
call ListIt 'Vv2'

Result:

List Variables with Prefix 'v2'

[060601] "y2" => "SIMPLE VARIABLE"

[0002] "v21." =>

>[0001] ||| .O" => H3H

>[0002] "|.l" => "STEM VARIABLE, ITEM 1"
>[00603] "|.2" => "STEM VARIABLE, ITEM 2"
>[0004] "|.3" => "STEM VARIABLE, ITEM 3"

LOCK ('lock-string’,['lock-modes][timeout])
Locks a resource (could be any string, e.g. dataset-name) for usage by a concurrent program
(which must request the same resource). Typically it is used to keep the integrity of several
datasets.

Parameters + lock-string - resource to lock

* lock-modes — optional One of TEST/SHARED/EXCLUSIVE. TEST tests whether
the resource is available. SHARED shared access is wanted, other programs/-
tasks are also shared access granted, but no exclusive lock can be granted,
while a shared lock is active, EXCLUSIVE no other program/task can use
the resource at this point.

+ timeout - optional defines a maximum wait time in milliseconds to acquire
the resource. If no timeout is defined the LOCK ends immediately if it couldn’t
be acquired.

Returns 0 if resource was locked, 4 resource could not be acquired in the requested time
interval

UNLOCK ('lock-string")
Unlocks a previously locked resource.
Returns 0 unlock was successful

MEMORY ()
Determines and print the available storage junks:

MVS Free Storage Map

AT ADDR 3121152 5796 KB
Total 5796 KB

5935104

MTT ([, REFRESH'])

Returns the content of the Master Trace Table in the stem variable _LINE., _LINE.O contains
the number ofreturned trace table entries. The return code contains the number of trace
table entries fetched.If -1 is returned the Master Trace Table has not been changed since
the last call, _LINE. remains unchanged.

If the optional ‘REFRESH’ option is used, the Trace Table will be recreated even it it has not

13.1. Functions 55

BREXX/370 User's Guide, Release: V2R5M1

changed.
Example:

RC = MTT()

SAY RC

IF RC > -1 THEN DO
DO I=1 TO _LINE.O

SAY _LINE.I
END
END
Result:
0000 10.05.00 S ZTIMER

0200 10.05.00 STC 706 $HASP100 ZTIMER ON STCINRDR

4000 10.05.00 STC 706 $HASP373 ZTIMER STARTED

4000 10.05.00 STC 706 IEF403I ZTIMER - STARTED - TIME=10.05.00

0000 10.05.00 STC 706 $TA99,T=12.05,'S$VS,''S ZTIMER'''

8000 10.05.00 $HASPOOO ID 99 T=12.05 I= 0 $VS,'S ZTIMER'
4000 10.05.00 STC 706 IEF404I ZTIMER - ENDED - TIME=10.05.00

4000 10.05.00 STC 706 $HASP395 ZTIMER ENDED

0000 12.05.00 S ZTIMER

0200 12.05.00 STC 707 $HASP100 ZTIMER ON STCINRDR

4000 12.05.00 STC 707 $HASP373 ZTIMER STARTED

4000 12.05.00 STC 707 IEF403I ZTIMER - STARTED - TIME=12.05.00

0000 12.05.00 STC 707 $TA99,T=14.05,'S$VS,''S ZTIMER'''

8000 12.05.00 $HASPOOO ID 99 T=14.05 I= 0 $VS,'S ZTIMER'
4000 12.05.00 STC 707 IEF404I ZTIMER - ENDED - TIME=12.05.00

4000 12.05.00 STC 707 $HASP395 ZTIMER ENDED

0000 14.05.01 S ZTIMER

0200 14.05.01 STC 708 $HASP100 ZTIMER ON STCINRDR

4000 14.05.01 STC 708 $HASP373 ZTIMER STARTED

4000 14.05.01 STC 708 TIEF403I ZTIMER - STARTED - TIME=14.05.01

0000 14.05.01 STC 708 $TA99,T=16.05,'S$VS,''S ZTIMER'''

8000 14.05.01 $HASPOOO ID 99 T=16.05 I= 0 $VS,'S ZTIMER'
4000 14.05.01 STC 708 TIEF404I ZTIMER - ENDED - TIME=14.05.01

4000 14.05.01 STC 708 $HASP395 ZTIMER ENDED

0000 16.05.00 S ZTIMER

0200 16.05.00 STC 709 $HASP100 ZTIMER ON STCINRDR

4000 16.05.00 STC 709 $HASP373 ZTIMER STARTED

4000 16.05.00 STC 709 TIEF403I ZTIMER - STARTED - TIME=16.05.00

0000 16.05.00 STC 709 $TA99,T=18.05,'SVS,''S ZTIMER'''

8000 16.05.00 $HASPOOO ID 99 T=18.05 I= 0 $VS,'S ZTIMER'

MTTSCAN ()
MTTSCAN is an application that constantly analyses the Master Trace Table and passes control
to the user’s procedures for a registered function to perform user actions.
Example in BREXX.V2R5M1.SAMPLE(MTTSCANT)
In this example, the trace entries SHASP373 (LOGON) and SHASP395 (LOGOFF) are registered,
and the associated call-back procedures will be called to initiate further actions.
Example:

56 Chapter 13. Added BREXX Kernel functions and Commands

BREXX/370 User's Guide, Release: V2R5M1

/* | + ——- action keyword in trace table */
/* | | + -—- associated call back proc */
/* Y Y Y */

call mttscan 'REGISTER','$HASP373','hasp373'
call mttscan 'REGISTER','$HASP395','hasp395'

/* + —-—— Start scanning Trace Table x/
/* | + —--— scan frequency in millisedonds x/
/* Y Y default is 5000 x/
call mttscan 'SCAN',2000
return
e e e e e e e e e e e e e e e e e e e
* Call Back to handle SHASP373 Entries of the Trace Table: user LOGON
* arg(l) contains the selected line of the Trace Table
. e D Y e Y Y e e Y ey e
*/
hasp373:
user=word(arg(1),6)
/* call console 'c u='user You can for example cancel the user x/

say user ' has logged on'
say 'Trace Table entry: 'arg(1l)
say copies('-',72)

return

e o e o e o e o e S e e S e S e
* Call Back to handle SHASP395 Entries of the Trace Table: user LOGOFF
* arg(1l) contains the selected line of the Trace Table

*/
hasp395:
user=word(arg(1),6)
say user ' has logged off'
say 'Trace Table entry: 'arg(1l)
say copies('-',72)
return

RXCONSOL ()

An application that returns the output of a requested Console command in the stem variable
CONSOLE.n

Returns >0 the command output could not be identified in the Master Trace Table
Example in BREXX.V2R5M1.SAMPLE(CONSOLE):

*/
call rxconsol('D A,L")
say copies('-',72)
say center('Console Output of D A,L',72)
say copies('-',72)
do i=1 to console.®

say console.i

end

Warning The result of an operator command is not synchronously returned, but asyn-
chronously assigned via the activity number. In certain situations, this may fail, then an exact
match of operator command and its output is impossible. You will then see more output than

expected.

13.1.

Functions 57

BREXX/370 User's Guide, Release: V2R5M1

NJE38CMD ()

An application that returns the output of a requested NJE38 command in the stem variable
NJE38.n

Returns >0 means the NJE38 command output could not be identified in the Master Trace Table
Example in BREXX.V2R5M1.SAMPLE(NJECMD)

* NJE38 Sample: Show available files in NJE38 inbox
* pass command to NJE38CMD and retrieve output

*/
rc=nje38CMD('NJE38 D fILes"')
if rc>0 then do
say 'Unable to pickup NJE38 results'

return 8
end
say copies('-',72)
say center ('NJE38 Spool Queue',72)
say copies('-',72)
do i=1 to nje38.0
say nje38.i
end
Result:

NJEO14I File status for node DRNBRX3A

File Origin Origin Dest Dest

ID Node Userid Node Userid CL Records
0006 DRNBRX3A PEJ1 DRNBRX3A PEJ A 50
0010 CZHETH3C FIXOMIG DRNBRX3A MIG A 119

Spool 00% full

VLIST (pattern [, "VALUES"/”"NOVALUES"])

VLIST scans all defined REXX-variable names for a specific pattern. This is mainly for stem-vari-
ables useful, where they can have various compound components. The pattern must be coded in
the form p1.p2.p3.p4.p5, p1, p2, p3,p4,p5 are subpatterns that must match the stem variable
name. There are up to 5 subpatterns allowed. You may use * as a subpattern for any variable in
this position.

Example:

ADDRESS .PEJ.CITY="Munich'
ADDRESS .MIG.CITY='Berlin'
ADDRESS . pej.pub="Hofbrauhaus'
ADDRESS .mig.pub="'Steakhaus'
ADDRESS="set'

call xlist('x.*x.CITY'")

call xlist('ADDRESS')

call xlist('ADDRESS.x.CITY')
call xlist('ADDRESS.PEJ')
call xlist('ADDRESS.MIG')
call xlist()

exit

xlist:

say '>>> 'arg(1l)

say vlist(arg(l))

return

58

Chapter 13. Added BREXX Kernel functions and Commands

BREXX/370 User's Guide, Release: V2R5M1

Result:

>>> x.x.CITY
ADDRESS .MIG.CITY="BERLIN"
ADDRESS.PEJ.CITY="MUNICH"

>>> ADDRESS

ADDRESS="SET"

ADDRESS .MIG.CITY="BERLIN"
ADDRESS .MIG.PUB="STEAKHAUS"
ADDRESS.PEJ.CITY="MUNICH"
ADDRESS.PEJ.PUB="HOFBRAUHAUS"

>>> ADDRESS.*.CITY
ADDRESS .MIG.CITY="BERLIN"
ADDRESS.PEJ.CITY="MUNICH"

>>> ADDRESS.PEJ
ADDRESS.PEJ.CITY="MUNICH"
ADDRESS.PEJ.PUB="HOFBRAUHAUS"

>>> ADDRESS.MIG
ADDRESS .MIG.CITY="BERLIN"
ADDRESS .MIG.PUB="STEAKHAUS"

>>>

ADDRESS="SET"

ADDRESS .MIG.CITY="BERLIN"
ADDRESS .MIG.PUB="STEAKHAUS"
ADDRESS.PEJ.CITY="MUNICH"
ADDRESS.PEJ.PUB="HOFBRAUHAUS"
SIGL="11"

VLIST.0="2"

LASTWORD (string)
Returns the last word of the provided string.

PEEKS (decimal-address, length)
PEEKS returns the content (typically a string) of a main-storage address in a given length.
The address must be in decimal format.
PEEKS is a shortcut of STORAGE(d2x(decimal-address),length).

PEEKA (decimal-address)
PEEKA returns an address (4 bytes) stored at a given address. The address must be in decimal
format.
PEEKA is a shortcut of STORAGE(d2x(decimal-address),4).

PEEKU (decimal-address)
PEEKU returns an unsigned integer stored at the given decimal address (4 bytes). The address
must be in decimal format.

RACAUTH (userid, password)
The RACFAUTH function validates the userid and password against the RAKF definitions. If both
pieces of information are valid, a one is returned.

RHASH (string [, slots])
The function returns a numeric hash value of the provided string. The optional slots parameter
defines the highest hash number before it restarts with 0. Slots default to 2,147,483,647 Even
before reaching the maximum slot, the returned number is not necessarily unique; it may repeat

13.1. Functions 59

BREXX/370 User's Guide, Release: V2R5M1

(collide) for various strings. The calculation is based on a polynomial rolling hash function

ROUND (decimal-number, fraction-digits)

The function rounds a decimal number to the precision defined by fraction-digits. If the decimal
number does not contain the number of fraction digits requested, it is padded with Os.

ROTATE (string, position [, length])
The function is a rotating substring if the requested length for the substring is not available, it
takes the remaining characters from the beginning of the string. If the optional length parameter
is not coded, the length of the string is used.
Example:

Rotate("1234567890ABCDEF",10,10)
Rotate("1234567890ABCDEF",1)
Rotate("1234567890ABCDEF",5)

Result:

'OABCDEF123'
'1234567890ABCDEF'
'567890ABCDEF1234"'

PUTSMF (smf-record-type, smf-message)

Writes an SMF message of type smf-record-type. If you use a defined type with a certain struc-
ture, it must be reflected in smf-message. If necessary you can use den BREXX conversion func-
tions (D2C, D2P, etc.) to create binary data.

SUBMIT (options)
Submits a job via the internal reader to your MVS system. Options are:
- fully qualified dataset name containing the JCL
+ stem variable containing the JCL
+ stack containing the JCL

Example:

submit("'pds—name (member-name)'") submit a DSN or a member 1in a PDS
submit('stem-variable."') submit JCL stored in stem-variable
submit('*x") submit JCL stored 1in a stack (queue)

Warning The internal reader has no knowledge of your userid, therefore the &SYSUID variable will
not be resolved with your userid. It also does not return any “SUBMIT” message, this can easily be
achieved by a small rexx script analysing the master trace table.

SPLIT (string, stem-variable [, delimiter])
SPLIT splits a string into its words and store them in a stem variable. The optional delimiter table
defines the split character(s), which shall be used to separate the words. SPLIT returns
the number of found words. Also, stem-variable.0 contains the number of words. The words are
stored in the stem-variable.1, stem-variable.2, etc. It is recommended to enclose the receiving
stem-variable-name in quotes.
Example:

Say Split('The quick brown fox jumps over the lazy dog', 'myStem.')
Call LISTIT

Result:

S

60 Chapter 13. Added BREXX Kernel functions and Commands

BREXX/370 User's Guide, Release: V2R5M1

List all Variables
[0001] "MYSTEM." =>
>[0001] ul.eu =5 H9H
>[0002] "|.1" => "THE"
>[0003] "|.2" => "QUICK"
>[0004] "|.3" => "BROWN"
>[0005] "|.4" => "FOX"
>[0006] "|.5" => "JUMPS"
>[0007] "|.6" => "OVER"
>[0008] "|.7" => "THE"
>[0009] "|.8" => "LAZY"
>[0010] "|.9" => "DOG"

Example with list of word delimiters:

say split('City=London,Address=Picadelly Circus 24(7th
floor) ', 'mystem.','()=,")
call listit

Result:

5

List all Variables

[0001] "MYSTEM." =>

>[0001] Hl.ou => mngn

>[0002] "|.1" => "CITY"

>[0603] "|.2" => "LONDON"

>[0004] "|.3" => "ADDRESS"

>[0005] ”|.4” => "PICADELLY CIRCUS 24"

>[0006] ”|.5" => "7TH FLOOR"

[60062] "X" => "CITY=LONDON,ADDRESS=PICADELLY CIRCUS 24(7TH FLOOR)"

SPLITBS (string, stem-variable [, split-string])
SPLIT splits a string into its words and store them in a stem variable. The split-string defines
the string which shall be used to separate the words. SPLIT returns the number found words.
Also, stem-variable.0 contains the number of words. The words are stored in the stem-variable.1,
stem-variable.2, etc. It is recommended to enclose the receiving stem-variable-name in quotes.
Example:

say splitbs('today</N>tomorrow</N>yesterday', 'mystem.','</N>")
call listit 'mystem.'

result:

3

List Variables with Prefix 'MYSTEM.'
[6001] "MYSTEM." =>

>[OOOl] H|.0H => n3n

>[0002] "|.1" => "TODAY"

>[0003] "|.2" => "TOMORROW"

>[0004] "|.3" => "YESTERDAY"

EPOCHTIME ([, daymonthyear])
EPOCHTIME returns the Unix (epoch) time of a given date. It's the seconds since 1. January
1970. You can easily extend the date by adding the seconds of the day.
As calculation internally is done on integer fields, the maximum date which is supported is 19
January 2038 04:14:07. If no parameters are specified, the current date/time will be returned.
Example:

13.1. Functions 61

BREXX/370 User's Guide, Release: V2R5M1

time= EPOCHTIME(1,1,2000)+3600xhours+60*minutes+seconds

EPOCH2DATE (unix-epochtime)
EPOCH2DATE translates a Unix (epoch) time-stamp into a readable date/time format. Internally
the date conversion is done by the RXDATE module of RXLIB
Example:

tstamp=EPOCHTIME ()
say tstamp
SAY EPOCH2DATE (tstamp)

Result:

1600630022
20/09/2020 19:27:02

STIME ()
Time since midnight in hundreds of a second

USERID ()
USERID returns the identifier of the currently logged-on user. (available in Batch and Online)

UPPER (string)
UPPER returns the provided string in upper cases.

LOWER (string)
LOWER returns the provided string in lower cases.

MOD (number, divisor)
MOD divides and returns the remainder, equivalent to the // operation.

VERSION ([, FULL'])
Returns BREXX/370 version information, if FULL is specified the Build Date of BREXX is added
and returned.

Example:

SAY VERSION() -> V2R5M1
SAY VERSION('FULL') -> Version V2R5M1 Build Date 15. Jan 2021

WAIT (wait-time)
Stops REXX script for some time, wait-time is in thousands of a second

WORDDEL (string, word-to-delete)
WORDDEL removes a specific word from the string. If the specified word does not exist, the full
string is returned.
Example:

say worddel('I really love Brexx',1l)
say worddel('I really love Brexx',2)
say worddel('I really love Brexx',3)
say worddel('I really love Brexx',4)
say worddel('I really love Brexx',5)

Result:

REALLY LOVE BREXX
I LOVE BREXX

62 Chapter 13. Added BREXX Kernel functions and Commands

BREXX/370 User's Guide, Release: V2R5M1

I REALLY BREXX
I REALLY LOVE
I REALLY LOVE BREXX

WORDINS (new-word, string, after-word-number)
WORDINS inserts a new word after the specified word number. If 0 is used as wobaserd number it
is inserted at the beginning of the string.
Example:

say wordins('really','I love BREXX',1)
say wordins('really','I love BREXX',2)
say wordins('really','I love BREXX',3)
say wordins('really','I love BREXX',0)

Result:

I REALLY LOVE BREXX
I LOVE REALLY BREXX
I LOVE BREXX REALLY
REALLY I LOVE BREXX

WORDREP (new-word, string, word-to-replace)
WORDREP replace a word value by a new value.
Example:

say wordrep('!!!'",'T love Brexx',1l)
say wordrep('!!!'",'T love Brexx',2)
say wordrep('!!!','T love Brexx',3)

Result:

1l LOVE BREXX
I !!l! BREXX
I LOVE !!!

WTO (console-message)
Write a message to the operator’s console. It also appears in the JES Output of the Job.

XPULL ()
PULL function which returns the stack content casesensitive.

13.1. Functions 63

BREXX/370 User's Guide, Release: V2R5M1

14 GLOBAL Variables

You can define global variables which can be accessed from within the rexx whatever the current
procedure variable scope is. STEMS are not supported.

SETG ('variable-name’, ‘content")
SETG sets or updates a variable with the given content.

GETG ('variable-name")
GETG returns the current content of the global variable.
Example:

call setg('ctime',time('l"))
call setg('city','Munich')
call testproc

exit 0

testproc: procedure
/* normal variable scope can't access variables from the calling rexx x/
say 'Global Variables from the calling REXX'
say getg('ctime')
say getg('city')
return 0

Result:

GLOBAL VARIABLES FROM THE CALLING REXX
19:45:12.538474
MUNICH

64 Chapter 14. GLOBAL Variables

Chapter 15

Dataset Functions

CREATE (dataset-name, allocation-information)

The CREATE function creates and catalogues a new dataset (if the user has the required authori-

sation level). If dataset-name is not fully qualified, it will be prefixed by the user name.

Fully qualified DSN is: BREXX.TEST.SEQ

Not fully qualified: TEST.SEQ will be prefixed by user name (e.g. HERC01) “HERCO1.TEST.SQ"

Parameters allocation-information — can be: DSORG, RECFM, BLKSIZE, LRECL, PRI, SEC,

DIRBLKS, UNIT (not all are mandatory):.

The space allocations for PRI (primary space) and SEC (secondary space) is the number of

tracks.

Returns If the create is successful, the return code will be zero; else a negative value will be
returned. The CREATE function does not open the dataset.

Return codes:

+ 0 Create was successful
+ -1 Dataset cannot be created (various reasons as, space limitations, authorisation, etc.)
+ -2 Dataset is already catalogued

Example:

CREATE('TEST', 'recfm=fb, lrecl=80,blksize=3120,unit=sysda,pri=5,DIRBLKS=5")

DIR (partitioned-dataset-name)

The DIR command returns the directory of a partitioned dataset. If the partitioned-dataset is not
fully qualified, it will be prefixed by the user name. The directory is provided in the stem variable
DIRENTRY..

Table showing the structure of the returned stem. n is the number of the member entry.

STEM Name Description

DIRENTRY.O contains the number of directory members
DIRENTRY.n.CDATE | creation date of the member, e.g. => “19-04-18"
DIRENTRY.n.INIT initial size of member

DIRENTRY.n.MOD mod level

DIRENTRY.n NAME | member name

DIRENTRY.n.SIZE current size of member

DIRENTRY.n.TTR TTR of member

DIRENTRY.n.UDATE | last update date, e.g. “ 20-06-09”
DIRENTRY.n.UID last updated by user-id
DIRENTRY.n.UTIME | last updated time

DIRENTRY.n.CDATE | creation date

65

BREXX/370 User's Guide, Release: V2R5M1

EXISTS (dataset-name/partitioned-dataset(member))

The EXISTS function checks the existence of a dataset or the presence of a member in a parti-
tioned dataset. EXISTS returns 1 if the dataset or the member in a partitioned dataset is available.
It returns 0 if it does not exist. If the dataset-name is not fully qualified, it will be prefixed by
the user name.

REMOVE (dataset-name/partitioned-dataset(member))

The REMOVE function un-catalogues and removes the specified dataset (if the user has
the required authorisation level). If dataset-name is not fully qualified, it will be prefixed by
the user name.If the removal is successful, the return code will be zero; else a negative value will
be returned. Return codes:

+ 0 Create was successful

« -1 Dataset cannot be created (various reasons as, space limitations, authorisation, etc.)

+ -2 Dataset is already catalogued
The REMOVE function on members of a partitioned dataset removes the specified member (if
the user has the required authorisation level). If dataset-name is not fully qualified, it will be

prefixed by the user name. If the removal is successful, the return code will be zero; else a nega-
tive value will be returned.

RENAME (old-dataset-name, new-dataset-name)

The RENAME function renames the specified dataset. The user requires the authorisation for
the dataset to rename as well as the new dataset. If dataset-name is not fully qualified, it will be
prefixed by the user name. If the rename is successful, the return code will be zero; else a nega-
tive value will be returned.

The RENAME function on members renames the specified member into a new one. The user
requires the authorisation for the dataset. The RENAME must be performed in the same parti-
tioned dataset. If the rename is successful, the return code will be zero; else a negative value will
be returned.

ALLOCATE (ddname, dataset-name/partitioned-dataset(member-name))

The ALLOCATE function links an existing dataset or a member of a partitioned dataset to
a dd-name, which then can be used in services requiring a dd-name. If dataset-name is not fully
qualified, it will be prefixed by the user name.

If the allocation is successful, the return code will be zero; else a negative value will be returned.

FREE (ddname)

The FREE function de-allocates an existing allocation of a dd-name. If the de-allocation is
successful, the return code will be zero; else a negative value will be returned.

OPEN (dataset-name, open-option, allocation-information)

The OPEN function has now a third parameter, which allows creating new datasets with appro-
priate DCB and system definitions. If the dataset already exists, the existing definition is used,
the DCB is not updated. If the dataset-name is not fully qualified, it will be prefixed by the user
name. The dataset-name may contain a member name, which must be enclosed within parenthe-
sis. e.g. OPEN(""myPDS(mymember)™”)

If the open is performed with the read-option, the member name must be present, else the open
fails. If the write-option is used, you can refer to a member-name that does not yet exist and will
be created by following write commands. If the member name exists, the current content will be
overwritten. The open-options have not changed, please refer to the official BREXX documenta-
tion.

Parameters allocation-information — can be: DSORG, RECFM, BLKSIZE, LRECL, PRI, SEC,
DIRBLKS, UNIT (not all are mandatory).

The space allocations for PRI (primary space) and SEC (secondary space) is the number of

tracks.

66

Chapter 15. Dataset Functions

BREXX/370 User's Guide, Release: V2R5M1

If the open is successful, a file handle (greater zero) will be returned; it will be less or equal zero if
the open is not successful.

Warning Important notice: opening a member of a partitioned dataset in write mode requires full
control of the entire dataset (not just the member), if you edit or browse the member concurrently
the open will fail.

'"EXECIO'
The EXECIO is a host command; therefore, it is enclosed in apostrophes.
EXECIO performs data set I/0 operations either on the stack or stem variables, it supports only
dataset containing text records. For records containing binary data you can use There is just
a subset of the known EXECIO functions implemented: Full read/write from a dd-name.
The ddname must be allocated either by TSO ALLOC command, or DD statement in the JCL.
Specifying a Dataset-Name (DSN) is not supported!
Syntax: EXECIO <lines-to-read/*> <DISKR/DISKW/LIFOR/LIFOW/FIFOR/FIFOW> (<STEM stem-vari-
able-name/LIFO/FIFO> [SKIP skip-lines] [START first-stem-entry] [KEEP keep-string] [DROP drop-
string] [SUBSTR(offset length)]

EXECIO Param | Description
. read is the number of records which shall be read from the file, * means read

Lines-to
all records

DISKR read from dataset

DISKW write into dataset

LIFOR/FIFOR read from stack, stack structure can't be changed, it is fixed by the ways it
was created

LIFOW/FIFOW | write to stack inLIFO or FIFO way

STEM read into a stem/write from a stem variable

first-stem-entry

start adding entries at given stem.number, only available on DISKR with STEM
parameter

LIFO read from / write into a lifo stack
FIFO read from / write into a fifo stack
skip-lines skip number of lines before processing dataset/stack
keep-string process just records containing the string
drop-string process just records which do not contain the string
SUBSTR process a substring of the given record

Example:

/* Read entire File into Stem-Variablex/
"EXECIO * DISKR dd-name (STEM stem-name."

/* Write Stem-Variable into File x/
"EXECIO * DISKW dd-name (STEM stem—-name."

/* Append File by Stem-Variable */
"EXECIO * DISKA dd-name (STEM stem-name."

/* ———- Read into REXX FIFO Stack —--—-————- x/
"EXECIO * DISKR dd-name (FIFO "
do i=1 to queued()
parse pull line
say line
end
/* —-——— Read into REXX LIFO Stack —---—---- x/

"EXECIO * DISKR dd-name (LIFO "

13.1. Functions 67

BREXX/370 User's Guide, Release: V2R5M1

do i=1 to queued()
parse pull line
say line

end

After completing the Read stem-name.0 contains the number of records read The number of
lines to become written to the file is defined in stem-variable.0

68 Chapter 15. Dataset Functions

Chapter 16

TCP Functions

TCP Functions are only usable in TK4- and MVS/CE, or an equivalent MVS3.8;j installation running on
SDL Hyperion with activated TCP support. For non TK4- or MVS/CE installation it might be necessary
to start the TCP functionality in the Hercules console before the IPL of MVS is performed:

facility enable HERC_TCPIP_EXTENSION
facility enable HERC_TCPIP_PROB_STATE

for details you look up the following document: https://github.com/SDL-Hercules-390/hyperion/blob/-
master/readme/README.TCPIP.md

Warning If TCP support is not enabled, the TCP environment is in an undefined state, and all
subsequent TCP functions will end up with indeterminate results or even cause an ABEND.

Warning In case of errors or ABENDs an automatic cleanup of open TCP sockets takes place. If in
rare cases the cleanup cannot resolve it a reconnect will be rejected. You can then reset all
sockets by the TSO command RESET.

TCPINIT ()
TCPINIT initialises the TCP functionality. It is a mandatory call before using any other TCP func-
tion.

TCPSERVE (port-number)
TCPSERVE opens a TCP Server on the defined port-number for all its assigned IP-addresses.
The function returns zero if it is performed successfully, else an error occurred.

TCPOPEN (host-ip, port-number [, time-out-secs])
Client function to open a connection to a server. Host-ip can be an ip-address or a host-name,
which translates into an ip-address. Port-number is the port in which the server listens for
incoming requests. The timeout parameter defines how long the function will wait for a confirma-
tion of the open request; the default is 5 seconds.
If rc= 0 the open was successful if less than zero an error occurred during the open process.
The BREXX variable _FD contains the unique token for the connection. It must be used in various
TCP function calls to address the appropriate socket.

TCPWAIT ([, time-out-secs])
TCPWAIT is a Server function; it waits for incoming requests from a client. The optional timeout
parameter defines an interval in seconds after the control is returned to the server, to perform for
example some cleanup activities, before going again in a wait. TCPWAIT returns several return
codes which allow checking which action has ended the wait:

Return Description
#receive | anincoming message from a client has been received

69

https://github.com/SDL-Hercules-390/hyperion/blob/master/readme/README.TCPIP.md
https://github.com/SDL-Hercules-390/hyperion/blob/master/readme/README.TCPIP.md

BREXX/370 User's Guide, Release: V2R5M1

#connect | a new client requests a connect

#timeout | a time-out occurred

#close a close request from a client occurred

#stop a socket returned stop; typically the socket connection has been lost.
#error an unknown error occurred in the socket processing

Example of a server TCPWAIT and how it is processed:
Example:

/* rexx x/
do forever
event = tcpwait(20)
if event <= 0 then call eventerror event
select
when event = #receive then do
rc=receive()
if rc=0 then iterate /* proceed x/
if rc=4 then leave /*x close client socket x/
if rc=8 then leave /* shut down server x/
end
when event = #connect then call connect
when event = #timeout then call timeout
when event = #close then call close
when event = #stop then call close /x is /F console cmd */
when event = #error then call eventError
otherwise call eventError
end
end

TCPSEND (clientToken, message [, timeout-secs])
Sends a message to a client. ClientToken specifies the unique socket of the client. The optional
timeout parameter allows the maximum wait time in seconds to wait for confirmation from
the client, that it has received it. The default timeout is 5 seconds.
If sendLength is less than zero, an error occurred during the sending process:

+ >0 message has been sent and received by the client, number of bytes transferred
+ -1 socket error
+ -2 client is not ready to receive a message

Example: SendlLength=TCPSEND(clientToken, message[,time-out-secs])

TCPReceive (clientToken [, time-out-secs])
The message length is returned by the TCPRECEIVE Function, The message itself is provided in
the variable _Data.
If messagelength is less than zero, an error occurred during the receiving process:

+ >0 message has been received from, number of bytes received
+ -1 client is not ready to receive a message
+ -2 socket error

Example: MessageLength=TCPReceive(clientToken,[time-out-secs])

TCPTERM ()
Closes all client sockets and removes the TCP functionality

TCPSF (port [, timeout])
TCPSF is a generic TCP Server Facility. It opens a TCP server and controls all events. Call-back

70 Chapter 16. TCP Functions

BREXX/370 User's Guide, Release: V2R5M1

labels in the calling rexx support the event handling. Therefore the calling REXX-script must
contain the following labels:

Label Description

There was a client connect request. The connect will be performed by
the TCPSF.
If you want, you can do some logging of the incoming requests.

ARG(1)) client token

TCPCONNECT
Return codes from user procedure control the continuation:

return:

- 0 proceed

- 4 immediately close client
- 8 shut down server

There was a time-out, no user requests occurred. Typically it is used to allow
some

maintenance. Doing nothing (plain return 0) is also possible. If the user proce-
dure

wants to set a new time-out value, it must be set in the rexx variable NEWTIME-

OUT. It
TCPTIMEOUT |js set in seconds.

There are no arguments passed.

return:
- 0 proceed
- 8 shut down server

client has sent a message

ARG(1) client token
ARG(2) contains the original message
TCPDATA ARG(3) contains the message translated from ASCII to EBCDIC

Return codes from user procedure control the continuation:
- 0 proceed
- 4 immediately close client

client has closed the connection. TCPCLOSE can be used for housekeeping.

ARG(1) client token
TCPCLOSE
Return codes from user procedure control the continuation:
-0 proceed

-8 shut down server

client will be stopped.
TCPSTOP ARG(1) client token

There is no special return code treatment

The following commands sent from a client are processed from the TCP Server:
+ /CANCEL shut down the TCP server
+ /QUIT log off the client from the TCP Server

13.1. Functions 71

BREXX/370 User's Guide, Release: V2R5M1

An example of a TCP Server is defined in BREXX.V2R5M1.SAMPLE(STCPSERV)

72 Chapter 16. TCP Functions

Chapter 17

TSO REXX Functions

TSO REXX functions are only available in TSO environments (online or batch) not in plain batch.

SYSDSN (dataset-name[(member-name)])
Returns a message indicating whether a dataset exists or not.
A fully qualified dataset-name must be enclosed in apostrophes (single quotes) they must be
delivered to the MVS function, it is, therefore, necessary to put double quotes around
the dataset-name. If the dataset-name does not contain an apostrophe, it is completed by
the user-name as the prefix.

Return message Description

OK dataset or member is available
DATASET NOT FOUND | dataset or member is not available
INVALID DATASET NAME dataset name is not valid
MISSING DATASET NAME no dataset name given

Example:

x=SYSDSN (" '"HERCO1.TEST.DATA'")
IF x = 'OK' THEN

do something
ELSE

do something other

SYSVAR (request-type)
TSO-only function to retrieve certain TSO runtime information. Available request-types:
SYSUID UserlD
SYSPREF | system prefix of current TSO session (typically hlq of userid)
SYSENV FORE/BACK/BATCH forground/background TSO execution, or plain batch
SYSISPF ISPF active 1, not active 0
SYSTSO TSO active 1, not active 0
SYSAUTH | script runs in authorised mode (1), 0 not authorised
SYSCP returns the host-system which runs MVS38j. It is either MVS or VM/370
SYSCPLVL | shows the release of the host-system
SYSHEAP | allocated heap storage
SYSSTACK | allocated stack storage
RXINSTRC | BREXX Instruction Counter

Example:

73

BREXX/370 User's Guide, Release: V2R5M1

say sysvar ('SYSISPF')
say sysvar ('SYSUID')
say sysvar ('SYSPREF')
say sysvar ('SYSENV')
say sysvar ('SYSAUTH')
say sysvar('SYSCP'")
say sysvar('SYSCPLVL'")
say sysvar ('RXINSTRC'")

Result:

NOT ACTIVE

IBMUSER

IBMUSER

FORE

1

Hercules

Hercules version 4.4.1.10647-SDL-gd0ccfbc9
16

MVSVAR (request-type)
Return certain MVS information.

Type Description
SYSNAME system name
SYSOPSYS MVS release

CPUS number of CPUs

CPU CPU type

NJE 1 = NJE38 is running, 0 = NJE38 is not running/installed
NJEDSN Dataset name of the NJE38 spool queue

SYSNETID Netid of MVS (if any)
SYSNJVER Version of NJE38
JOBNUMBER | current job number

Example:

Say MVSVAR('SYSNAME')

SAY MVSVAR('SYSOPSYS')

SAY MVSVAR('CPU')

SAY MVSVAR('CPUS')

SAY MVSVAR('NJE')

SAY MVSVAR('NJEDSN')

SAY MVSVAR(SYSNETID)

SAY MVSVAR(SYSNJIVER)

SAY MVSVAR('MVSUP')

SAY sec2time (MVSVAR('MVSUP'), 'DAYS')

Results:

MVSC

MVS 03.8

148

0002

1

NJE38.NETSPOOL
DRNBRX3A

V2.2.0 01/14/21 07.11

74 Chapter 17. TSO REXX Functions

BREXX/370 User's Guide, Release: V2R5M1

1339432
15 day(s) 12:03:52

LISTDSI (dataset)
Returns information of non-VSAM datasets in REXX variables.

mn

Parameters dataset — Either “"dataset-name™ or ‘dd-name FILE’

A fully qualified dataset-name must be enclosed in apostrophes (single quotes) they must be
delivered to the MVS function, it is, therefore, necessary to put double-quotes around
the dataset-name. If the dataset-name does not contain an apostrophe, it is prefixed by

the user-name
Variable Description

SYSDSNAME | Dataset name

SYSVOLUME | Volume location

SYSDSORG | PS for sequential, PO for partitioned datasets
SYSRECFM record format, FFB,V,VB, ...

SYSLRECL record length

SYSBLKSIZE | block size

SYSSIZE file size, For partitioned it is 0

13.1. Functions 75

BREXX/370 User's Guide, Release: V2R5M1

18 Matrix and Integer Array functions

ICREATE (elements, mode)
Creates an integer array with the size elements. Returned is the array number to be used to
address the array with ISET and IGET. You can have up to 64 integer arrays. Depending on
the virtual storage they may contain 1 million elements and more. Accessing integer arrays is
very fast as there is no overhead compared to STEM variables.

Parameters + elements — Number entries available

+ mode — The initialization type. If mode is not set the array remains uninitialized.

Mode Description

Element-Number | index of element

NULL elements are setto 0

DESCENT index of the element in reverse order

SUNDARAM prime numbers (Sundaram algorithm)
PRIME prime numbers (sieve of Erasthones)

ISET (array-number, element-number, integer-value)
Sets a certain element of an array with an integer value.

IGET (array-number, element-number)
Gets (returns) a certain element of an array with an integer value.

MCREATE (rows, columns)
Creates a (Float) matrix with size [rows x columns]. Returned is the Matrix number to be used in
various matrix operations. You can have up to 128 matrixes, depending on the virtual storage
available. Accessing a matrix is very fast as there is no overhead compared to STEM variables.

MSET (matrix-number, row, column, float-value)
Sets a certain element of the matrix with a float value.

MGET (matrix-number, row, column)
Gets (returns) a certain element of the matrix.

MMULTIPLY (matrix--number-1, matrix-number-2)
Multiplies 2 matrices and creates a new matrix, which is returned. Input matrices remain
untouched. The format of matrix-1 is [rows x columns], therefore the format of matrix-2 must be
[columns x rows]. The format of the result matrix is rows x rows.

MINVERT (matrix-number)
Inverts the given matrix and creates a new matrix, which is returned. The input matrix must be
squared and remains untouched. The format of the result matrix remains the same as the input
matrix.

MTRANSPOSE (matrix-number)
Transposes the given matrix and creates a new matrix, which is returned. The input matrix
remains untouched. If the format of the input matrix is [rows x columns] then the result matrix is
columns x rows.

MCOPY (matrix-number)
Copies the given matrix and creates a new matrix, which is returned. The input matrix remains
untouched. Formats of both matrices are equal.

76 Chapter 18. Matrix and Integer Array functions

BREXX/370 User's Guide, Release: V2R5M1

MNORMALISE (matrix-number, mode)
Normalises the given matrix and creates a new matrix, which is returned. The input matrix
remains untouched. Formats of both matrices are equal.

Mode Description
STANDARD | row is normalized to mean=0 variance=1
ROWS row value is divided by number of rows
MEAN row value is normalized to mean=0, variance remains unchanged

MDELROW (matrix-number, row-number [, row-number [, row-number...]1])
Copies the given matrix without the specified rows-to-delete as a new matrix, which is returned.
The input matrix remains untouched.

MDELCOL (matrix-number, col-number [, col-number [, col-number...]])
Copies the given matrix without the specified columns-to-delete as a new matrix, which is
returned. The input matrix remains untouched.

MPROPERTY (matrix-number [, "FULL"/"BASIC"])
Returns the properties of the given matrix in BREXX variables:

_rows | number of rows of matrix
_cols | number of columns of matrix

If FULL is specified additionally the the following stem variables are returned:

Stem Description

_rowmean.column-i mean of rows of column-i
_rowvariance.column-i | variance of rows of column-i
_rowlow.column-i lowest row value of column-i
_rowhigh.column-i highest row value of column-i
_rowsum.column-i sum of row value of column-i
_rowsgr.column-i sum of squared row value of column-i
_colsum.row-i sum of column values of row-i

MSCALAR (matrix-number, number)
Multiplies each element of a matrix with a number (float). The result is stored in a new matrix,
which is returned. The input matrix remains untouched.

MADD (matrix-number-1, matrix-number-2)
Adds each element of a matrix-1 with the same element of matrix-2. The result is stored in a new
matrix, which is returned. The input matrix remains untouched. Matrix-1 and matrix-2 must have
the same dimensions.

MSUBTRACT (matrix-number-1, matrix-number-2)
Subtracts each element of a matrix-2 from the same element of matrix-1. The result is stored in
a new matrix, which is returned. The input matrix remains untouched. Matrix-1 and matrix-2 must
have the same dimensions.

MPROD (matrix-number-1, matrix-number-2)
Multiplies each element of a matrix-1 with the same element of matrix-2. The result is stored in
a new matrix, which is returned. The input matrix remains untouched. Matrix-1 and matrix-2 must
have the same dimensions.

MSQR (matrix-number)
Squares each element of the matrix. The result is stored in a new matrix, which is returned.
The input matrix remains untouched.

13.1. Functions 77

BREXX/370 User's Guide, Release: V2R5M1

MINSCOL (matrix--number)
Inserts a new column as the first column. The initial first column becomes the second column,
etc. The result is stored in a new matrix, which is returned. The input matrix remains untouched.

MFREE ([, matrix-number/integer-array-number"MATRIX"/"INTEGER-ARRAY"])
Frees the storage of allocated matrices and/or integer arrays. If no parameter is specified all allo-
cations are freed. To release a specific matrix or integer-array the matrix-number or integer-ar-
ray-number must be used as the first parameter, followed by the type to release.

78 Chapter 18. Matrix and Integer Array functions

Chapter 19

RXLIB functions

BREXX can implement new functions or commands in REXX. They are transparent and are called in
the same way as basic BREXX functions. They are stored in the library BREXX.RXLIB and are automat-
ically allocated (via DD RXLIB) in RXBATCH and RXTSO (Batch). In this release, BREXX delivers
the following functions.

RXMSG (msg-number, ‘msg-level,

1

message')

Standard message module to display a message in a formatted way

Parameters

* msg-number — message number to be displayed
*msg-level - Oneof: |, W,E, C

message level can be:

Example:

Message Level Description

for an information message

for a warning message

for an error message

o m=s|—

for a critical message

rc=rxmsg(10,'I','Program started')
rc=rxmsg(200,'W', 'Value missing')
rc=rxmsg(100,'E','Value not Numeric')
rc=rxmsg(999,'C','Divisor is zero')

Results:

RX0010I PROGRAM STARTED
RX0200W VALUE MISSING
RX0100E VALUE NOT NUMERIC
RX0999C DIVISOR IS ZERO

Additionally, the following REXX variables are maintained and can be used in the calling REXX

script.

Return code from call RXMSG:

Return Code Description

0 an information message was written
4 a warning message was written

8 an error message was written

12 a critical message was written

MSLV contains the written message level

79

BREXX/370 User's Guide, Release: V2R5M1

Message Level Description

for an information message
for a warning message

for an error message

for a critical message

olm|ls|—

MSTX contains the written message text part

MSLN includes the complete message with the message number, message level and text
MAXRC contains the highest return code so far; this can be used to exit the top level REXX. If you
used nested procedures, it is required to expose MAXRC, to make it available in the calling proce-
dures.

DCL (field-name’, length [, offset])
Defines a structure of fields which maps typically to an 1/0 record. The function returns the next
available offset in the structure.
Initialize the function with DCL(‘SDEFINE’/structure-name’) where:

« SDEFINE initialises the structure definition
« structure-name all following field definitions are associated with the structure-name.

Parameters + field-name — name of the rexx variable containing/receiving the field content
of the record

- offset — offset of the field in the record. This definition is optional if left out
the next offset from the previous DCL(field...) definition is used, or 1 if there was
none.

+ length - length if the field in the record

+ type — field-type either CHAR no translation takes place, CHAR is default or
PACKED decimal Packed field. Translation into/from Decimal packed into
Numeric REXX value takes place

call SPLITRECORD ‘structure_name,record-to-split splits record-to-split in the defined field-names
(aka REXX variables). The variable containing the record to split is typically read from a dataset.
Record=SETRECORD('student’) combines the content of all defined fields (aka REXX variables) at
the defined position and the defined length to a new record.

Example:

n=DCL ('$DEFINE','student')
n=DCL('Name',1,32,'CHAR")
n=DCL('FirstName',1,16,'CHAR'")
n=DCL('LastName',,16,'CHAR")
n=DCL('Address',,32, 'CHAR')

recin="'Fred Flintstone Bedrock'

/* '12345678901234567890123456789012345678901234567890 */
call splitRecord 'student',recin

say Name

say FirstName

say LastName

say Address
firstName='Barney'
LastName="'Rubble'
address="'Bedrock!'

say setRecord('student')

Results:

FRED FLINTSTONE

80 Chapter 19. RXLIB functions

BREXX/370 User's Guide, Release: V2R5M1

FRED

FLINTSTONE

BEDROCK

BARNEY RUBBLE BEDROCK

DAYSBETW (dateT, date-2 [, [, format-date] [, format-date2]])
Return days between 2 dates of a given format.

Parameters - format-datel - date format of date1 defaults to European

- format-date2 - date format of date2 defaults to European
the format-dates reflect the Input-Format of DATE and can be found in details there.

DUMP (string [, hdr])
Displays string as a Hex value, useful to check if a received a string contains unprintable charac-
ters. One can specify hdr as an optional title.
Example:

CALL DUMP 'THIS IS THE NEW VERSION OF BREXX/370 V2R1MO','DUMP LINE'

Results:

DUMP LINE

0000(0000) THIS IS THE NEW VERS ION OF B REXX
0000 (0000) ECCE 4CE4 ECC4 DCE4 ECDE CDD4 DC4C DCEE
0000 (0000) 3892 0920 3850 5560 5592 9650 6602 9577

0032(0020) /370 V2R 1MO
0032(0020) 6FFF 4EFD FDF
0032(0020) 1370 0529 140

LISTALC ()
Lists all allocated Datasets in this session or region.
Example:

CALL LISTALC

Results:

STDOUT *terminal
STDIN *terminal
SYSPROC SYS1.CMDPROC
SYSHELP SYS1.HELP

SYS2.HELP
SYS00002 UCPUBOO1
RXLIB BREXX.V2R5M0.RXLIB

SYSEXEC SYS2.EXEC

SYS00005 UCPUBOGO

ISPPROF IBMUSER.ISP.PROF

ISPMLIB SYSGEN.ISPF.MLIB

STDERR *terminal

ISPSLIB SYSGEN.ISPF.SLIB

ISPCLIB SYSGEN.ISPF.CLIB
SYSGEN.REVIEW.CLIST

ISPLLIB SYSGEN.ISPF.LLIB
SYSGEN.REVIEW.LOAD

ISPTABL SYSGEN.ISPF.TLIB

ISPPLIB SYSGEN.ISPF.PLIB
SYSGEN.ISPF.RFEPLIB

13.1. Functions 81

BREXX/370 User's Guide, Release: V2R5M1

ISPTLIB SYSGEN.ISPF.TLIB
REVPROF IBMUSER.ISP.PROF
SYS00012 SYSGEN.ISPF.LLIB
SYS00013 IBMUSER.CLIST

LISTCAT ([, list-cat-parameter])
Returns listcat output in the stem LISTCAT.

MVSCBS ()
Allows addressing of some MVS control blocks. There are several dependent control blocks
combined. To use them, MVSCBS must be imported first. After that, they can be used.
Currently integrated control blocks are: - CVT() - TCB() - ASCB() - TIOT() - JSCB() - RMCT() -
ASXB() - ACEE() - ECT() - SMCA()
The definition and the content of the MVS control blocks can be found in the appropriate IBM
manuals: MVS Data Areas, Volume 1 to 5.
IMPORT command is described in Vassilis N. Vlachoudis BREXX documentation: http://home-
.cern.ch/~bnv

QUOTE (string, gtype)
Enclose string in quotes, double quotes, or parenthesis,
Parameters qtype — can be:
* “single quote (default),
+ “double quote
« (bracket, the closing character is)’
« [square bracket, the closing character is '

Example:

Mystring='string to be quoted'
Say QUOTE(mystring,'”')
Say QUOTE(mystring,”'”)
Say QUOTE(mystring,'('")
Say QUOTE(mystring,'[')

Results:

'STRING TO BE QUOTED'
'STRING TO BE QUOTED'
(STRING TO BE QUOTED)
[STRING TO BE QUOTED]

PDSRESET (pds-name)
Removes all members of a PDS and runs a compress. After execution, the PDS is empty.

READALL (file, variable [, 'DSN'/DDN'])
Reads the entire file into a stem variable. The file can be either a dd-name or a ds-name. After
successful completion, the stem variable.0 contains the number of lines read into the stem.
The file name can either represent an allocated dd name or a fully qualified DSN. The third param-
eter defines the file type and is either DSN or DDN. If it is missing DDN is the default.

PERFORM (pds-name, process-member-rexx)

Reads member list of a PDS and runs the process-member-rexx against each member. The REXX
to be called receives the parameters:

* Pds-name

* Member-name

82 Chapter 19. RXLIB functions

http://home.cern.ch/~bnv
http://home.cern.ch/~bnv

BREXX/370 User's Guide, Release: V2R5M1

RXSORT (sort-type [, ASCENDING/DESCENDING])
Sorts the stem variable SORTIN. SORTIN.O must contain the number of entries of SORTIN.
The sort algorithms supported are: QUICKSORT, SHELLSORT, HEAPSORT, BUBBLESORT. After
Completion of RXSORT the stem variable SORTIN. is sorted. If you requested ASCENDING (also
default) it is in ascending order, for DESCENDING in descending order.

Sorting with REXX is only recommended for a small number of stem entries. Up to 1000 entries,
RXSORT works in a reasonable time.

If the stem you want to sort is not in SORTIN, you can use the SORTCOPY function to copy it over
to SORTIN.

SEC2TIME (seconds [, DAYS'])

Converts a number of seconds into the format hh:mm:ss, or days hh:mm:ss if the ‘DAYS’ param-
eter is specified.

Example:

say sec2Time(345000)
say sec2Time (345000, 'DAYS')

Results:

95:50:00
3 day(s) 23:50:00

SORTCOPY (stem-variable)

Copies any stem variable into the stem SORTIN., which then can be used by RXSORT. Stem-vari-
able.0 must contain the number of entries of the stem.

STEMCOPY (source-stem-variable, target-stem-variable)

Copies any stem variable into another stem variable. source-stem-variable.0 must contain
the number of entries of the stem. Stem-variables must end with a trailing '/, e.g. mystem.

STEMCLEN (stem-variable)

Cleansing of a stem variable, it removes empty and unset stem items and adjusts the stem
numbering. Stem-variable.0 must contain the number of entries of the stem and will after
the cleansing the modified number of entries. Stem-variables must end with a trailing ’, e.g.
mystem.

STEMGET (dataset-name)

Reads the saved content of one or more stem variables and re-apply the stem. Stem names are
save in the dataset.

STEMINS (stem-to-insert, insert-into-stem, position)
Inserts stem-to-insert into insert-into-stem beginning at position. The content of the original stem
at the position is shifted down n positions, whereby n is the size of the stem to be inserted.
Stem-variable(s).0 must contain the number of entries of the stem. Stem-variables must end with
atrailing '/, e.g. mystem.

STEMPUT (dataset-name,stem1[,stem2{,stem3]...)

Saves the content of one or more stems in a fully qualified dataset-name Stem-variable.0 must
contain the number of entries of the stem. Stem-variables must end with a trailing ', e.g. mystem.

STEMREOR (stem-variable)
reorders stem variable from top to bottom.
1. element becomes last,

2. next to last, etc.

Stem-variable.0 must contain the number of entries of the stem. Stem-variables must end with

13.1. Functions 83

BREXX/370 User's Guide, Release: V2R5M1

a trailing '/, e.g. mystem.

TODAY ([output_date_format| date[input_date_format]]) [date-format])
Returns today’s date based on the requested format. You can also use a date which is in the past
or the future. Details of date-formats can be found in the DATE output-format description.

UNQUOTE (string)
Remove from string leading and trailing quotes, double quotes, parenthesis and ‘<’ and >’ signs.
Example:

Say UNQUOTE(* 'quoted-string')
Say UNQUOTE (“<entry 1>%)
Say UNQUOTE(“(entry 2)¢)
Say UNQUOTE(“[entry 3]¢)

Results:

'QUOTED-STRING'
ENTRY 1
ENTRY 2
ENTRY 3

WRITEALL (file, variable [, 'DSN'/'DDN'])
Writes a stem variable into a file. The file can be either a dd-name or a ds-name. The stem vari-
able.0 must contain the number of entries of the stem. The file name can either represent an allo-
cated dd name or a fully qualified DSN. The third parameter defines the file type and is either DSN
or DDN. If it is missing DDN is the default.

84 Chapter 19. RXLIB functions

Chapter 20

Building TSO Commands

A BREXX function can be converted to work as a TSO command by creating a clist and call the BREXX
script. To perform the new clist, it must be stored in one of the pre-allocated clists libraries which are
active in your TSO session; alternatively, you can use SYS2.CMDPROC. Once this is done, you can call
it from TSO directly.

20.1 LA List all allocated Libraries

The clist calls the BREXX LISTALC script with a BREXX CALL statement. A minus sign immediately
following the REXX command tells BREXX to interpret a BREXX statement. The statement(s) must be
coded in one line. To place more than one BREXX statement in a line, separate them by using a semi-
colon ;.

REXX -
CALL LISTALC('PRINT')

20.2 WHOAMI Display current User Id

This one-liner outputs the userid() function by a say statement.

REXX -
SAY USERID()

20.3 TODAY

Display today’s Date

REXX -
SAY DATE(); SAY TIME()

20.4 USERS

List active Users. The clist calls the BREXX WHO script directly, therefore no minus sign is necessary:

REXX WHO

85

BREXX/370 User's Guide, Release: V2R5M1

20.5 REPL

Interactive REXX Processor.

The clist calls the BREXX REPL which opens the interactive REXX processor. It allows you to enter and
execute rexx statements.

RX REPL NOSTAE

86 Chapter 20. Building TSO Commands

Chapter 21

Callable External Functions

With the new External Function feature, you can call compiled programs written in conventional
language, as PL1, Assembler, and maybe more.

We closely adapted IBM’'s TSO/E REXX programming services: https://www.ibm.com/support/knowl-
edgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ikja300/progsrv.htm

How it works:

21.1 BREXX Call an external Program

To call an external program, you call it in the same way as a normal BREXX function:

say load-module(argument-1,argument-2,...,argument-15)

you can pass up to 15 arguments to the external function. The size of the return value can be up to
1024 bytes.

Example:

Say RXPI()

RXPI is a load module that must be accessible within the link list chain. It does not have any argu-
ments.

21.2 BREXX Programming Services

BREXX provides control blocks containing the arguments and a 1024 bytes return buffer.

21.3 Called Program

The program needs to match the BREXX calling conventions to manage the argument and return
value handling. To ease it, we have isolated communication control blocks and internal functions in
a copybook. Once included, it will transparently provide the functionality to the program.

Example, Pl calculation:

RXPI: PROCEDURE(EFPL_PTR) OPTIONS(MAIN);
%INCLUDE RXCOMM;

87

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ikja300/progsrv.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ikja300/progsrv.htm

BREXX/370 User's Guide, Release: V2R5M1

21.4 Benefits

The performance of a compiled program is much higher than in BREXX. So if you have complex math-
ematical calculations, they will be significantly faster than code implemented in BREXX. In our testing,
we implemented an algorithm for calculating Pl with 500 digits. In comparison, it was over 600 times
faster than the same algorithm implemented in BREXX.

88 Chapter 21. Callable External Functions

Chapter 22

VSAM User’s Guide

The VSAM User’s Guide contains the BREXX functions to access VSAM KSDS files.
The VSAM Interface is based on Steve Scott's VSAM API: https://sourceforge.net/projects/rxvsam/ .
We gratefully thank Steve for allowing us the integration in BREXX and his support to achieve it.

The underlying VSAM API allows full support for KSDS, RRDS and ESDS, but we focused just on
the KSDS functionality, so there is no support for RRDS and ESDS. If this limitation is lifted in
the future depends on user requests.

22.1 Integration of the VSAM Interface in BREXX

We decided to integrate the interface as host commands rather than BREXX functions. It is now
similar to the EXECIO host command for sequential datasets. The host command name is VSAMIO.
Host commands are typically enclosed in quotes or double-quotes.

Example:
“VSAMIO OPEN VSIN (UPDATE”

22.1.1 Limitations/Restrictions

The implementation has only tested with UNIQUE cluster definitions, not with type SUBALLOCATION
(which requires in MVS 3.8 a DEFINE SPACE and DEFINE VSAM catalogue definition). The UNIQUE
specification does not allow the REUSE CLUSTER definition, which would be necessary for the initial
loading of an empty KSDS dataset.

22.1.2 Initialising empty VSAM Files

A program cannot directly process an empty VSAM file it must be initialised first. The procedure to
achieve this is to use IDCAMS REPRO to write a “null”-record into it. After this exercise, the VSAM file
can be updated by BREXX/370 with normal VSAM Write commands from BREXX.

22.1.3 Key of Records
The key must be part of the record, and nevertheless, you must additionally specify the key in
the following commands:

+ “VSAMIO READ ddname (KEY key ... “

* “"VSAMIO LOCATE ddname (KEY key ... “

« “VSAMIO WRITE ddname (KEY key ... “

« “VSAMIO DELETE ddname (KEY key ... “

The key of a record must consist of a sequence of contiguous non-space characters; this means

89

https://sourceforge.net/projects/rxvsam/

BREXX/370 User's Guide, Release: V2R5M1

blanks are not allowed being part of a key. This limitation might be lifted in one of the forthcoming
releases.

vy

You can easily convert spaces in a key with the TRANSLATE function: key=translate(key,”_" ‘)
22.1.4 Return Codes

Each VSAMIO command call returns two return codes:
+ RC the usual return code, containing:

Return Code Description

0 call was successful

4 call was not successful and ended with warnings, typically in record-not-found
Situations

8 call ended with errors

+ RCX The extended VSAM Return code, and it consists of a 9 character field with the following
format: rrr-vvvvv rrr is the function return code, vvvvv is the VSAM return code

You can look up the details of the extended VSAM return code in IBM's MVS System Messages under
message IDC33511.

22.1.5 System Abend A03

The RXVSAM API runs as independent subtask within the address space. By the end of the REXX
Script, an automatic shutdown of the subtask is performed. If the REXX script unexpectedly termi-
nates, you possibly see a SYSTEM ABEND A03, which means the main task (BREXX) has been termi-
nated and there is still a subtask in the background active. MVS forces the ABEND of the subtask with
AO03. There are no further actions required; there is no impact on the system or the VSAM datasets.

22.1.6 Random and Sequential Access

The used VSAM 10 module distinguishes two access methods:
+ Random Access always requires a key to read/write/delete a record

+ Sequential Access allows to position to a particular record and reads/write/delete records from
there sequentially

Both methods can be used concurrently, but it is essential to understand that they do not mutual inter-
fere. Having read a record with random access does not allow to read from this record sequentially
the next records, as this is sequential access. But you can perform a LOCATE command with a key
and continue the read from there sequentially.

22.1.7 VSAM Dataset reference

Each VSAMIO command uses the DDNAME as a reference to the VSAM dataset. It must be pre-allo-
cated via a JCL DD Statement or a TSO ALLOCATE command.

There are no plans to allow a dataset name (DSN) instead of the DDNAME!
22.1.8 REXX VSAM Debugging

By using BREXXDBG as the BREXX interpreter you can produce additional log entries in the operator’s
console, as well as in the spool output of a batch job:

Example:

//BRXVSMKY JOB CLASS=A,MSGCLASS=H,REGION=8192K,
// NOTIFY=&SYSUID
/7%

90 Chapter 22. VSAM User's Guide

BREXX/370 User's Guide, Release: V2R5M1

//* ———
//* READ STUDENT VSAM FILE VIA KEY

//* ———
//*

//BATCH EXEC RXTSO,BREXX='BREXXDBG',

// EXEC='S$STUDENK',

// SLIB='BREXX.V2R5M1.SAMPLES'

//SYSPRINT DD SYSOUT=x,

// DCB=(RECFM=FBA,LRECL=133,BLKSIZE=133)

//SYSUDUMP DD SYSOUT=x

//
Results:

07.35.01 JOB 1466 $HASP373 PEJRXKEY STARTED - INIT 1 - CLASS A - SYS

TK4-

07.35.01 JOB 1466 IEF403I PEJRXKEY - STARTED - TIME=07.35.01

07.35.02 JOB 1466 +VSAMIO - STUDENTM ACCESS TRACE, REQUEST = OPEN

07.35.02 JOB 1466 +VSAMIO - KEY=NONE

07.35.02 JOB 1466 +VSAMIO - STUDENTM ACCESS TRACE, REQUEST = READU

07.35.02 JOB 1466 +VSAMIO - KEY=X"C1D5C4C5D9E2D6D55EC2C5D56D6D6D6D6D6D6D6D6D6D6
07.35.02 JOB 1466 +VSAMIO - STUDENTM ACCESS TRACE, REQUEST = READU

07.35.02 JOB 1466 +VSAMIO - KEY=X"C1D5C4C5D9E2D6D55EC7C1C2D9C9C5D36D6D6D6D6D6D6
07.35.02 JOB 1466 +VSAMIO - STUDENTM ACCESS TRACE, REQUEST = READU

07.35.02 JOB 1466 +VSAMIO - KEY=X"C2C1D3C4E6C9D55EC1D9D3C5D5C56D6D6D6D6D6D6DED6
07.35.02 JOB 1466 +VSAMIO - STUDENTM ACCESS TRACE, REQUEST = READU

07.35.02 JOB 1466 +VSAMIO - KEY=X"E2E3C5D7C8C5D5E2D6D55ED7C1E3D9C9C3C9C16D6D6D6
07.35.02 JOB 1466 +VSAMIO - STUDENTM ACCESS TRACE, REQUEST = CLOSE

07.35.02 JOB 1466 +VSAMIO - KEY=NONE

07.35.02 JOB 1466 IEFACTRT - Stepname Procstep Program Retcode

07.35.02 JOB 1466 PEJRXKEY BATCH EXEC IKJEFTO1 RC= 0000

07.35.02 JOB 1466 IEF404I PEJRXKEY - ENDED - TIME=07.35.02

07.35.02 JOB 1466 $HASP395 PEJRXKEY ENDED

22.2 VSAM Commands in BREXX

22.2.1 OPEN VSAM Dataset

“VSAMIO OPEN ddname ([READ/UPDATE] “
Example:

"VSAMIO OPEN VSIN1 (READ"
"VSAMIO OPEN VSIN2 (UPDATE"

VSINT1 is opened in reading mode, VSIN2 in UPDATE mode.
22.2.2 READ with KEY

Access-Type: Random:

"VSAMIO READ ddname (KEY key-to-read VAR rexx-variable"

If you want to update the record, you must prepare for it by adding the UPDATE keyword:

"VSAMIO READ ddname (KEY key-to-read UPDATE VAR rexx-variable"

The UPDATE keyword requires a File OPEN with UPDATE
Example:

22.2. VSAM Commands in BREXX 91

BREXX/370 User's Guide, Release: V2R5M1

"VSAMIO READ VSIN1 (KEY "keyl" VAR recordl"
"VSAMIO READ VSIN2 (KEY "key2" UPDATE VAR record2"

Read a record with key1/key2 (contained in a rexx variable) into the rexx variable record1/record2
22.2.3 READ NEXT

Access-Type: Sequential

After positioning with LOCATE to a particular record, you can read the next records sequentially. If no
LOCATE has been previously performed, the first record is read.:

"VSAMIO READ ddname (NEXT VAR rexx-variable"

If you want to update the record, you must prepare for it by adding the UPDATE keyword:

"VSAMIO READ ddname (NEXT UPDATE VAR rexx-variable"

The UPDATE keyword requires a File OPEN with UPDATE
Example:

"VSAMIO LOCATE VSIN (KEY "key

Do until rc>0
"WSAMIO READ VSIN (NEXT VAR record"
Say record

End

Position to record key (contained in a rexx variable) and read all records from there into rexx variable
record

22.2.4 LOCATE position to a certain record

Access-Type: Sequential
Position the record pointer in front of the provided key or a key prefix:

"VSAMIO LOCATE ddname (KEY [key-to-position/key-prefix]"

To subsequentially read the next records a READ NEXT is required. After a successful read, the posi-
tion is shifted to the next record position.

Example refer to READ NEXT.
22.2.5 WRITE KEY

Access-Type: Random

To update a record, it must be priorly read with a READ KEY, regardless whether the record exists. If
the record doesn't exist, it is inserted:

"VSAMIO WRITE ddname (KEY key-to-write VAR rexx-variable"

Example:

"WSAMIO READ VSIN (KEY "key'" UPDATE VAR CURRENT"
say 'READ 'rc' Extended RC 'rcx

"VSAMIO WRITE VSIN (KEY "key" VAR RECORD"

if rc<>0 then say key' Error during Insert'

else say 1inkey' Record 1inserted'

say 'WRITE 'rc' Extended RC 'rcx

To insert a new record; the READ is mandatory to verify if a record is already defined.

92 Chapter 22. VSAM User's Guide

BREXX/370 User's Guide, Release: V2R5M1

22.2.6 WRITE NEXT

Access-Type: Sequential To update a record, it must be priorly read with a READ NEXT.:

"VSAMIO WRITE ddname (NEXT VAR rexx-variable"

22.2.7 DELETE KEY

Access-Type: Random
To delete an existing record.:

"VSAMIO DELETE ddname (KEY key-to-delete "

Example:

"VSAMIO OPEN VSERR (UPDATE"

say 'OPEN 'rc' Extended RC 'rcx

"VSAMIO DELETE VSERR (KEY 0000000"

say 'Delete Dummy Record 'rc' Extended RC 'rcx

22.2.8 DELETE NEXT

Access-Type: Sequential
To delete an existing record, it must be priorly read with a READ NEXT.:

"VSAMIO DELETE ddname (NEXT "

Example:

"VSAMIO LOCATE VSIN (KEY "prefix
say "LOCATE "rc
say "Extended RC "rcx
do forever
"WSAMIO READ VSIN (NEXT UPDATE VAR INREC"
if rc<>0 then leave
say '"record=""INREC"' RC "rc" Extended RC "rcx
key=substr(inrec,1,8)
"VSAMIO DELETE VSIN (NEXT "
if rc=0 then reci=reci+l
say 'DELETE RC 'rc' Extended RC 'rcx
end

22.2.9 CLOSE

“VSAMIO CLOSE ddname “
To close all open VSAM datasets you can also use “VSAMIO CLOSE ALL “

Example:

"VSAMIO CLOSE VSERR"

22.3 BREXX VSAM Example

The installation file contains in the dataset BREXX.V2R5M1.JCL a working example of a student data-
base using fictitious student entries, containing first name, family name, birth date, the field of study,
address.

22.3. BREXX VSAM Example 93

BREXX/370 User's Guide, Release: V2R5M1

You can submit the REXX scripts in batch out of BREXX.V2R5M1.JCL

Member
STUDENTC

Description
Creates the VSAM Cluster definition

STUDENTI

Inserts the student records into the VSAM dataset

STUDENTK

Read the VSAM dataset with KEYs

STUDENTN

Read the VSAM dataset sequentially

The REXX scripts are stored in BREXX.V2R5M1.SAMPLES

Member
@STUDENI

Description
insert student records

@STUDENK

read student records by key

@STUDENL

Query student records by using formatted screens

@STUDENN

read student records sequentially

The following example illustrates the definition and population of a VSAM dataset using BREXX.
1. Define a VSAM Cluster: Define a new VSAM Cluster and import a “Null”-Record, submit the job

STUDENTC

2. Sample BREXX Program to update the VSAM Dataset: run the script @STUDEN!
3. JCL Upate VSAM Dataset: The BREXX Program is updating the new VSAM Dataset. Submit

the job STUDENTI

4. Using a Formatted Screen Application to Query the Student File: TSO RX “BREXX.V2R5M1.SAM-

PLE(@SUTDENTL)”

94

Chapter 22. VSAM User's Guide

Chapter 23

Formatted screens

The following document is a brief description of the new Formatted Screen (FSS) feature. It allows to
set up simple screen definitions within a BREXX script.

For detail take a closer look at the FSS samples in the delivered Installation library
BREXX.V2R5M1.SAMPLES

23.1 Delivered Samples

The relevant FSS samples are prefixed with the #-sign:

Member Description

Shows in a detailed usage of all FSS functions how to set up a menu and “paint” a TK4
like design

#BROWSE | A pre-packed FSS application to display data in a List Buffer instead of using SAYs
#FSS1COL | A pre-packed FSS application to generate input requests (in one column)

#FSS2COL | A pre-packed FSS application to generate input requests (distributes in two columns)
#FSS3COL | A pre-packed FSS application to generate input requests (distributes in three columns)
#FSSACOL | A pre-packed FSS application to generate input requests (distributes in four columns)
#FSS4CLX | A pre-packed FSS application to generate input requests (distributes in four columns)

#TSOAPPL

23.2 FSS Limitation

The FSS screen limitation has been dropped. Now large screen widths and heights are supported.

FSS supports just one FSS Screen definition at a time. If you need to display more than one FSS
Screen in your REXX application, you must close the first and set up and display the next FSS defini-
tion. Using this method, you can easily switch between different FSS Screens. It is a good idea to
separate the FSS definitions in different sub-procedures; this allows their display by calling it.

23.3 FSS Function Overview

To use FSS functions in BREXX, you must import the FSS API library from BREXX.RXLIB, address and
initialise it by a call to FSSINIT, be aware that FSS is a host command application that requires
an ADRESS FSS command, it is sufficient to use it once at the beginning. From this time on all host,
commands are directed to FSS. If it happens to be and you have to switch to another host API (e.g.
ADDRESS TSO or ADDRESS SYSTEM), you can do so, but you must make sure to switch back to
the FSS API by re-issuing an ADDRESS FSS command:

95

BREXX/370 User's Guide, Release: V2R5M1

CALL IMPORT FSSAPI

ADDRESS FSS

CALL FSSINIT

23.3.1 FSSINIT Inits the FSS subsystem
Initialise the FSS environment; this must be performed before any other FSS call: CALL FSSINIT

23.3.2 Principles of Defining Formatted Screens

You can define your formatted screen by using a series of FSSTEXT and FSSFIELD and/or some
wrapped FSS functions as FSSMESSAGE, FSSCOMMAND, etc. in your REXX script. Essential parame-
ters are, in all cases, the ROW and COLUMN positions. Be aware that consistency validations are very
basic and not bulletproof at all. It is, for example, possible to accidentally re-use occupied ranges,
which may lead to unwanted behaviour or results. Performing just necessary validations increases
the performance of the screen handling. It is, therefore, essential that you carefully design your
Formatted Screens.

23.3.3 FSSTEXT

CALL FSSTEXT 'text',row,column,[text-length],attributes
Display a text field

Parameters + text — text to be displayed in the screen
* row — row where text should be placed
« column — column where text should be placed.

+ text-length - length occupied by the text, this is an optional parameter; it
defaults to the text length.

« attributes - screen attributes, like colours, protected, high-lighted etc. For
details refer to the attributes section

23.3.4 FSSFIELD

CALL FSSFIELD 'field',row,column,[length],attributes[,init-value]
Display an input field and associate it with a BREXX Variable

Parameters + field - field-name of an input area to be displayed on the screen
* row — row where text should be placed
+ column — column where text should be placed.

+ length - length occupied by the text, this is an optional parameter; it defaults
to the text length.

« attributes - screen attributes, like colours, protected, high-lighted etc. For
details refer to the attributes section

+init-value - what should be displayed as content of the input field. It
defaults to blank.

Note Important Notice on the Column Position

Each text or field definition starts with the defined attribute byte, which itself is invisible but tells
how the text or field appears on the screen. Therefore the original text or field-definition start at

96 Chapter 23. Formatted screens

BREXX/370 User's Guide, Release: V2R5M1

column+1.

Note Important Notice on Screen Definitions

Be aware that all definitions provided by FSSTEXT and FSSFIELD are stacked internally. They do
not create a formatted screen on the fly.

23.3.5 Attribute Definition

The attribute definitions trigger the behaviour or colours of the Formatted Screen text or input
elements.

Attribute Description
#PROT Definition is protected (default for fsstext)
#NUM input field must be numeric
#HI text is displayed high-lighted
#NON text/field-input is invisible

#BLINK text/field blinks
#REVERSE | background is set with defined colour text appears white
#USCORE | Underscore field

Colors:
Attribute Description
#BLUE text or input field is of blue colour
#RED text or input field is of red colour

#PINK text or input field is of pink colour
#GREEN | text or input field is of green colour
#TURQ text or input field is of turquoise colour
#YELLOW | text or input field is of yellow colour
#WHITE | text or input field is of white colour

You can combine several attribute bytes by adding them. e.g. #PROT+#BLUE combining several
colours is not allowed and may lead to unexpected errors.

23.3.6 FSSTITLE

Displays a centred Title in Screen line 1

CALL FSSTITLE title-text[,attributes]
Besides the title definition the right hand 25 bytes may contain a short message in case of errors,
it overwrites the title part in error situations and automatically resets it, if the enter key is used.
The error field is named ZERRSM and maybe set also by your program.

23.3.7 FSSOPTION

CALL FSSOPTION [row[,option-length[,attributel,[attribute2]]]
Creates an OPTIONSs line, typically used in a menu to select a menu option:

OPTION ===>

Parameters * row — defaults to 2

+ option-length - defines the line length to proved the option input, default is
length of the remaining line

« attributel - Attribute of “OPTION”", default is #PROT+#WHITE

23.3. FSS Function Overview 97

BREXX/370 User's Guide, Release: V2R5M1

« attribute2 - Attribute of the option line,default is #HI+#RED+#USCORE

23.3.8 FSSCOMMAND

CALL FSSCOMMAND [row[,option-length[,attributel,[attribute2]]]
Creates an input line for entering menu options or commands, it appears with the “COMMAND
===>" prefix and is typically located in row 2.:

COMMAND ===>

Parameters * row — defaults to 2

+ option-length - defines the line length to provide the command input,
default is length of the remaining line

« attributel — Attribute of “COMMAND”, default is #PROT+#WHITE
« attribute2 - Attribute of the command line,default is #HI+#RED+#USCORE

23.3.9 FSSTOPLINE

CALL FSSTOPLINE prefix,[row[,option-length[,attributel,[attribute2]]]
Create an Option/Command Line. FSSTOPLINE is a variation of FSSCOMMAND which allows
the free definition of the input line prefix. It is typically located in row 2.:

MY-OPTION ===>

Prefix String which should appear in front of the input line. In the example above it is
“MY-OPTION"
Row defaults to 2

Option-length defines the line length to provide the command input; default is the length of
the remaining line

Attribute1 Attribute of “COMMAND”, default is #PROT+#WHITE
Attribute2 Attribute of the command line, default is #HI+#RED+#USCORE

23.3.10 FSSMESSAGE

CALL FSSMESSAGE [row][,attribute]]
Creates a message line to display messages. The message line occupies a full-screen line.
param row defaults to 3
param attribute attribute of message line, default is #PROT+#HI+#RED
A call to FSSZERRLM sets the Message

23.3.11 FSSZERRSM

Set Error/Warning/Info Short Message. The message is set in Field ZERRSM. ZERRSM is automati-
cally created by using an FSSTITLE definition; otherwise, it must be defined explicitly. If implicitly used
with the FSSTITLE definitions, it starts on the right-hand side after the end of the message; its length
is dependant on the length of the title.

CALL FSSZERRSM 'message'

23.3.12 FSSZERRLM

Set Error/Warning/Info Long Message. The message is set in Field ZERRLM, which has been defined

98 Chapter 23. Formatted screens

BREXX/370 User's Guide, Release: V2R5M1

on the screen by a CALL FSSMESSAGE.
CALL FSSZERRLM 'message'

23.3.13 FSSFSET

Set Field Content
CALL FSSFSET 'field',content

Make sure the field-name is enclosed in quotes; otherwise, there is a chance of unwanted substitution
by its value!

23.3.14 FSSFGET

Get current Field Content .. function:: Value=FSSFGET(‘field")

Make sure the field-name is enclosed in quotes; otherwise, there is a chance of unwanted substitution
by its value!

23.3.15 FSSFGETALL
Get Contents of all Fields

Number=FSSFGETALL ()

All field contents of the screen are fetched and stored in the associated BREXX fields defined by
FSSFIELD(...)

23.3.16 FSSCURSOR

Set Cursor to a Field .. function:: CALL FSSCURSOR “field’

23.3.17 FSSCOLOUR

Change Colour of a Field

CALL FSSCOLOUR 'field',colour-attribute alternatively

CALL FSSCOLOR 'field' ,colour-attribute

23.3.18 FSSKEY

Return Key entered. When the user presses an action-key on a screen the used key value to return
control can be accessed by FSSKEY. The optional parameter CHAR returns it in a translated readable
form if not set the value returned is the decimal value assigned to the action key.

key=FSSKEY ([CHAR])

By FSS supported keys:
REXX Variable Numeric Value Translated Value

#ENTER 125 ENTER
#PFKO1 241 PFO1
#PFKO02 242 PF02
#PFKO3 243 PFO3
#PFK04 244 PFO3
#PFKO05 245 PFO5
#PFKO06 246 PF0O6
#PFKO7 247 PFO7
#PFKO08 248 PFO8

23.3. FSS Function Overview 99

BREXX/370 User's Guide, Release: V2R5M1

#PFK09 249 PF09
#PFK10 122 PF10
#PFK11 123 PF11
#PFK12 124 PF12
#PFK13 193 PF13
#PFK14 194 PF14
#PFK15 195 PF15
#PFK16 196 PF16
#PFK17 197 PF17
#PFK18 198 PF18
#PFK19 199 PF19
#PFK20 200 PF20
#PFK21 201 PF21
#PFK22 74 PF22
#PFK23 75 PF23
#PFK24 76 PF24
#CLEAR 109 CLEAR
#RESHOW 110 RESHOW

23.3.19 FSSDISPLAY

Displays or Re-Displays the active screen.

CALL FSSDISPLAY

CALL FSSREFRESH
23.3.20 Get Screen Dimensions

width=FSSWidth()
Returns number of available columns defined by Emulation

height=FSSHeight()
Returns number of available rows defined by Emulation

23.3.21 Close FSS Environment

Once the Screen Handling is finished it is recommended to terminate the FSS environment with one
of:

CALL FSSTERM
CALL FSSTERMINATE

CALL FSSCLOSE

23.4 Creating a Dialog Manager

To handle user’s action-keys, you can set up a simple Dialog Manager, as shown in this example:

B e e e e e e e e o e e e 0 0 0 0 0 2 2 2 0 0 0 0 2 2 2 5 0 0 0 e o e o e e e e e

* Display screen in primitive Dialog Manager and handle User's Input

100 Chapter 23. Formatted screens

BREXX/370 User's Guide, Release: V2R5M1

*/

do forever
fsreturn=fssDisplay() /* Display Screen x/
if fsreturn='PFKO3' then leave /* QUIT requested x/
if fsreturn='PFK04' then leave /* CANCEL requested x/
if fsreturn='PFK15' then leave /* QUIT requested x/
if fsreturn='PFK16' then leave /* CANCEL requested x/
if fsreturn<>'ENTER' then -+iterate
call fSSgetD() /* Read Input Data x/
/* Add input checking if needed */

end

call fssclose /* Terminate Screen Environment x/

23.5 Simple Screen Applications

There is a simple way to create formatted screens using preformatted rexx scripts, and this allows
an easy screen setup without coding all the screen definitions manually.

23.5.1 Screen with Attributes in one Column

From BREXX.V2R5M0.SAMPLES(#FSS1COL)

/* # Sem—m—ososososososs screen with 1 column
x !
* ! e Title line of screen
*] | */

frc=FMTCOLUM(1, 'One Columned Formatted Screen',
,'1. Input ===>",
,'2. Input ===>"',
,'3. Input ===>"',
,'4. Input ===>',
,'5. Input ===>",
,'6. Input ===>",
,'7. Input ===>",
,'8. Input ===>'",
,'9. Input ===>',

)
do i=1 to _screen.input.0
say "User's Input "1i'. Input Field: '_screen.input.i
end
return

The above definition creates and displays this screen:

———————————————————————— One Columned Formatted Screen —-————------—-——————————

1. Input ===> o,
2. Input ===> _
3. Input ===> ..,
4. Input ===> _ o ———.——,—————
5. Input ===> o —————————————
6. Input ===>
7. Input ===>
8. Input ===>
9. Input ===> _

After entering input and pressing enter, you receive the provided input:

23.5. Simple Screen Applications 101

BREXX/370 User's Guide, Release: V2R5M1

1. Input ===> B
2. Input ===> 1
3. Input ===> t
4. Input ===> B
5. Input ===>
6. Input ===>
7. Input ===>
8. Input ===>
9. Input ===>

The provided input is stored in SCREEN.INPUT.xx an can be used or printed as in this REXX script:

User's
User's
User's
User's
User's
User's
User's
User's
User's

Input
Input
Input
Input
Input
Input
Input
Input
Input

O oo ~NOUulbh WNR

Input
Input
Input
Input
Input
Input
Input
Input
Input

Field:
Field:
Field:
Field:
Field:
Field:
Field:
Field:
Field:

Brexx
is
the
Best

23.5.2 Screen with Attributes in two Columns

From BREXX.V2R5M0.SAMPLES(#FSS2COL)

/*

*
*

end
return

!
!
!

——————————————————— screen with 2 columns

+ Title line of screen

'l. Input

'2. Input =
'3. Input

'4, Input

'5. Input ===
'6. Input ===
'7. Input ===
'8. Input =
'9. Input

frc=FMTCOLUM(2,'Two Colum

b
b
J

J

b
H
H
b
b

*/

to _screen.input.o

"User's Input "qi'.

ned Formatted Screen',

Input Field: '_screen.input.i

you get the attributes in two columns:

1. Input ===>
3. Input ===>
5. Input ===>
7. Input ===>
9. Input ===>

Two Columned Formatted Screen

2. Input ===>
4. Input ===>
6. Input ===>
8. Input ===>

Entered input is provided in the same way as in the one column screen example.

102

Chapter 23

. Formatted screens

BREXX/370 User's Guide, Release: V2R5M1

23.5.3 Screen with Attributes in three Columns
Just change the number of columns to 3: frc=FMTCOLUM(3, Three Columned Formatted Screen’,
23.5.4 Screen with Attributes in four Columns

Last option is to place the attributes in four columns: frc=FMTCOLUM(4, Three Columned Formatted
Screen’,

23.5.5 Screen special Attributes
You can tailor the appearance of formatted column screens, by setting _screen.xxxx variables:
Presetting Screen input fields

Use _SCREEN.INIT.n="input-value-as-default’, n is the reference to the field in the FMTCOLUMN defini-
tion. 1 is first, 2 second, etc.

Example:

_SCREEN.INIT.1="FRED'
_SCREEN.INIT.3='Flintstone'
_SCREEN.INIT.4="FL2311"'
_SCREEN.INIT.5="Quarry'

Calling the formatted screen, you get a pre-set Screen:

———————————————————————— One Columned Formatted Screen —-----------——-——————-

1. First Name ===> Fred_______ __ __
1. Family Name ===> Flintstone______________ _ __ _ ___ _ o ____
2. UserId ===> FL2311_______ ___ __ _ _ oo
3. Department ===> Quarry___ __ _ _

Input field appearance

If not changed, the input fields appear with an underscore in the available length. You can change it by
setting _screen.preset. If you set _screen.preset="+' (one character) the input field filled by the char-
acter you defined. If you use more than one character _screen.preset="_ ‘ only the given string is
displayed.

Input field length
The field length is, by default, delimited by the following field definition in the row, or by the end of
the line.

If you want to limit it to a certain length by: _.SCREEN.LENGTH.n=field-length n is the field number you
want to set. It is sufficient to set just the field length you want to limit.

Input Field CallBack Function
Normally, if you press enter, the screen control is giving back to your rexx, and the variable content is

returned. If you prefer to check the entered input while your formatted screen is still active, for exam-
ple, to validate user’s input, you can define a callback function:

_screen.ActionKey="1internal-subprocedure’

The internal sub-procedure must be coded without a PROCEDURE statement; else you cannot use
the screen input variables

_screen.ActionKey="'checkInput'
frc=FMTCOLUM(2, 'Two Columned Formatted Screen',

23.5. Simple Screen Applications 103

BREXX/370 User's Guide, Release: V2R5M1

return
o e 5 e 5 e 5 e 5 e e e e e e S e e e
* Call Back Routine from FMTCOLUMN to check provided Input
K
*/
checkInput:

if _screen.input.l = '' then do

call FSSzerrsm 'Field 1 1dist mandatory'
call FSSzerrlm 'Please enter valid content in Field 1'
return 1

end

if _screen.input.2 = '' then do
call FSSzerrsm 'Field 2 is mandatory'
call FSSzerrlm 'Please enter valid content in Field 2'
return 1

end

In case of an error, your call back function can use the FSSzerrsm function, which displays a short
message in the formatted screen'’s title line and/or the FSSzerrlm function to display a long message.
The error message is displayed in the last line of Formatted Screen. Your callback sub-procedure
signals with its return code how to proceed:
Return Description

return 0 everything ok, leave screen an pass control back to calling rexx

return 128 | something is wrong, re-display the screen

return 256 | something is wrong, leave the screen

field n contains wrong input, re-display screen n >0 and n<128 represents the field
number in error

return n:

23.6 FSSMENU Supporting Menu Screens

To ease the creation of menu screens, you can use the FSSMENU definition. It creates the screen
layout as well as the dialogue handling part.

23.6.1 Defining a Menu Screen

CALL FSSMENU 'option','note','description','action',[startRow],[startCol]
Parameters

The FSS menu definitions can be included within a typical FSS Screen definition to add additional
fields or text parts to the formatted screen. These parts can be dynamically updated if you
specify a callback procedure in the FSSMENU Display call.
The FSSMENU definition relies on the existence of the following fields (FSSMENU does not auto-
matically generate them); they must be defined separately, either implicitly or explicitly:

+ ZCMD is defined by FSSTOPLINE or FSSCOMMAND

+ ZERRSM is defined by FSSTITLE

Example defined in a REXX script:

CALL FSSMENU 1,"RFE", 'SPF 1like" productivity tool',

,"TSO CALL 'SYS2.CMDLIB(RFE)"
CALL FSSMENU 2,"RPF'", 'SPF like" productivity tool','TSO RPF'
CALL FSSMENU 3,"IM", 'IMON/370 system monitor','TSO IM'
CALL FSSMENU 4,"QUEUE", 'spool browser',6'TSO Q'

104 Chapter 23. Formatted screens

BREXX/370 User's Guide, Release: V2R5M1

CALL FSSMENU 5,"HELP", 'general TSO help','TSO HELP'
CALL FSSMENU 6,"UTILS",

,'information on utilities and commands available','TSO HELP UTILS'
CALL FSSMENU 7,"TERMTEST" ,'verify 3270 terminal capabilities',

,'TSO TERMTEST'

23.6.2 FSSMENU Displaying a Menu Screen

To display the menu and handle the selected actions, FSSMENU must be called with the SDISPLAY
parameter:

returnkey=FSSMENU(' $DISPLAY',[callback-procedure],[actionkey-procedure])
Parameters
Example: Simple Display without any exits

rckey=FSSMENU (' $DISPLAY ")
say 'End Key 'rckey

Example: Before Display update some variables via a callback procedure

rckey=FSSMENU('$DISPLAY',"UPDVAR")
say 'End Key 'rckey

o

* Update some Variables before displaying the Menu

*/

Updvar:

MDate=date() /* assuming MDATE/MTIME are defined in the MENU */
MTime=time('L")

Return

Example: Before Display update some variables via a callback procedure, and check command
line input via an enter-exit

rckey=FSSMENU (' SDISPLAY', 'UPDVAR','CHECKKEY"')
say 'End Key 'rckey

o

* Update some Variables before displaying the Menu

*/

Updvar:

MDate=date() /* assuming MDATE/MTIME are defined in the MENU x*/
MTime=time('L")

Return

e S e e
* Check user's Input in command Line

* Return code handling:

* 0 input has been handled by exit, re-display Menu

*x 4 input has not been handled, continue with internal checks
* 8 exit Menu immediately

CheckKey:
Parse arg actionkey,usercommmand
If length(usercommand)>2 then do

23.6. FSSMENU Supporting Menu Screens 105

BREXX/370 User's Guide, Release: V2R5M1

Say usercommand' s not an Option'
Return 0

End

Return 4

23.6.3 FMTMENU Fully Defined Menu Screens

Using FSSMENU, you can define the menu lines and generate the menu handling, but it must be incor-
porated in a normal REXX script containing the other parts of the screen definition and handling.
FMTMENU allows you the definition of a menu screen in one step, but there are additional screen defi-
nitions in the menu possible.

Definition of the Menu

CALL FMTMENU 'option','note','description','rexx-script'

Parameters «option - option code which leads to performing the associated action.
The option can be a numeric or alphanumeric string.

* note - the short description of the action to perform
+ description - long description of the action to perform

* rexx-script — REXX script which performs the action when the option is
selected. Note the difference, to FSSMENU, here it must be a REXX script, but it
may also contain calls to TSO, etc.

An FMTMENU always contains a title line (first row) an option line (second row) a message line (last
row -1) and a footer line (last row).

Displaying the FMTMENU Screen

To display the menu and handle the selected actions, FMTMENU must be called with the SDISPLAY
parameter:

returnkey=FMTMENU (' $DISPLAY', 'menu-title')

Parameters * returnkey - key which was pressed to end the dialogue handling, it is either
PF03, PF04, PF15, or PF16

* $DISPLAY - Display the menu defined before

* menu-title - defining the menu title

Menu Tailoring

There are some settings, which allow you to tailor the menu layout. The usage of the stem _screen
defines all settings .xxx. These settings are supported in FSSMENU as well as in FMTMENU.

Setting Description

_screen.MenuRow | starting row of first Menu entry (default is 4)
_screen.MenuCol | Column of Option parameter (default is 6)
_screen.Menucol2 | Column of note parameter (default is _screen.MenuCol+3)
_screen.Menucol3 | Column of note parameter (default is _screen.MenuCol+14)

Note for FSSMENU:

there are separate parameters startrow and startcol in the menu definition
CALL FSSMENU 'option','note','description','action',[startRow],[startCol]

If they are defined, they take precedence over the screen.MenuRow and screen.MenuCol definition.

106 Chapter 23. Formatted screens

BREXX/370 User's Guide, Release: V2R5M1

| _screen.MenuFooter | defines the contents of a footer line (placed on the last row) |

Setting just for FSSMENU (in FMTMENU they are managed automatically)

Setting Description
_screen.MenuOption 1 adds an Option ling, else it must be defined manually
_screen. MenuMessage 1 | adds a message line (last row-1)

_screen. Menutitle’ 1 adds a title line

Formatted List Output

The usage of SAY statements displays the standard output of a REXX script. The disadvantage you
can not scroll in it. Alternatively, you can write it in a sequential file and view it after the script has
ended. By using the FMTLIST command and passing a result buffer in a stem variable, you can
browse in the output while your REXX script is still running.

Example REXX reads entire RXDATE Member and displays it:

/* REXX x/

ADDRESS TSO

"ALLOC FILE(INDD) DSN('BREXX.CURRENT.RXLIB(RXDATE)')"
"EXECIO * DISKR INDD (STEM BUFFER."

"FREE FILE(INDD)"

CALL FMTLIST

RETURN

Results:

CMD ==> ROWS 00001/00199 COL 001 BOl
Kkkkk kkkkkkkkkkkkkkkkkkxkkkkkkxkkx TOP OF Data *xkkkkskkhskokkkskkkkskkkskkkkkkkkk*x
00001 /* REXX */

00002 f* ——mm oo
00003 * should not be used anymore, all date functions are integrated 1in
00004 * DATE (<output-format>,<date>,<input-format>)

BOOO5 K mm oo
00006 * RXDATE Transforms Dates 1in various types

Q0007 % 0000000000000000000000000000C Created by PeterJ on 21. November 2018
00008 * RXDATE(<output-format>,<date>,<input-format>)
00009 * date is formatted as defined in input-format
00010 * it defaults to today's date

00011 * Input Format represents the input date format
00012 * it defaults to 'EUROPEAN'

00013 * Base is days since 01.01.0001

00014 * JDN is days since 24. November 4714 BC
00015 «* UNIX is days since 1. January 1970
00016 * Julian is yyyyddd e.g. 2018257

00017 * European 1is dd/mm/yyyy e.g. 11/11/2018
00018 * German is dd.mm.yyyy e.g. 20.09.2018
00019 * USA is mm/dd/yyyy e.g. 12.31.2018
00020 * STANDARD s yyyymmdd e.g. 20181219

Using the PF7 and PF8 you scroll upward and forward, PF10 and PF11 scroll left and right. M in
the CMD line and PF7 moves buffer to the top, M and PF8 to the bottom. A number and PF7 or PF8
moves the buffer the specified lines up or down.

FMTLIST Prerequisites

FMTLIST always displays the content of the stem variable BUFFER. The buffer must have the general
structure:

23.6. FSSMENU Supporting Menu Screens 107

BREXX/370 User's Guide, Release: V2R5M1

BUFFER.O | contains the number of entries in BUFFER
BUFFER.1 | contains the first line
BUFFER.2 | second line

BUFFER.n | last line

As the name is fixed, it does not need to be passed to FMTLIST.

FMTLIST calling Syntax

FMTLIST

[length-1line-area],[line-area-character],[header-1],[header-2],[applicationID]
Parameters + length-line-area - length of displayed line-area, default is 5

* line-area—-character - character which should be displayed in the line
area, default is none, then the line area contains the line number

* header-1 - this is an optional header line which is shown as first-line
the displayed buffer

* header-2 - optional second header, only if header-1 is also defined

+applicationID - If you specify an application ID, the FMTLIST screen
supports line commands. The Line commands must be defined and coded in
the calling REXX script as a callback label: applicationID_linecommand.

If you use PF7/PF8 to scroll up and down, the two header lines are always displayed as the buffer
top lines.

FMTLIST supported PF Keys and Scrolling commands

PF3/PF4 | exit FMTLIST screen

PF7 scroll one page up

PF8 scroll one page down

PF10 shift buffer 50 columns left
PF11 shift buffer 50 columns right
PF12 Display last command

If you use a combination of a number in the command line and PF7 or PF8, the buffer scrolls
the number of lines up or down.

Command-line functions:

TOP displays the first line of the buffer
M and PF7 | displays the first line of the buffer
BOTTOM | displays the last line of the buffer
BOT displays the last line of the buffer
M and PF8 | displays the last line of the buffer

FMTLIST Customising Options

By setting _SCREEN.xxxx, you can manipulate the appearance of FMTLIST in various ways:

Variable Name Default Allowed Values

Command Line character building
the command line. Default is blank

_screen.cmdchar blank and creates an empty command line
which is displayed with the 3270
attribute #USCORE

108 Chapter 23. Formatted screens

BREXX/370 User's Guide, Release: V2R5M1

_screen.color.Cmd #red ;Ai\:)tr:g)ute Defini- Colour of Command Line
. Attribute Defini- | Colour of Statistics (line and buffer
_screen.color.Stats #white . :
tions numbering)
_screen.color.Top1 #red ﬁ:)t:sbute Defini- Colour of line area first line
Attribute Defini- | Colour of line conten first line (Top
_screen.color.Top2 #blue .
tions of Data)
_screen.color.Bot1 #red ﬁ;t;fute Defini- Colour of line area last line
Attribute Defini- | Colour of line content last line (End
_screen.color.Bot2 #blue .
tions of Data)
_screen.color.List1 #white ;Ai\:)tr:g)ute Defini- Colour of line area (content part)
_screen.color.List2 #green ﬁ;t:sbute DiEililF Colour of line content part
_screen.footer undefined ?F?Fr;ten)t of footer Fixed Footer Line (at screen height)
_screen.color.footer #white ﬁ;t:sbute Betig Colour of line content part
_screen.Message undefined 1 for defining le-ed Message Line (screen
message height-1)
Begin row of fmtlist, if it is 2 or more
1 up to Screen :
_screen.TopRow 1 height-3 there are empty lines above
9 FMTLIST
Is a call-back proc name in the rexx
calling FMTLIST. There you can
define the line above the FMTLIST
_screen.TopRow.proc | Undefined screen. They can be set with

FSSfield or FSSText commands.
The number of added rows must not
exceed _screen.TopRow-1

_screen.BotLines

Lines reserve at
bottom of
FMTLIST

1 up to Screen

height-3

As screen height is dynamic
depending on the 3270 definitions.

_screen.BotLines.proc

Undefined

Is a call-back proc name in the rexx
calling FMTLIST. There you can
define the lines at the end of
the FMTLIST screen. They can be
set with FSSfield or FSSText
commands. The first line number
which can be set is passed as arg(1)
parameter. For consistency reasons
of call back parameters, it is
enclosed in quotes. This means you
must strip them off: first=strip(trans-

late(arg(1),,™))

FMTLIST calling other REXX scripts from the command line

If you want to play another REXX script from within the FMTLIST buffer you can do so, by entering:
rexx-script-name in the command command line.

Simple REXX scripts

A simple Rexx script does not contain any call to an FSS Screen. A sequence of say statements may
provide the result, or you can place it in a buffer.x stem. If you do so, the result displayed in the current

23.6. FSSMENU Supporting Menu Screens

109

BREXX/370 User's Guide, Release: V2R5M1

FMTLIST buffer. Which means the existing content is overwritten.

Buffer.1="'first line'
Buffer.2="'second line'
Buffer.0=2

If you want to keep the contents of the current buffer, use the prefix command LOOKASIDE
rexx-script-name, and a new stacked buffer is created residing on top of the previous buffer.
The previous buffer can be re-activated by pressing the PF3 key; it destroys the current buffer and
returns to the last buffer.

If the called rexx-script contains an FMTLIST, FSSMENU, or FMTMENU itself a new buffer is created
automatically.

Formatted List Line and Primary Commands

The FMTLIST Buffer supports Line Commands if it is called with an applicationID. The line command
is coded within the calling procedure (performing the FMTLIST) as a callback label, to keep the scope
of the variables there must not be a PROCEDURE statement used. The callback label must be coded
as: applicationID_linecommand. In the following example there is a line command S, U and D defined :

/* REXX x/

ADDRESS TSO

"ALLOC FILE(INDD) DSN('BREXX.RXLIB(RXDATE)')"

"EXECIO * DISKR INDD (STEM Buffer."

"FREE FILE(INDD)"

call fmtlist ,,,,MYLIST /* MYLIST is application ID x/
return

o e e e e e e e e e e e e e e e 5 0 5 5 5 5 S e 5 S e e 5 S e e S e e
* Line commands are organised as "call-back' labels to the calling REXX
* Format is REXX name_linecmd

mylist_s: /x line command S, just output selected line x/
say Arg(1l)
return 0 /* tell FMTLIST to proceed normally */

mylist_u: /x line command U, allow editing line x/
newLine=lineedit(,arg(1))
return 4 /*x tell FMTLIST, you changed line */

mylist_e: /x line command E, automatically change line x*/
newLine="new Line set'
zerrsm="update'
zerrlm='Line has been updated'
return 4 /x tell FMTLIST, line is changed line x/

mylist_d: /x Delete Line */
return 5 /x tell FMTLIST to delete selected line x/

RC Code actions

RC=0 | means the line command was processed

means the line command was processed; if the REXX variable NEWLINE contains a value,
the selected line will be overwritten by this value.

RC=5 | delete this line

a completely new buffer.n stem has been provided and should be displayed immediately.
RC=6 | The old buffer content will be removed. If you set a ZERRSM or ZERRLM message
the message will be kept and displayed.

RC=4

110 Chapter 23. Formatted screens

BREXX/370 User's Guide, Release: V2R5M1

a new buffer.n stem has been provided and should be displayed in a new FMTLIST buffer,
which is stacked on top of the previous one. Once you return with PF3 you will see the old
buffer content. If you set a ZERRSM or ZERRLM message the message will be kept and
displayed.

RC=8 | invalid line command

RC=7

Additionally, you can change the colour of the line in the buffer; you have to set:
+ SETCOLOR?1 sets the colour of the selected line of the line area, e.g. setcolor1=#green
+ SETCOLOR?2 sets the colour of the selected buffer content line, e.g. setcolor2=#red

If none or just one of the colours have been set, the other field colour remains unchanged

Formatted List Samples

There are several scripts in BREXX.V2R5M1.SAMPLES illustrating the usage of FMTLIST.

FMTOPBOT | has an embedded FMTLIST with user-defined header and footer lines.
@STUDENTL | the front end of the VSAM student database example
#BROWSE Displays the LISTALC command

Debugging Simple Screen Applications

If you need to debug the behaviour of simple screen applications, you can switch on a trace feature in
the calling REXX script:

_screen.FTRACE=1

You get a trace of the performed step within the screen application.

/* REXX x/

do i=1 to 35
buffer.i="'Buffer Line 'i

end

buffer.0=1-1

/*

_screen.color.top2=#yellow

_screen.color.mylist=#red

_screen.color.cmd =#blue

_screen.color.stats=#white

*/

_screen.footer="'PF1 Help PF3 Return PF4 Return'

_screen.Message=1

CALL FMTLIST ,,'','','TEST'

Displaying Trace in TSO:

09:45:27.09 Entering FMTLIST

09:45:27.18 Display Screen

* k%

The screen is displayed, waiting for the next user action
09:45:56.65 User Action PFO8

09:45:56.69 Command Line ''

09:45:56.71 Display Screen

* % %

The screen is displayed, waiting for the next user action
09:46:42.13 User Action PFO7

09:46:42.17 Command Line '10'

09:46:42.20 Display Screen

* %%

23.6. FSSMENU Supporting Menu Screens 111

BREXX/370 User's Guide, Release: V2R5M1

The screen 1is displayed, waiting for the next user action
09:47:10.09 User Action PFO3

09:47:10.09 Command Line ''

* k%

Formatted List Monitor FMTMON

By setting up a formatted list monitor you can monitor certain events on a timely basis. You can for
example continuously view updated entries of the Master Trace Table

CALL IMPORT FSSAPI

I e
* FMTMON is an FSS application that refreshes itself every xxx milliseconds
the refresh takes place in the call-back procedure MonTimeOut it must
provide a new buffer or just return

There is also an enter-key call-back procedure MonEnter where you can
execute commands, e.g. CONSOLE and modify the buffer if wanted

* % X% %

call fmtmon "MVS Trace Table",1000
return 0

FMTMON calling Syntax

FMTMON header,[refresh-frequency]
Parameters + header - is displayed as title in the FMTMON screen

* refresh-frequency - refresh timer in milliseconds

FMTMON Call-Back Procedures

FMTMON requires two call-back procedures, which must be implemented in the calling REXX proce-
dure.

1. MONENTER: is called when has entered input and presses the enter-key

Y e
* MONENTER Call Back PROC of FMTMON Enter key pressed, do something

* return O continue normally

* 4 continue normally, buffer is not touched

x 8 end monitor (as PF3)

x 12 end monitor (as PF4)

K
*/

MonEnter:

call CONSOLE arg(1)

/* action requested console command */

return 0

2. MONTIMEOUT: is called when the frequence-time-out has been reached

/
* MONTIMEOUT Call Back PROC of FMTMON Enter key pressed, do something
* Timeout in FSS, you can provide new content 1in

* BUFFER.i1 i=1 to number of lines

* BUFFER.O® must contain number of lines

* return 0 continue buffer is unchanged

* 1 continue new buffer provided

112 Chapter 23. Formatted screens

BREXX/370 User's Guide, Release: V2R5M1

*/

MonTimeout:

/* arg(1l) entry count */

/* create new contents of FMTMON Buffer.
return

FMTMON provide data to display

FMTMON displays the content of the stem variable BUFFER, typically it is updated in the MONTimeout
call-back procedure.

The buffer must have the general structure:

BUFFER.O | contains the number of entries in BUFFER
BUFFER.1 | contains the first line
BUFFER.2 | second line

BUFFER.n | last line

As the name is fixed, it does not need to be passed to FMTMON.
FMTMON predefined Action Keys

* Help key: PF1

+ Scrolling keys: PF7/PF8

« Commands: TOP/BOT/UP n(-lines)/DOWN n(-lines)
FMTMON Application display Master Trace Table

This example is stored in: BREXX.V2R5M1.SAMPLES(MTT)

23.7 FSS Functions as Host Commands

Alternatively to the FSS functions described in “FSS Function Overview” you can use the FSS Host
command API directly. In this case, all definitions, calculations, validations, etc. must be handled by
your REXX script directly.

23.7.1 INIT FSS Environment

Initialise the FSS environment; this must be performed before any other FSS call:

ADDRESS FSS
"INIT'

23.7.2 Defining a Text Entry

ADDRESS FSS
'"TEXT 'row column attributes text'

« text: text to be displayed on the screen
+ row: row where text should be placed
+ column: column where text should be placed.

- attributes: screen attributes, like colours, protected, high-lighted etc. For details refer to
the attributes section

23.7. FSS Functions as Host Commands 113

BREXX/370 User's Guide, Release: V2R5M1

23.7.3 Defining a Field Entry

ADDRESS FSS
"FIELD 'row column attributes field flen [preset]'

« text: text to be displayed on the screen
« row: row where text should be placed
+ column: column where text should be placed.

- attributes: screen attributes, like colours, protected, high-lighted etc. For details refer to
the attributes section

- field: Screen field name
« flen: length of input area representing field name

« preset: content initially displayed (optional), defaults to blank

23.7.4 Getting Field Content

ADDRESS FSS
'GET FIELD field rexx-variable'

- field: Screen field name

« rexx-variable: variable receiving the field content

23.7.5 Setting Field Content

ADDRESS FSS
'SET FIELD field value'

or

ADDRESS FSS
'SET FIELD field 'rexx-variable'

+ field: Screen field name
« value: new field content
« rexx-variable: variable containing the field content

23.7.6 Setting Cursor to a field

Sets the cursor to the beginning of the Screen Field

ADDRESS FSS
"SET CURSOR field'

- field: Screen field name

23.7.7 Setting Colour

Sets the Colour of a Screen Field

ADDRESS FSS
'SET COLOR field/text colour'

114 Chapter 23. Formatted screens

BREXX/370 User's Guide, Release: V2R5M1

« field: Screen field name
- colour: Color definition,for details refer to the attributes section

23.7.8 Getting action Key

When the user presses an action-key on a screen, the key value can be fetched in a rexx-variable:

ADDRESS FSS
'GET AID rexx-variable'

* rexx-variable: variable receiving the action key

23.7.9 Display or Refresh Formatted Screen

Used to display the Formatted Screen the first time, or to refresh an active screen:

ADDRESS FSS
'REFRESH'

23.7.10 End or Terminates FSS Environment

Ends the Formatted Screen environment and releases all used main storage:

ADDRESS FSS
'TERM'

23.7.11 Get Terminal Width

ADDRESS FSS
'GET WIDTH rexx-variable'

* rexx-variable: variable receiving the action key

23.7.12 Get Terminal Height

ADDRESS FSS
'GET HEIGHT rexx-variable'

« rexx-variable: variable receiving the action key

23.7. FSS Functions as Host Commands 115

BREXX/370 User's Guide, Release: V2R5M1

24 Implementation Restrictions

The name of a variable or label, and the length of a literal string may not exceed 250 bytes. More char-
acters than 250 will be truncated. (Can be changed from rexx.h)

Numbers follows C restrictions, thus integers are long and real numbers are held as double.

The FOR and simple counts on a DO instruction, and the right-hand term of an exponentiation may not
exceed maximum long number.

The control stack (for DO, IF, CALL, etc.) is limited to a nesting level of 256 and from the internal stack
of the Operating system.

Functions and subroutines cannot be called with more than 15 arguments (Can be changed from
rexx.h).

Input and Output cannot be redirected for commands executed through INT2E.

24.1 Variables

Variables are held in a binary tree, where the tree is balanced when one branch starts to become very
big. Even though the variables are stored as a bintree there is an internal cache system for the faster
access.

Each variable in rexx is a length prefix string, and it is kept in memory in 3 different types, long, real,
string according the last operation that affect that variable.

ie. a = 2 /* will be kept as string (Length-prefixed) */
a 2 + 1/x will be kept as integer (long) */
a =2+ 0.1/ will be kept as real (double) */

The advantage of the above scheme is that numerical operations are performed much faster than
the other algorithms. The main disadvantage is on the integer operations. 32 bit integers have
a maximum of 2billion, so if you try something like this

factorial = 1
do i = 1 to 50

factorial = factorial * i
end

will result to 0 instead of the factorial of 50! To find the correct result you have to fool the interpreter
to think that factorial is real and not integer, this can be done if you write factorial = 1.0

You can easilly translate a variable to any format you like with the following instructions

a=a+ 0.0 /* will translate a to real x*/
a = trunc(a) /* will translate a to integer *x/
a=a || " /* will translate a to string #*/

Sometimes it is very important to know how a variable is kept in memory (usually for the INTR func-
tion) so there is an extra option in DATATYPE function “TYPE" that returns the way one variable is
hold.

DATATYPE(2,"TYPE") -> "STRING"
DATATYPE(2+0.0,"TYPE") -> "REAL"
DATATYPE (2+0,"TYPE) -> "INT"

C routines are used for the translation of string to number, so a string like - 2’ will be reported by
DATATYPE as a NUMber when rexx tries to evaluate it as a number it will return a value of 0 instead of
-2, because of the spaces between the sign and the number.

116 Chapter 24. Implementation Restrictions

BREXX/370 User's Guide, Release: V2R5M1

24.2 Stems

substitution to stems may be anything including strings with any character. No translation to upper-
case is done to subscripts

lower
upper

'ma' ; stem.lower -> 'STEM.ma'
'MA' ; stem.upper -> 'STEM.MA'

Stems can be initialized with a command like stem. = ‘Initial value’

24.3 Functions

TRANSLATE sometimes wont work properly for strings with characters above ASCII 127. Works OK
for Greek character set.

VARTREE wont work properly with variables with non-printable characters

24.2. Stems 117

BREXX/370 User's Guide, Release: V2R5M1

25 Migration and Upgrade Notices

This section covers the changes in the new version, migration instruction to upgrade from
the previous Release. The installation process is separately described in the BREXX/370 Installation
section.

25.1 Upgrade from a previous BREXX/370 Version

Before upgrading backup your system. The easiest way is creating a copy of your TK4- directory
containing all of your settings DASD volumes. In the cases of errors or unwanted behaviour, you can
easily recover to the backup version.

25.2 BREXX V2R1MO

25.2.1 Important Changes

Due to the extended calling functionality in the new version of BREXX/370 an import of required REXX
scripts is no longer necessary. For this reason, all pre-defined import libraries have been removed
from the JCL Procedures RXTSO and RXBATCH. The installation will update them in SYS2.PROCLIB.
For similar reasons the CLISTs RX and REXX are no longer necessary and will be therefore removed
from SYS2.CMDPROC, there will be an RX and REXX member in SYS2.LINKLIB which replaces
the CLIST version.

Important If you made changes or extensions in the PROCLIB Member RXTSO and/or RXBATCH save
the changes to re-introduce them in the newly installed version.

If you made changes or extensions in the CMDPROC Members RX and/or REXX save them to incorpo-
rate them in a newly created function of your own.

25.2.2 Libraries

The following BREXX libraries are necessary for running REXX:
+ BREXX.JCL
* BREXX.SAMPLES
+ BREXX.SAMPLIB new with this version
« BREXX.RXLIB

They will be delivered and created during the installation process, existing libraries will be overwritten!

Warning If you made changes or added your own entries in one of these libraries, save them
before beginning with the installation process!

25.2.3 Calling external REXX Scripts or Functions

It is now possible to call external REXX scripts, either by:

CALL your-script parml,parm2...

or a function call:

118 Chapter 25. Migration and Upgrade Notices

BREXX/370 User's Guide, Release: V2R5M1

Value=your-script(parml,parm2,...)

The called script will be sought by the following sequence:
« Internal subprocedure or label (contained in the running script)
« current library (where the calling REXX is originated)
+ BREXX.RXLIB

Important The variable scope slightly differs from IBM’s REXX implementation. In IBM’s implementa-
tion a call to an external REXX script, the called REXX is always treated as a procedure without access
to the caller’s variable pool. BREXX can access and update the caller's pool. If a PROCEDURE is used
in the called BREXX script, variables can be made available by the EXPOSE statement.

25.2.4 Software Changes requiring actions

The STORAGE function has been changed to become compatible with IBM’s z/OS REXX STORAGE
version.

In IBM's REXX, the storage address must be in hex format, in BREXX it was decimal. With this version,
we match with IBM'’s specification and allow only hex notation.

Important If you have created REXX scripts using the STORAGE function and dislike to update all of
them, you can replace them by the BSTORAGE function, which still works with decimal addresses.
BSTORAGE is a REXX function being part of the BREXX: RXLIB library.

25.2.5 New Functionality

BREXX functions coded in REXX

ABEND (abend-code)
Terminate program with Abend-Code, produces an SYSUDUMP

USERID ()
Signed in Userld (available in Batch and Online)

WAIT (wait-time)
Stops REXX script for some time, wait-time is in hundreds of a second

WTO (console-message)
Write a message to the operator’s console

SYSVAR (request-type)
a TSO-only function to retrieve certain TSO runtime information request-type:

Request Type Description

SYSENV FORE/BACK - Foreground TSO / Batch TSO
SYSISPF ACTIVE/NOT ACTIVE

SYSPREF TSO Prefix (only available in Foreground TSO)
SYSUID Userid

Brexx has the capability code new functions or command in REXX. They are transparent and will be
called in the same way as basic BREXX function.

Overview:

25.2. BREXXV2R1MO 119

BREXX/370 User's Guide, Release: V2R5M1

BSTORAGE (...)
Storage command in the original BREXX decimal implementation

LISTALC ()
Lists all allocated Datasets in this session or region

BRXMSG (...)
Standard message module to display a message in a formatted way, examples:

rc=brxmsg(10,'I','Program has been started')
rc=brxmsg(100,'E','Value is not Numeric')
rc=brxmsg (200, 'W', 'Value missing, default used')
rc=brxmsg(999,'C','Division will fail as divisor is zero')

will return::
BRX0010l PROGRAM HAS BEEN STARTED BRX0100E VALUE IS NOT NUMERIC BRX0200W
VALUE MISSING, DEFAULT USED BRX0999C DIVISION WILL FAIL AS DIVISOR IS ZERO

DAYSBETW (date, date-2, ...)
Return days between 2 dates

JOBINFO (request-type)
Return information about currently running job or TSO session.
Request-type:
+ JOBNAME - returns job name
+ JOBNUMBER - returns job number
+ STEPNAME - returns step name

* PROGRAMNAME - returns running program name

LINKMVS (load-module, parms)
Starts a load module. Parameters (if any) will send in the format JCL would pass it.

MVSCBS ()
Allows addressing of some MVS control blocks. This function must be imported, then
the following functions can be used: Cvt(), Tcb(), Ascb(), Tiot(), Jscb(), Rmct(), Asxb(), Acee(),
Ecvt(), Smcal()

PDSDIR (dsn)
Return directory entries in a stem variable

RXDATE (...)
Return and optionally convert dates in certain formats

RXDSINFO (dsn/dd-name, options)
Return dsn or dd-name attributes

3RXDYNALC (...)
Allows dynamic allocations of datasets or output

RXSORT (...)
Sorts a stemvariable with different sort algorithms

SEC2TIME (seconds)
Converts an amount of seconds into the format [days Jhh:mm:ss

120 Chapter 25. Migration and Upgrade Notices

BREXX/370 User's Guide, Release: V2R5M1

SORTCOPY (stem-variable)
Copies any stem variable into the stem SORTIN, which can be used by RXSORT

STEMCOPY (source-stem-variable, target-stem-variable)
Copies any stem variable into another stem variable

TODAY ()
Returns todays date in certain formats

25.3 BREXX V2R2MO

25.3.1 Software Changes requiring actions

OPEN ()
In the OPEN(ds-name, ‘DSN’) function the third parameter DSN has been removed to achieve
closer compatibility to z/0S REXX.
Change Required: Replace OPEN(ds-name, DSN’) by OPEN(‘ds-name’,) putting the ds-name in
quotes or double-quotes signals BREXX that an open for a ds-name instead of a dd-name. If you
use a BREXX variable instead of a fixed ds-name the quotes must be coded like this:

file='BREXX.RXLIB'
OPEN(" THfile"! u)

QUALIFY ()
The QUALIFY(ds-name) function added in TSO environments the user-prefix. This function has
been removed as its functionality has been integrated into the OPEN function.

BSTORAGE ()
The BSTORAGE function has been removed as it was a temporary solution for users of the very
first BREXX/370 version. If you plan to keep it, take a copy from the previous RXLIB library.

25.3.2 Reduction of Console Messages

In previous releases, console messages have been displayed during the search of a called REXX script
in the BREXX search path. It reported the library name if it was not located in the specific library. This
messaging has been significantly brought down. These messages only appear if the called member
could not found anywhere in the search path.

25.3.3 Known Problems

Reading Lines fromsequential Dataset

Reading lines of sequential datasets always truncate trailing spaces. This may be an unwanted behav-
iour for fixed-length datasets. To circumvent this problem you can use the following method:

If the dataset is allocated via a DD statement:

X=LISTDSI('INFILE FILE')
fhandle=0PEN(infile, 'RB'")
Record=READ(fhandle,SYSLRECL)

If the dataset is used directly:

dsn="HERCO1.TEMP'
X=LISTDSI("'"dsn"'")
fhand1e=0PEN("'"dsn"'",'RB")

25.3. BREXX V2R2MO 121

BREXX/370 User's Guide, Release: V2R5M1

Record=READ(fhandle,SYSLRECL)

LISTDSI returns the necessary DCB information (SYSLRECL). The OPEN must be performed with
OPTION ‘RB’ which means READ, BINARY. Read uses the record length to create the record.

BREXX FORMAT Function

The BREXX FORMAT function differs from the standard behaviour of REXX FORMAT:

FORMAT rounds and formats number with before integer digits and after decimal places. expp
accepts the values 1 or 2 (WARNING Totally different from the Ansi-REXX spec) where 1 means
to use the “G” (General) format of C, and 2 the “E” exponential format of C. Where the place of
the total width specifier in C is replaced by before+after+1. (expt is ignored!)

After determining the code we discovered that a complete re-write would be necessary. As the effort
does not stand in proportion to the benefit, we decided to leave it as it is.

25.3.4 New Functionality

25.3.5 BREXX functions

+ Support of Formatted Screens Refer to the section on formatted screens for more information.
+ Integration of VSAM 1/0 Refer to the section on VSAM files for more information.

+ EXECIO Command Allows accessing sequential datasets either fully or line by line.

CLRSCRN ()
Clears the TSO screen by removing all lines from the TSO Buffer.

CEIL()
Returns the smallest integer greater or equal then the decimal number

FLOOR ()
Returns the greatest Integer less or equal then the decimal number

pcL ()
Enables definition of copybook like definitions of REXX Variables, including conversion from and
to decimal packed fields.

P2D ()
Converts Decimal Packed Field into REXX Numeric value.

D2P ()
Converts REXX Numeric value into Decimal Packed Field.

25.4 BREXX V2R3MO

25.4.1 Authorised BREXX Version available

With this release, we ship a standard installation of BREXX as well as an authorised version, which
allows to system programs as IEBCOPY, NJE38, etc. The decision about what to install must be made
before installation.

25.4.2 BREXXSTD load module removed

We have straightened the load module structure and removed the BREXXSTD load module from
the installation library. If you use JCL with an explicit BREXXSTD call, replace it by BREXX. During
the installation process, any existing BREXXSTD module will be removed from SYS2.LINKLIB.

122 Chapter 25. Migration and Upgrade Notices

BREXX/370 User's Guide, Release: V2R5M1

25.4.3 Call PLI Functions

Example compile jobs for callable PLI Functions can be found in BREXX.V2R3MO0.JCL:
+ RXPI calculate PI with 500 digits
+ RXCUT Return every n.th character of a string

25.4.4 New and amended functionality

25.4.5 BREXX functions

CEIL (decimal-number)
CEIL returns the smallest integer greater or equal than the decimal number.

D2P (number, length, fraction-digit)
Converts a number (integer or float) into a decimal packed field. The created field is in binary
format

P2D (number, length, fraction-digit)
Converts a decimal packed field into a number.

ENCRYPT (string, password <, rounds>)

DECRYPT (string, password <, rounds>)
Encrypts/Decrypts a string

DUMPIT (address, dump-length)
DUMPIT displays the content at a given address of a specified length in hex format. The address
must be provided in hex format; therefore, a conversion with the D2X function is required.

DUMPVAR ('variable-name")
DUMPVAR displays the content of a variable or stem in Hex format-

FILTER (string, character-table <, drop/keep>)
The filter function removes all characters defined in the character-table

FLOOR (decimal-number)
FLOOR returns the smallest integer less or equal than the decimal number.

LISTIT ('variable-prefix')
Returns the content of all variables and stem-variables starting with a specific prefix

RHASH (string, <slots>)
The function returns a numeric hash value of the provided string.

ROUND (decimal-number, fraction-digits)
The function rounds a decimal number to the precision defined by fraction-digits

UPPER (string)

LOWER (string)
UPPER returns the provided string in upper cases. LOWER in lower cases.

ROTATE (string, positions, length>)
The function returns a rotating substring

25.4. BREXX V2R3MO 123

BREXX/370 User's Guide, Release: V2R5M1

TIMESTAMP ([, daymonthyear])
TIMESTAMP returns the unix (epoch) time, seconds since 1. January 1970.

Dataset Functions

CREATE (dataset-name, allocation-information)
The CREATE function creates and catalogues a new dataset

DIR (partitioned-dataset-name)
The DIR command returns the directory of a partitioned-dataset

EXISTS (dataset-name)

EXISTS (partitioned-dataset(member))
The EXISTS function checks the existence of a dataset or the presence of a member in a parti-
tioned dataset.

REMOVE (dataset-name)
The REMOVE function un-catalogues and removes the specified dataset

REMOVE (partitioned-dataset(member))
The REMOVE function on members of a partitioned dataset removes the specified member.

RENAME (old-dataset-name, new-dataset-name)
The RENAME function renames the specified dataset.

RENAME (partitioned-dataset(old-member), partitioned-name(new-member))
The RENAME function on members renames the specified member into a new one.

ALLOCATE (ddname, dataset-name)

ALLOCATE (ddname, partitioned-dataset(member-name))
The ALLOCATE function links an existing dataset or a member of a partitioned dataset to
a dd-name.

FREE (ddname)
The FREE function de-allocates an existing allocation of a dd-name.

OPEN (dataset-name, open-option, allocation-information)
The OPEN function has now a third parameter, which allows creating ew datasets with appro-
priate DCB and system definitions.

TCP Functions

TCPINIT ()
TCPINIT initialises the TCP functionality.

TCPSERVE (port-number)
Opens a TCP Server on the defined port-number for all its assigned IP-addresses.

TCPOPEN (host-ip, port-number [, time-out-secs])
TCPOPEN opens a client session to a server.

TCPWAIT ([, time-out-secs])
TCPWAIT is a Server function; it waits for incoming requests from a client.

TCPSEND (clientToken, message [, timeout-secs])
SendLength=TCPSEND(clientToken, message[time-out-secs]) sends a message to a client.

124 Chapter 25. Migration and Upgrade Notices

BREXX/370 User's Guide, Release: V2R5M1

TCPReceive (clientToken [, time-out-secs])
Receives a message from another client or server.

TCPTERM ()
Closes all client sockets and removes the TCP functionality

New BREXX functions coded in REXX

GETTOKEN ()
returns a token which is unique within a running MVS System or in this century

BAS64ENC ()
Encodes a string or binary string with Base64.

BAS64DEC ()
Decodes a base64 encoded string into a string or binary string Returns the hash number of
a string

STIME ()
Time since midnight in hundreds of a second

25.5 BREXX V2R4MO

25.5.1 Functions with changed functionality

There is a major change in every time functions. We have increased the precision of the time format
from hundreds of a second to milliseconds in some cases to microseconds. If you use them or rely on
the format, please change your REXX scripts accordingly:

say TIME('L') /* 16:38:03.112765 */
call wait 100 /* now waits 0.1 seconds x/
call wait 5000 /* waits 5 seconds x*/

25.5.2 New Functions

This sections contains all new or changed BREXX V2R4MO functions

DATE (target-date-format, date, input-date-format)
The new date function has now the “used” formats provided by the original REXX.

DATETIME (target-format, timestamp, input-format)
Formats are:

is timestamp in seconds 1615310123

timestamp European format 09/12/2020-11:41:13
timestamp US format 12.09.2020-11:41:13
Ordered Time stamp 2020/12/09-11:41:13

Base Time stamp Wed Dec 09 07:40:45 2020

mocm-+H

Time ('MS7/'US/CPU")
Time has gotten new input parameters:
+ MS Time of today in seconds.milliseconds
+ US Time of today in seconds.microseconds

» CPU used CPU time in seconds.milliseconds

25.5. BREXX V2R4MO 125

BREXX/370 User's Guide, Release: V2R5M1

LINKMVS (load-module, parms)

LINKPGM (load-module, parms)
Start a load module. Parameters work according to standard conventions.

LOCK ('lock-string’, <TEST/SHARED/EXCLUSIVE><, timeout>)

UNLOCK ('lock-string")
Locks/unlocks a resource to avoid concurrent access to it

TIMESTAMP ([, daymonthyear])
TIMESTAMP returns the unix (epoch) time, seconds since 1. January 1970.

25.6 BREXX V2R4M1

25.6.1 Important Changes

RAKEF restrictions lifted

We have removed the rigid RAKF checking during the BREXX startup, which caused unnecessary
ABENDS for non-authorized users (e.g. HERC03, HERC04). Some of the BREXX functions which
require access to system resources (SVC244, DIAGCMD) are no longer available to non-authorized
users, they will be reported as unknown functions.

Matrix and Integer Arrays

Added are mathematical Matrix functions and integer arrays. Both allow high-performance access
and large-sized matrices and integer arrays outside the standard stem notation.

126 Chapter 25. Migration and Upgrade Notices

Chapter 26

About

BREXX has been developed and supported by Vasilis.Vlachoudis@cern.ch

26.1 BREXX/370

BREXX/370 is a ported version of BREXX to IBM’s operation system MVS 3.8j. Jason Winter and
Jirgen Winkelmann ported BREXX initially to MVS3.8j. The BREXX/370 releases have been created
and are supported by the BREXX/370 team: Mike Grossmann and Peter Jacob.

26.2 License

BREXX is licensed under the GNU General Public License v2.0. See https://github.com/vlachoudis-
/brexx/blob/master/COPYING All rules mentioned above apply to BREXX/370!

26.3 BREXX/370 documentation

The essential BREXX documentation applies to BREXX/370: https:/ftp.gwdg.de/pub/lan-
guages/rexx/brexx/html/rx.html

Please install according to the Installation Guide.

26.4 DISCLAIMER

THE SOFTWARE REFERENCED IS MADE AVAILABLE AS - IS. THE AUTHOR MAKES NO WARRANTY
ABOUT THE SOFTWARE AND ITS CONFORMITY TO ANY APPLICATION. THE AUTHOR IS NOT
RESPONSIBLE FOR ANY DAMAGE, LOSS OF DATA, OR LOSS OF MONEY CAUSED BY THIS PROGRAM.

+ genindex
+ modindex

« search

This user's guide documents the BREXX standard functions from https://ftp.gwdg.de/pub/lan-
guages/rexx/brexx/html/rx.html as well as the changes and amendments to BREXX to be used on
MVS 3.8;.

127

mailto:Vasilis.Vlachoudis@cern.ch
https://github.com/vlachoudis/brexx/blob/master/COPYING
https://github.com/vlachoudis/brexx/blob/master/COPYING
https://ftp.gwdg.de/pub/languages/rexx/brexx/html/rx.html
https://ftp.gwdg.de/pub/languages/rexx/brexx/html/rx.html
https://ftp.gwdg.de/pub/languages/rexx/brexx/html/rx.html
https://ftp.gwdg.de/pub/languages/rexx/brexx/html/rx.html

BREXX/370 User's Guide, Release: V2R5M1

27

Credits

+ BREXX has been developed by Vasilis Vlachoudis, who made it publicly available as freeware for

non-commercial purposes.

« Jason Winter’'s JCC Compiler for compiled BREXX

+ JCC and the JCC-Library are owned and maintained by him. While not being freeware, Jason

allows non-commercial usage and distribution of Software created using JCC through a relaxed
license, as long as the complete source code always accompanies those distributions.

+ Vasilis and Jason explicitly consented to make the JCC based version of BREXX available on

TK4-. Thanks to both for their significant valuable contribution to the TK4- MVS 3.8j Tur(n)key
system.

+ The VSAM Interface is based on Steve Scott’s VSAM API.
+ The FSS Part is based on Tommy sprinkle’s FSS - TSO Full-Screen Services

+ Daniel Gaeta contributed his EXECIO implementation.
» The NJE38DIR load module was extracted out of Bob Polmanter’'s NJE38 V2 modules

We wish to thank the following persons for patiently answering our questions and for their support
and advice:

« Vasilis Vlachoudis

+ Jirgen Winkelmann

« Jason Winter

+ Wally Mclaughlin

+ Greg Price

* Bob Polmanter
« Steve Scott

and many others!

128

Chapter 27. Credits

Chapter 28

BREXX/370 Source Code

The BREXX/370 Source Code can be found and downloaded at: https://github.com/mvslover-
s/brexx370/

129

https://github.com/mvslovers/brexx370/
https://github.com/mvslovers/brexx370/

BREXX/370 User's Guide, Release: V2R5M1

29 Some Notes on BREXX Arithmetic Operations

BREXX stores numeric values in the appropriate type format. The benefit compared to save it as
strings is a significant performance improvement during calculations. As the expensive string to
numeric conversion before and vice versa after arithmetic operations is omitted; this allows speedy
calculations without the required conversion overhead.

BREXX supports two numeric types:

- Integer Integers are stored in 4-bytes a full word (LONG), this means their range is from
-2,147,483,648 to +2,147,483,647

- Decimal Numbers Decimal Numbers (decimal numbers with a fractional part) are represented in

the double-precision floating-point format (doubleword), the length is 8-bytes consisting of
an exponent and the significand (fraction). It consists of 56 bits for the fraction part, 7-bit expo-
nent and one-bit for the sign. This representation is IBM specific and differs slightly from the IIEE
754 floating-point standard.
The precision of floating-point numbers is not as good as decimal packed numbers which are
not supported in BREXX (nor in REXX). This means, for example, 2.0 might be stored as
19999999999999999¢-17, or for 5.0 you will is stored as 50000000000000003e-17; this is not
an error, but the usual behaviour for floating-point numbers. It is caused by the conversion
between the numbers of base 10 to base two a bit-exact reversibility is not always given. This
effect may build up during arithmetic calculations.

130 Chapter 29. Some Notes on BREXX Arithmetic Operations

Index

Symbols

3RXDYNALC()
built-in function, 120

A

A2E()

built-in function, 48
ABBREV()

built-in function, 33
ABEND()

built-in function, 48, 119
ABS()

built-in function, 36
ACO0S()

built-in function, 37
ADDR()

built-in function, 28
ADDRESS()

built-in function, 28
AFTER()

built-in function, 48
ALLOCATE()

built-in function, 66, 124, 124
ARG()

built-in function, 28
ASIN()

built-in function, 37
ATAN()

built-in function, 37

B

B2C()

built-in function, 49
B2X()

built-in function, 38, 39
BAS64DEC()

built-in function, 125
BAS64ENC()

built-in function, 125
BASE64DEC()

built-in function, 49

BASE64ENC()

built-in function, 49
BEFORE()

built-in function, 48
BITAND()

built-in function, 38
BITOR()

built-in function, 38
BITXOR()

built-in function, 38
BLDL()

built-in function, 49
BRXMSG()

built-in function, 120
BSTORAGE()

built-in function, 120, 121

built-in function
3RXDYNALC(), 120
A2E(), 48
ABBREV(), 33
ABEND(), 48,119
ABS(), 36
ACOS(), 37
ADDR(), 28
ADDRESS(), 28
AFTER(), 48

ALLOCATE(), 66, 124, 124

ARG(), 28
ASIN(), 37
ATAN(), 37
B2C(), 49
B2X(), 38, 39
BAS64DEC(), 125
BAS64ENC(), 125
BASE64DEC(), 49
BASE64ENC(), 49
BEFORE(), 48
BITAND(), 38
BITOR(), 38
BITXOR(), 38
BLDL(), 49
BRXMSG(), 120
BSTORAGE(), 120, 121

131

BREXX/370 User's Guide, Release: V2R5M1

C2B(), 49

c2D(), 39

c2U(), 50

C2X(), 39

CEIL(), 50, 122, 123
CENTRE(), 33
CHANGESTR(), 33
CHARIN(), 40
CHAROUT(), 40
CHARS)(), 40
CLOSE(), 40
CLRSCRN(), 122
COMPARE(), 33
CONSOLE(), 50
COPIES(), 33

C0S(), 38

COSH(), 38
COUNTSTR(), 33
CREATE(), 65, 124
D2C(), 39

D2P(), 50, 122, 123
D2X(), 39
DATATYPE(), 28
DATE(), 29, 51,125
DATETIME(), 52, 125
DAYSBETW(), 81, 120
DCL(), 80, 122
DECRYPT(), 50, 123
DEFINED(), 50
DELSTR(), 33
DELWORDY(), 35
DESBUF(), 29
DIGITS(), 30

DIR(), 65, 124
DROPBUF(), 29
DUMP(), 81
DUMPIT(), 51, 123
DUMPVAR(), 51, 123
E2A(), 48
ENCRYPT(), 50, 123
EOF(), 40
EPOCH2DATE(), 62
EPOCHTIME(), 61
ERRORTEXT(), 30
EXISTS(), 66, 124, 124
EXP(), 38

FILTER(), 53, 123
FIND(), 35

FLOOR(), 53, 122, 123
FLUSH(), 40
FORM(), 30
FORMAT(), 36
FREE(), 66, 124
FUZZ(), 30
GETENV(), 30
GETG(), 64
GETTOKEN(), 125
HASHVALUE(), 30

IAND(), 37
ICREATE(), 76
IGET(), 76
IMPORT(), 30
INDEX(), 33
INOT(), 37
INSERT(), 34

INT(), 53

IOR(), 37

ISET(), 76

IXOR(), 37
JOBINFO(), 53, 120
JOIN(), 54
JUSTIFY(), 35
LASTPOS(), 34
LASTWORD(), 59
LEFT(), 34
LENGTH(), 34
LEVEL(), 54
LINEIN(), 40
LINEOUT(), 40
LINES(), 41
LINKMVS(), 54, 120, 126
LINKPGM)(), 54, 126
LISTALC(), 81, 120
LISTCAT(), 82
LISTDSI(), 75
LISTIT(), 54, 123
LOCK(), 55, 126
LOG(), 38

LOG10(), 38
LOWER(), 62, 123
MADD(), 77
MAKEBUF(), 30
MAX(), 37
MCOPY(), 76
MCREATE(), 76
MDELCOL(), 77
MDELROWY(), 77
MEMORY(), 55
MFREE(), 78
MGET(), 76

MIN(), 37
MINSCOL(), 78
MINVERT(), 76
MMULTIPLY(), 76
MNORMALISE(), 77
MOD(), 62
MPROD(), 77
MPROPERTY(), 77
MSCALAR(), 77
MSET(), 76
MSQR(), 77
MSUBTRACT(), 77
MTRANSPOSE(), 76
MTT(), 55
MTTSCAN(), 56
MVSCBS(), 82, 120

Index

BREXX/370 User's Guide, Release: V2R5M1

MVSVAR(), 74
NJE38CMD(), 58
OPEN(), 41, 66, 121, 124
OVERLAY(), 34
P2D(), 50, 122, 123
PDSDIR(), 120
PDSRESET(), 82
PEEKA(), 59
PEEKS(), 59
PEEKU(), 59
PERFORM(), 82
POS(), 34

POW(), 38

POW10(), 38
PUTSMF(), 60
QUALIFY(), 121
QUEUED(), 30
QUOTE(), 82
RACAUTH(), 59
RANDOM(), 37
READ(), 41
READALL(), 82
REMOVE(), 66, 124, 124
RENAME(), 66, 124, 124
REVERSE(), 34
RHASH(), 59, 123
RIGHTY(), 34
ROTATE(), 60, 123
ROUND(), 60, 123
RXCONSOL(), 57
RXDATE(), 120
RXDSINFO(), 120
RXMSG(), 79
RXSORT(), 83, 120
SEC2TIME(), 83, 120
SEEK(), 41

SETG(), 64

SIGN(), 37

SIN(), 38

SINH(), 38
SORTCOPY(), 83, 121
SOUNDEX(), 31
SOURCELINE(), 31
SPACE(), 36
SPLIT(), 60
SPLITBS(), 61
SQRTY(), 38
STEMCLEN(), 83
STEMCOPY(), 83, 121
STEMGETY(), 83
STEMINS(), 83
STEMPUTY(), 83
STEMREOR(), 83
STIME(), 62, 125
STORAGE(), 31
STREAM(), 41
STRIP(), 35
SUBMIT(), 60

C

SUBSTR(), 34
SUBWORD(), 36
SYMBOL(), 31
SYSDSN(), 73
SYSVAR(), 73,119
TAN(), 38

TANH(), 38
TCPINIT(), 69, 124
TCPOPEN(), 69, 124
TCPReceive(), 70, 125
TCPSEND(), 70, 124
TCPSERVE(), 69, 124
TCPSF(), 70
TCPTERM(), 70, 125
TCPWAIT(), 69, 124
TIME(), 31

Time(), 53, 125
TIMESTAMP(), 124, 126
TODAY(), 84, 121
TRACE(), 32
TRANSLATE(), 35
TRUNC(), 37
UNLOCK(), 55, 126
UNQUOTE(), 84
UPPER(), 62, 123
USERID(), 62, 119
VALUE(), 32
VARDUMP(), 32
VERIFY(), 35
VERSION(), 62
VLIST(), 58

WAIT(), 62, 119
WORD(), 36
WORDDEL(), 62
WORDINDEX(), 36
WORDINS(), 63
WORDLENGTH(), 36
WORDPOS(), 36
WORDREP(), 63
WORDS(), 36
WRITE(), 42
WRITEALLY(), 84
WTO(), 63, 119
X2C(), 39

X2D(), 39

XPULL(), 63
XRANGE(), 35

C2B()

built-in function, 49

c2D()

built-in function, 39

c2U()

built-in function, 50

C2X()

built-in function, 39

CEIL()

Index

133

BREXX/370 User's Guide, Release: V2R5M1

built-in function, 50, 122, 123

CENTRE()

built-in function, 33
CHANGESTR()

built-in function, 33
CHARIN()

built-in function, 40
CHAROUT()

built-in function, 40
CHARS()

built-in function, 40
CLOSE()

built-in function, 40
CLRSCRN()

built-in function, 122
COMPARE()

built-in function, 33
CONSOLE()

built-in function, 50
COPIES()

built-in function, 33
COS()

built-in function, 38
COSH()

built-in function, 38
COUNTSTR()

built-in function, 33
CREATE()

built-in function, 65, 124

D

D2C()
built-in function, 39
D2P()

built-in function, 50, 122, 123

D2X()

built-in function, 39
DATATYPE()

built-in function, 28
DATE()

built-in function, 29, 51, 125

DATETIME()

built-in function, 52, 125

DAYSBETW()

built-in function, 81, 120

DCL()

built-in function, 80, 122

DECRYPT()

built-in function, 50, 123

DEFINED()

built-in function, 50
DELSTR()

built-in function, 33
DELWORD()

built-in function, 35
DESBUF()

built-in function, 29
DIGITS()

built-in function, 30
DIR()

built-in function, 65, 124

DROPBUF()

built-in function, 29
DUMP()

built-in function, 81
DUMPIT()

built-in function, 51, 123

DUMPVAR()

built-in function, 51, 123

E

E2A()
built-in function, 48
ENCRYPT()

built-in function, 50, 123

EOF()

built-in function, 40
EPOCH2DATE()

built-in function, 62
EPOCHTIME()

built-in function, 61
ERRORTEXT()

built-in function, 30
EXISTS()

built-in function, 66, 124, 124

EXP()
built-in function, 38

F
FILTER()

built-in function, 53, 123

FIND()
built-in function, 35
FLOOR()

built-in function, 53, 122, 123

FLUSH()

built-in function, 40
FORM()

built-in function, 30
FORMAT()

built-in function, 36
FREE()

built-in function, 66, 124

FUZZ()
built-in function, 30

G

GETENV()

built-in function, 30
GETG()

built-in function, 64
GETTOKEN()

built-in function, 125

134

Index

BREXX/370 User's Guide, Release: V2R5M1

H

HASHVALUE()
built-in function, 30

IAND()

built-in function, 37
ICREATE()

built-in function, 76
IGET()

built-in function, 76
IMPORT()

built-in function, 30
INDEX()

built-in function, 33
INOT()

built-in function, 37
INSERT()

built-in function, 34
INT()

built-in function, 53
IOR()

built-in function, 37
ISET()

built-in function, 76
IXOR()

built-in function, 37

J
JOBINFO()

built-in function, 53, 120

JOIN()

built-in function, 54
JUSTIFY()

built-in function, 35

L

LASTPOS()

built-in function, 34
LASTWORD()

built-in function, 59
LEFT()

built-in function, 34
LENGTH()

built-in function, 34
LEVEL()

built-in function, 54
LINEIN()

built-in function, 40
LINEOUT()

built-in function, 40
LINES()

built-in function, 41
LINKMVS()

built-in function, 54, 120, 126

LINKPGM()

built-in function, 54, 126

LISTALC()

built-in function, 81, 120

LISTCAT()

built-in function, 82
LISTDSI()

built-in function, 75
LISTIT()

built-in function, 54, 123

LOCK()

built-in function, 55, 126

LOG()

built-in function, 38
LOG10()

built-in function, 38
LOWER()

built-in function, 62, 123

M

MADD()

built-in function, 77
MAKEBUF()

built-in function, 30
MAX()

built-in function, 37
MCOPY()

built-in function, 76
MCREATE()

built-in function, 76
MDELCOL()

built-in function, 77
MDELROW)()

built-in function, 77
MEMORY()

built-in function, 55
MFREE()

built-in function, 78
MGET()

built-in function, 76
MIN()

built-in function, 37
MINSCOL()

built-in function, 78
MINVERT()

built-in function, 76
MMULTIPLY()

built-in function, 76
MNORMALISE()

built-in function, 77
MOD()

built-in function, 62
MPROD()

built-in function, 77
MPROPERTY()

built-in function, 77
MSCALAR()

built-in function, 77
MSET()

Index

135

BREXX/370 User's Guide, Release: V2R5M1

built-in function, 76
MSQR()

built-in function, 77
MSUBTRACT()

built-in function, 77
MTRANSPOSE()

built-in function, 76
MTT()

built-in function, 55
MTTSCAN()

built-in function, 56
MVSCBS()

built-in function, 82, 120

MVSVAR()
built-in function, 74

N

NJE38CMD()
built-in function, 58

0]
OPEN()

built-in function, 41, 66, 121, 124

OVERLAY()
built-in function, 34

P
P2D()

built-in function, 50, 122, 123

PDSDIR()

built-in function, 120
PDSRESET()

built-in function, 82
PEEKA()

built-in function, 59
PEEKS()

built-in function, 59
PEEKU()

built-in function, 59
PERFORM()

built-in function, 82
POS()

built-in function, 34
POW()

built-in function, 38
POW10()

built-in function, 38
PUTSMF()

built-in function, 60

Q
QUALIFY()

built-in function, 121
QUEUED()

built-in function, 30
QUOTE()

built-in function, 82

R

RACAUTH()

built-in function, 59
RANDOM()

built-in function, 37
READ()

built-in function, 41
READALL()

built-in function, 82
REMOVE()

built-in function, 66, 124, 124

RENAME()

built-in function, 66, 124, 124

REVERSE()
built-in function, 34
RHASH()

built-in function, 59, 123

RIGHT()
built-in function, 34
ROTATE()

built-in function, 60, 123

ROUND()

built-in function, 60, 123

RXCONSOL()

built-in function, 57
RXDATE()

built-in function, 120
RXDSINFO()

built-in function, 120
RXMSG()

built-in function, 79
RXSORT()

built-in function, 83, 120

S
SEC2TIME()

built-in function, 83, 120

SEEK()

built-in function, 41
SETG()

built-in function, 64
SIGN()

built-in function, 37
SIN()

built-in function, 38
SINH()

built-in function, 38
SORTCOPY()

built-in function, 83, 121

SOUNDEX()

built-in function, 31
SOURCELINE()

built-in function, 31
SPACE()

built-in function, 36
SPLIT()

136

Index

BREXX/370 User's Guide, Release: V2R5M1

built-in function, 60
SPLITBS()

built-in function, 61
SQRT()

built-in function, 38
STEMCLEN()

built-in function, 83
STEMCOPY()

built-in function, 83, 121

STEMGET()

built-in function, 83
STEMINS()

built-in function, 83
STEMPUT()

built-in function, 83
STEMREOR()

built-in function, 83
STIME()

built-in function, 62, 125

STORAGE()

built-in function, 31
STREAM()

built-in function, 41
STRIP()

built-in function, 35
SUBMIT()

built-in function, 60
SUBSTR()

built-in function, 34
SUBWORD()

built-in function, 36
SYMBOL()

built-in function, 31
SYSDSN()

built-in function, 73
SYSVAR()

built-in function, 73, 119

T

TAN()

built-in function, 38
TANH()

built-in function, 38
TCPINIT()

built-in function, 69, 124

TCPOPEN()

built-in function, 69, 124

TCPReceive()

built-in function, 70, 125

TCPSEND()

built-in function, 70, 124

TCPSERVE()

built-in function, 69, 124

TCPSF()
built-in function, 70
TCPTERM()

built-in function, 70, 125

TCPWAIT()

built-in function, 69, 124

TIME()
built-in function, 31
Time()

built-in function, 53, 125

TIMESTAMP()

built-in function, 124, 126

TODAY()

built-in function, 84, 121

TRACE()

built-in function, 32
TRANSLATE()

built-in function, 35
TRUNC()

built-in function, 37

U
UNLOCK()

built-in function, 55, 126

UNQUOTE()
built-in function, 84
UPPER()

built-in function, 62, 123

USERID()

built-in function, 62, 119

V

VALUE()

built-in function, 32
VARDUMP()

built-in function, 32
VERIFY()

built-in function, 35
VERSION()

built-in function, 62
VLIST()

built-in function, 58

W
WAIT()

built-in function, 62, 119

WORD()

built-in function, 36
WORDDEL()

built-in function, 62
WORDINDEX()

built-in function, 36
WORDINS()

built-in function, 63
WORDLENGTH()

built-in function, 36
WORDPOS()

built-in function, 36
WORDREP()

built-in function, 63
WORDS()

built-in function, 36

Index

137

BREXX/370 User's Guide, Release: V2R5M1

WRITE()

built-in function, 42
WRITEALL()

built-in function, 84
WTO()

built-in function, 63, 119

X

X2C()

built-in function, 39
X2D()

built-in function, 39
XPULL()

built-in function, 63
XRANGE()

built-in function, 35

138 Index

	1 Installation Guide
	1.1 Introduction
	1.2 Prerequisites
	1.2.1 MVS TK4- / MVS/CE
	1.2.2 Non MVS TK4- Installation
	XMIT RECEIVE STEPLIB DD Statement
	REGION SIZE

	1.2.3 Recommendations

	1.3 Preparation of your target MVS38J System
	1.3.1 BREXX Catalogue

	1.4 Installation
	1.4.1 Step 0 - Unzip BREXX/370 Installation File
	1.4.2 Step 1 - Upload XMIT File
	1.4.3 Step 2 - Unpack XMIT File
	Activating the new BREXX V2R5M1 Release

	1.4.4 Step 3 - Submit $UNPACK JCL of the unpacked Library
	1.4.5 Step 4 - Submit $INSTALL JCL for the Standard Installation
	1.4.6 Step 4A- Submit $INSTAPF JCL for the Authorised Installation
	1.4.7 Step 5 - Submit $TESTRX JCL of the unpacked Library
	1.4.8 Step 6 - Submit $CLEANUP JCL of the unpacked Library
	1.4.9 Step 7 - ADD BREXX Libraries into TSO Logon
	1.4.10 Step 8 - Your Tests
	1.4.11 Step 9 - Remove old BREXX Libraries (optional)

	1.5 Additional Settings (optional)

	2 BREXX Usage
	2.1 TSO online
	2.2 TSO Batch (start REXX JCL Procedure)
	2.2.1 Plain Batch (start REXX JCL Procedure)
	2.2.2 BREXX/370 Sample Library
	2.2.3 BREXX/370 Hints

	3 Tokens and Terms
	3.1 comment
	3.2 string
	3.3 number
	3.4 symbol
	3.5 function-call

	4 Expressions
	4.1 Prefix + - ^ \
	4.2 **
	4.3 * / % //
	4.4 + -
	4.5 (blank) ||
	4.6 = > < >= <= ^= /= = ^> ^< >< <> == >> << >>= <<= ^== /== == ^>> ^<<
	4.7 &
	4.8 / &&

	5 Instructions
	5.1 General Guidelines
	5.2 Instructions

	6 Templates for ARG, PULL, and PARSE
	7 Compound Variable Names
	8 Special Variables
	8.1 SIGL
	8.2 RC
	8.3 RESULT

	9 Interactive Debugging
	10 Built-in Functions
	10.1 Rexx Functions
	10.2 String Functions
	10.3 Word Functions
	10.4 Math Functions
	10.5 Data Convert Functions
	10.6 File Functions

	11 Calling external REXX Scripts or Functions
	11.1 Primary REXX Script location via fully qualified DSN
	11.2 Location of the Main REXX script via PDS search (TSO environments)
	11.3 Running scripts in batch
	11.4 Calling external REXX scripts
	11.5 Variable Scope of external REXX scripts

	12 BREXX MVS Functions
	12.1 Host Environment Commands
	12.1.1 ADDRESS MVS
	12.1.2 ADDRESS TSO
	12.1.3 ADDRESS COMMAND ‘CP host-command’
	12.1.4 ADDRESS FSS
	12.1.5 ADDRESS LINK/LINKMVS/LINKPGM
	12.1.6 ADDRESS LINKMVS
	12.1.7 ADDRESS LINKPGM
	12.1.8 ADDRESS ISPEXEC
	12.1.9 OUTTRAP

	13 Added BREXX Kernel functions and Commands
	13.1 Functions

	14 GLOBAL Variables
	15 Dataset Functions
	16 TCP Functions
	17 TSO REXX Functions
	18 Matrix and Integer Array functions
	19 RXLIB functions
	20 Building TSO Commands
	20.1 LA List all allocated Libraries
	20.2 WHOAMI Display current User Id
	20.3 TODAY
	20.4 USERS
	20.5 REPL

	21 Callable External Functions
	21.1 BREXX Call an external Program
	21.2 BREXX Programming Services
	21.3 Called Program
	21.4 Benefits

	22 VSAM User’s Guide
	22.1 Integration of the VSAM Interface in BREXX
	22.1.1 Limitations/Restrictions
	22.1.2 Initialising empty VSAM Files
	22.1.3 Key of Records
	22.1.4 Return Codes
	22.1.5 System Abend A03
	22.1.6 Random and Sequential Access
	22.1.7 VSAM Dataset reference
	22.1.8 REXX VSAM Debugging

	22.2 VSAM Commands in BREXX
	22.2.1 OPEN VSAM Dataset
	22.2.2 READ with KEY
	22.2.3 READ NEXT
	22.2.4 LOCATE position to a certain record
	22.2.5 WRITE KEY
	22.2.6 WRITE NEXT
	22.2.7 DELETE KEY
	22.2.8 DELETE NEXT
	22.2.9 CLOSE

	22.3 BREXX VSAM Example

	23 Formatted screens
	23.1 Delivered Samples
	23.2 FSS Limitation
	23.3 FSS Function Overview
	23.3.1 FSSINIT Inits the FSS subsystem
	23.3.2 Principles of Defining Formatted Screens
	23.3.3 FSSTEXT
	23.3.4 FSSFIELD
	23.3.5 Attribute Definition
	23.3.6 FSSTITLE
	23.3.7 FSSOPTION
	23.3.8 FSSCOMMAND
	23.3.9 FSSTOPLINE
	23.3.10 FSSMESSAGE
	23.3.11 FSSZERRSM
	23.3.12 FSSZERRLM
	23.3.13 FSSFSET
	23.3.14 FSSFGET
	23.3.15 FSSFGETALL
	23.3.16 FSSCURSOR
	23.3.17 FSSCOLOUR
	23.3.18 FSSKEY
	23.3.19 FSSDISPLAY
	23.3.20 Get Screen Dimensions
	23.3.21 Close FSS Environment

	23.4 Creating a Dialog Manager
	23.5 Simple Screen Applications
	23.5.1 Screen with Attributes in one Column
	23.5.2 Screen with Attributes in two Columns
	23.5.3 Screen with Attributes in three Columns
	23.5.4 Screen with Attributes in four Columns
	23.5.5 Screen special Attributes
	Presetting Screen input fields
	Input field appearance
	Input field length
	Input Field CallBack Function

	23.6 FSSMENU Supporting Menu Screens
	23.6.1 Defining a Menu Screen
	23.6.2 FSSMENU Displaying a Menu Screen
	23.6.3 FMTMENU Fully Defined Menu Screens
	Definition of the Menu
	Displaying the FMTMENU Screen
	Menu Tailoring
	Formatted List Output
	FMTLIST Prerequisites
	FMTLIST calling Syntax
	FMTLIST supported PF Keys and Scrolling commands
	FMTLIST Customising Options
	FMTLIST calling other REXX scripts from the command line
	Formatted List Line and Primary Commands
	Formatted List Samples
	Debugging Simple Screen Applications
	Formatted List Monitor FMTMON
	FMTMON calling Syntax
	FMTMON Call-Back Procedures
	FMTMON provide data to display
	FMTMON predefined Action Keys
	FMTMON Application display Master Trace Table

	23.7 FSS Functions as Host Commands
	23.7.1 INIT FSS Environment
	23.7.2 Defining a Text Entry
	23.7.3 Defining a Field Entry
	23.7.4 Getting Field Content
	23.7.5 Setting Field Content
	23.7.6 Setting Cursor to a field
	23.7.7 Setting Colour
	23.7.8 Getting action Key
	23.7.9 Display or Refresh Formatted Screen
	23.7.10 End or Terminates FSS Environment
	23.7.11 Get Terminal Width
	23.7.12 Get Terminal Height

	24 Implementation Restrictions
	24.1 Variables
	24.2 Stems
	24.3 Functions

	25 Migration and Upgrade Notices
	25.1 Upgrade from a previous BREXX/370 Version
	25.2 BREXX V2R1M0
	25.2.1 Important Changes
	25.2.2 Libraries
	25.2.3 Calling external REXX Scripts or Functions
	25.2.4 Software Changes requiring actions
	25.2.5 New Functionality

	25.3 BREXX V2R2M0
	25.3.1 Software Changes requiring actions
	25.3.2 Reduction of Console Messages
	25.3.3 Known Problems
	Reading Lines fromsequential Dataset
	BREXX FORMAT Function

	25.3.4 New Functionality
	25.3.5 BREXX functions

	25.4 BREXX V2R3M0
	25.4.1 Authorised BREXX Version available
	25.4.2 BREXXSTD load module removed
	25.4.3 Call PLI Functions
	25.4.4 New and amended functionality
	25.4.5 BREXX functions
	Dataset Functions
	TCP Functions
	New BREXX functions coded in REXX

	25.5 BREXX V2R4M0
	25.5.1 Functions with changed functionality
	25.5.2 New Functions

	25.6 BREXX V2R4M1
	25.6.1 Important Changes
	RAKF restrictions lifted
	Matrix and Integer Arrays

	26 About
	26.1 BREXX/370
	26.2 License
	26.3 BREXX/370 documentation
	26.4 DISCLAIMER

	27 Credits
	28 BREXX/370 Source Code
	29 Some Notes on BREXX Arithmetic Operations
	Index

