;;;;; ; ; Test floating point numbers. ; ; The values in the comments are the reference values from MACRO V05.05. ; .word ^F 1.0 ; 040200 .word ^F-1.0 ; 140200 .word -^F 1.0 ; 137600 .word -^F-1.0 ; 037600 .word ^F6.2 ; 040706 .word ^C^F6.2 ; 137071 .word ^C<^F6.2> ; 137071 .flt2 6.2 ; 040706 063146 .flt4 6.2 ; 040706 063146 063146 063146 .flt2 1.5 ; 040300 000000 .flt4 1.5 ; 040300 000000 000000 000000 .word ^F 3.1415926535897932384626433 ; 040511 .flt2 3.1415926535897932384626433 ; 040511 007733 .flt4 3.1415926535897932384626433 ; 040511 007732 121041 064302 ; Test some large numbers at the edge of the exactly representable ; integers. ; 1 << 56 just barely fits: it uses 57 bits but the lsb is 0 so ; when it is cut off, we don't notice. ; 1 << 56 + 1 R the lsb are 01 and is cut off. ; 1 << 56 + 2 the lsb are 10 and the missing 0 goes unnoticed. ; 1 << 56 - 1 consists of 56 1 bits. This value and all smaller ints ; 1 << 56 - 2 get represented exactly. ; Going up, to rounding steps of 4: ; ; 1 << 57 ; 1 << 57 + 4 next higher available representation ; 1 << 57 + 8 next higher available representation ; 1 << 56 - 3 .flt4 72057594037927933 ; 056177 177777 177777 177775 ; 1 << 56 - 2 .flt4 72057594037927934 ; 056177 177777 177777 177776 ; 1 << 56 - 1 .word ^F 72057594037927935 ; 056200 (rounded up!) .flt2 72057594037927935 ; 056200 000000 (rounded up!) .flt4 72057594037927935 ; 056177 177777 177777 177777 ; 1 << 56 .word ^F 72057594037927936 ; 056200 .flt2 72057594037927936 ; 056200 000000 .flt4 72057594037927936 ; 056200 000000 000000 000000 .flt4 72057594037927938 ; 1 << 56 + 2 ; 056200 000000 000000 000001 .flt4 144115188075855872 ; 1 << 57 ; 056400 000000 000000 000000 .flt4 144115188075855873 ; 1 << 57 + 1 ; 056400 000000 000000 000000 (inexact) .flt4 144115188075855874 ; 1 << 57 + 2 ; 056400 000000 000000 000001 (inexact) .flt4 144115188075855875 ; 1 << 57 + 3 ; 056400 000000 000000 000001 (inexact) .flt4 144115188075855876 ; 1 << 57 + 4 ; 056400 000000 000000 000001 (exact!) .flt4 144115188075855880 ; 1 << 57 + 8 ; 056400 000000 000000 000002 (exact!) ; This one triggers rounding up (round == 1) .flt4 6.66666 ; 040725 052507 055061 122276 ; MACRO-11 truncates these ^F values despite what the manual says. ; On the other hand, it does round up some of the test values above. ; We stick to the manual since the result is more consistent. ; Expression RT-11 this ; MACRO-11 version ; V05.06 .word ^F 0.994140625 ; (2**9-3)/2**9 040176 040177 .flt4 0.994140625 .word ^F 0.998046875 ; (2**9-1)/2**9 040177 040200 .flt4 0.998046875 .word ^F 1.00390625 ; (2**8+1)/2**8 040200 040201 .flt4 1.00390625 .word ^F 1.01171875 ; (2**8+3)/2**8 040201 040202 .flt4 1.01171875 .flt4 1.701411834604692307e+38 ; 077777 177777 177777 177777 .FLT4 170141183460469230551095682998472802304 ; 2**127-2**70 .FLT4 170141183460469230564930741053754966015 ; 2**127-(2**70-2**64+2**62+1) .FLT4 170141183460469230564930741053754966016 ; 2**127-(2**70-2**64+2**62+2) ; Several ways to define a name for the fpp registers ac0 = r0 ac1 = %1 f2 = %2 mulf r3,ac0 mulf r2,ac1 ADDF #^O41040,F2 addf #1,ac1 mulf r3,ac0 mulf r2,ac1 addf #^O41040,F2 ; taken literally addf #1,ac1 ; as float addf #1.,ac1 ; as float addf #^D1,ac1 ; literally addf #<1+1>,ac1 ; literally addf #1.5,ac1 ; as float addd #-1.4,ac1 ; as float ; TODO: let parser check for junk at end of line absf #2.5 ; bad: operand is destination tstd #2.5 ; bad: operand is considered FDST by the arch handbook stf ac0,#2.5 ; bad: junk at end of line stf ac0,#2 ; doesn't makes sense but MACRO11 allows it .end