/* Pr1me Computer emulator, Jim Wilcoxson (prirun@gmail.com), April 4, 2005 Copyright (C) 2005, Jim Wilcoxson (prirun@gmail.com). All Rights Reserved. Emulates a Prime Computer system by: - booting from a Prime disk image (normal usage) - booting from a Prime MAGSAV tape - restoring a Prime R-mode .save image from the host file system This is a project in development, so please don't publish it. Comments, suggestions, corrections, and general notes that you're interested in a Prime emulation project are welcome and appreciated. ------------- Usage: (to boot from pdev 2466, dev '26, unit 3): $ time ./em -tport 8000 -cpuid 5 -boot 14714 -map MFD.2462/PRIRUN/RING0.MAP MFD.2462/PRIRUN/RING3.MAP 2>err Disk boot device is 14uc4, tape is 10005, where u=1/3/5/7 for units 0/1/2/3 and c=1/3/5/7 for controller 26/27/... (See complete boot table below) NOTE: the -map command is optional, but is needed to set the real-time clock automatically for older models (cpuid < 15). If maps are not available, use the Primos SE command to set the clock manually after the system boots: SE -MMDDYY HHMM ------------- Usage: (to load and start an R-mode runfile directly from the Unix FS) $ ./em -ss 114 -boot *DOS64 2>/dev/null (-ss optional) ------------- Usage: to load SAM.SAVE from Unix FS and run diagnostics from pdev 2466 $ time ./em -cpuid 5 -boot SAM.SAVE 2>err [SAM Rev. 16.2, DTS Release: 0004.A, Copyright (c) 1990, Prime Computer, Inc.] Enter physical device = 2466 QUICK VERIFY MODE Enabled; Enter 'RESET QVFY' for normal operation. Enter 'SET DCM' to display CASE messages. Enter 'LOAD;RUN' for Default Execution SAM> -------------- Usage: to load initial boot from tape, then prompt for disk pdev $ time ./em -boot 1005 -tport 8000 -cpuid 5 Boot file is dev14u0 <--- note tape drive boot Sense switches set to 1005 <--- these cause pdev prompt [BOOT Rev. 20.2.3 Copyright (c) 1987, Prime Computer, Inc.] PHYSICAL DEVICE=2466 DISK ERROR, STATUS: 000001 PHYSICAL DEVICE= --------------- Usage: to load .SAVE image from tape: $ time ./em -boot 10005 [BOOT Rev. 20.2.3 Copyright (c) 1987, Prime Computer, Inc.] RUN FILE TREENAME=MFD>DOS>DOS.SAVE BOOTING FROM MT0 MFD>DOS>DOS.SAVE PRIMOS II REV 20.0 03/15/85 (AT 170000) Copyright (c) Prime Computer, Inc. 1985. PRIMOS II is being phased out. To boot PRIMOS return to CP mode. ("BOOT 14xxx" will autoboot PRIMOS.) OK: --------------- Instruction details are spewed to trace.log depending on the trace flags. IMPORTANT NOTE: this only runs on a big-endian machine, like the Prime. */ #ifdef __APPLE__ #define OSX 1 #endif #include #include #include #include #include #include #include #include /* In SR modes, Prime CPU registers are mapped to memory locations 0-'37, but only 0-7 are user accessible. In the post-P300 architecture, these addresses map to the live register file. Locations '40-'57 are reserved for 8 DMC channels, 2 words each. Locations '60-'77 are interrupt vectors Locations '100-'177 are for external device interrupts see p. A-8 of Sys Arch In VI mode, locations 0-'17 are trapped and map to the live register file (p 5-17, Sys Arch), though only 0-7 are accessible in user mode. */ #include "regs.h" typedef unsigned int ea_t; /* effective address */ typedef unsigned int pa_t; /* physical address */ /* the live program counter register is aka microcode scratch register TR7 */ #define RP regs.sym.tr7 #define RPH regs.u16[14] #define RPL regs.u16[15] #define SETCC_16(val16) \ crs[KEYS] &= ~0300; \ if ((val16) == 0) \ crs[KEYS] |= 0100; \ else if (*(short *)(&(val16)) < 0) \ crs[KEYS] |= 0200; #define SETCC_A SETCC_16(crs[A]) #define SETCC_32(val32) \ crs[KEYS] &= ~0300; \ if ((val32) == 0) \ crs[KEYS] |= 0100; \ else if (*(int *)(&(val32)) < 0) \ crs[KEYS] |= 0200; #define SETCC_L SETCC_32(crsl[2]) /* NOTE: in previous versions, exponent must be zero for 0.0, but DIAG test CPU.FLOAT.V considers a zero fraction and non-zero exponent to also be 0.0 (this is a "dirty zero") */ #define SETCC_F \ crs[KEYS] &= ~0300; \ if (*(short *)(crs+FLTH) < 0) \ crs[KEYS] |= 0200; \ else if (*(int *)(crs+FLTH) == 0) \ crs[KEYS] |= 0100; /* NOTE: Prime only tested 32 bits of the fraction, even for double precision. It expected DP floats to be normalized, or mostly normalized. */ #define SETCC_D SETCC_F #define EXPC(onoff) \ if ((onoff)) crs[KEYS] |= 0100000; \ else crs[KEYS] &= 077777 /* XEXPC is a dummy to indicate that the C-bit may not be set correctly */ #define XEXPC(onoff) EXPC(onoff) #define SETC crs[KEYS] |= 0100000 #define CLEARC crs[KEYS] &= 077777 /* EXPCL sets both the C and L bits for shift instructions NOTE: unlike EXPC, this doesn't clear anything - bits must be cleared before executing these macros! */ #define EXPCL(onoff) \ if ((onoff)) crs[KEYS] |= 0120000 #define SETCL crs[KEYS] |= 0120000 #define CLEARCL crs[KEYS] &= ~0120000 #define SETL(onoff) \ if ((onoff)) crs[KEYS] |= 020000; \ else crs[KEYS] &= ~020000 /* XSETL is a dummy to indicate that the L-bit may not be set correctly */ #define XSETL(onoff) SETL(onoff) /* these macros are for the VI-mode branch insructions */ #define BCLT if (crs[KEYS] & 0200) RPL = iget16(RP); else RPL++ #define BCLE if (crs[KEYS] & 0300) RPL = iget16(RP); else RPL++ #define BCEQ if (crs[KEYS] & 0100) RPL = iget16(RP); else RPL++ #define BCNE if (!(crs[KEYS] & 0100)) RPL = iget16(RP); else RPL++ #define BCGE if (!(crs[KEYS] & 0200)) RPL = iget16(RP); else RPL++ #define BCGT if (!(crs[KEYS] & 0300)) RPL = iget16(RP); else RPL++ #define BLS if (crs[KEYS] & 020000) RPL = iget16(RP); else RPL++ #define BXNE if (crs[X] != 0) RPL = iget16(RP); else RPL++ #define BYNE if (crs[Y] != 0) RPL = iget16(RP); else RPL++ #define BHNE(r) if (crs[(r)*2] != 0) RPL = iget16(RP); else RPL++; #define BRNE(r) if (crsl[(r)] != 0) RPL = iget16(RP); else RPL++; /* expressions for logicize instructions */ #define LCLT ((crs[KEYS] & 0200) != 0) #define LCLE ((crs[KEYS] & 0300) != 0) #define LCEQ ((crs[KEYS] & 0100) != 0) #define LCNE ((crs[KEYS] & 0100) == 0) #define LCGE !(crs[KEYS] & 0200) #define LCGT ((crs[KEYS] & 0300) == 0) /* macro for restricted instructions (uses current program counter) */ #define RESTRICT() if (RP & RINGMASK32) fault(RESTRICTFAULT, 0, 0); /* same macro, but uses a passed program counter */ #define RESTRICTR(rpring) if ((rpring) & RINGMASK32) fault(RESTRICTFAULT, 0, 0); /* Table for unusual instructions that aren't implemented but we want to print something when they're encountered */ unsigned short gen0tab[] = { 000503, /* EMCM - enter machine check mode */ 000501, /* LMCM - leave machine check mode */ 001304, /* MDEI - memory diagnostic */ 001305, /* MDII - memory diagnostic */ 001324, /* MDIW - memory diagnostic */ 001306, /* MDRS - memory diagnostic */ 001307, /* MDWC - memory diagnostic */ 000021, /* RMC - reset machine check */ 000311, /* VIFY - ucode verify */ 001113}; /* XVFY - extended ucode verify */ #define GEN0TABSIZE sizeof(gen0tab)/sizeof(unsigned short) char gen0nam[][5] = { "EMCM", "LMCM", "MDEI", "MDII", "MDIW", "MDRS", "MDWC", "RMC", "VIFY", "XVFY"}; /* trace flags to control aspects of emulator tracing: T_EAR trace R-mode effective address calculation T_EAV trace V-mode effective address calculation T_EAI trace I-mode effective address calculation T_FLOW instruction summary T_INST detailed instruction trace T_MODE trace CPU mode changes T_EAAP AP effective address calculation T_DIO disk I/O T_TIO tape I/O T_RIO ring network I/O T_TERM terminal output (tnou[a]) T_MAP segmentation T_PCL PCL instructions T_FAULT Faults T_PX Process exchange */ #define TB_EAR 0x00000001 #define TB_EAV 0x00000002 #define TB_EAI 0x00000004 #define TB_INST 0x00000008 #define TB_FLOW 0x00000010 #define TB_MODE 0x00000020 #define TB_EAAP 0x00000040 #define TB_DIO 0x00000080 #define TB_MAP 0x00000100 #define TB_PCL 0x00000200 #define TB_FAULT 0x00000400 #define TB_PX 0x00000800 #define TB_TIO 0x00001000 #define TB_TERM 0x00002000 #define TB_RIO 0x00004000 #define T_EAR TB_EAR #define T_EAV TB_EAV #define T_EAI TB_EAI #define T_INST TB_INST #define T_FLOW TB_FLOW #define T_MODE TB_MODE #define T_EAAP TB_EAAP #define T_DIO TB_DIO #define T_MAP TB_MAP #define T_PCL TB_PCL #define T_FAULT TB_FAULT #define T_PX TB_PX #define T_TIO TB_TIO #define T_TERM TB_TERM #define T_RIO TB_RIO #ifdef NOTRACE #define TRACE(flags, formatargs...) #define TRACEA(formatargs...) #else #define TRACE(flags, formatargs...) if (traceflags & (flags)) fprintf(tracefile,formatargs) #define TRACEA(formatargs...) fprintf(tracefile,formatargs) #endif /* traceflags is the variable used to test tracing of each instruction traceuser is the user number to trace, 0 meaning any user traceseg is the procedure segment number to trace, 0 meaning any savetraceflags hold the real traceflags, while "traceflags" switches on and off for each instruction traceprocs is an array of (operating system) procedure names we're tracing, with flags and associated data numtraceprocs is the number of entries in traceprocs, 0=none TRACEUSER is a macro that is true if the current user is being traced */ int traceflags=0; /* each bit is a trace flag */ int savetraceflags=0; int traceuser=0; /* OWNERL to trace */ int traceseg=0; /* RPH segment # to trace */ int numtraceprocs=0; #define MAXTRACEPROCS 2 struct { char name[11]; /* procedure name */ int ecb; /* ecb ea of proc */ int sb; /* sb before the call */ int oneshot; /* disable trace after call? */ } traceprocs[MAXTRACEPROCS]; FILE *tracefile; /* trace.log file */ #define TRACEUSER (traceuser == 0 || crs[OWNERL] == traceuser) int intvec=-1; /* currently raised interrupt (if >= zero) */ /* NOTE: Primos II gives "NOT FOUND" on STARTUP 2460 command if sense switches are set to 014114. But DIAGS like this setting. :( */ unsigned short sswitch = 014114; /* sense switches, set with -ss & -boot*/ /* NOTE: the default cpuid is a P750: 1 MIPS, 8MB of memory */ unsigned short cpuid = 5; /* STPM CPU model, set with -cpuid */ unsigned long instcount=0; /* global instruction count */ unsigned short inhcount = 0; /* number of instructions to stay inhibited */ unsigned int instpermsec = 2000; /* initial assumption for inst/msec */ jmp_buf jmpbuf; /* for longjumps to the fetch loop */ /* The standard Prime physical memory limit on early machines is 8MB. Later machines have higher memory capacities, up to 1024MB, using 32-bit page tables. NOTE: - rev 20 is limited to a max of 32MB - rev 23.4 is limited to a max of 128MB */ #define MEMSIZE 256*1024*1024 /* 128 MB */ unsigned short mem[MEMSIZE]; /* system's physical memory */ #define MAKEVA(seg,word) ((((int)(seg))<<16) | (word)) /* returns the incremented value of a virtual address, wrapping to word zero at the end of a segment (word portion = 0177777) */ #define INCVA(ea,n) (((ea) & 0xFFFF0000) | ((ea)+(n)) & 0xFFFF) /* STLB cache is defined here. There are several different styles on Prime models. This is modeled after the 6350 STLB, but is only 1-way associative. */ #define STLBENTS 512 typedef struct { char valid; /* 1 if STLB entry is valid, zero otherwise */ char unmodified; /* 1 if page hasn't been modified, 0 if modified */ // char shared; /* 1 if page is shared and can't be cached */ char access[4]; /* ring n access rights */ unsigned short procid; /* process id for segments >= '4000 */ unsigned short seg; /* segment number */ unsigned int ppn; /* physical page number (15 bits = 64MB limit) */ unsigned short *pmep; /* pointer to page table flag word */ unsigned long load_ic; /* instruction where STLB was loaded (for debug) */ } stlbe_t; stlbe_t stlb[STLBENTS]; /* The IOTLB stores translations for each page of the I/O segments 0-3 */ #define IOTLBENTS 64*4 typedef struct { char valid; /* 1 if IOTLB entry is valid, zero otherwise */ unsigned int ppn; /* physical page (16 bits = 128MB limit) */ } iotlbe_t; iotlbe_t iotlb[IOTLBENTS]; unsigned long long bitmask64[65] = {0, 1LL<<63, 1LL<<62, 1LL<<61, 1LL<<60, 1LL<<59, 1LL<<58, 1LL<<57, 1LL<<56, 1LL<<55, 1LL<<54, 1LL<<53, 1LL<<52, 1LL<<51, 1LL<<50, 1LL<<49, 1LL<<48, 1LL<<47, 1LL<<46, 1LL<<45, 1LL<<44, 1LL<<43, 1LL<<42, 1LL<<41, 1LL<<40, 1LL<<39, 1LL<<38, 1LL<<37, 1LL<<36, 1LL<<35, 1LL<<34, 1LL<<33, 1LL<<32, 1LL<<31, 1LL<<30, 1LL<<29, 1LL<<28, 1LL<<27, 1LL<<26, 1LL<<25, 1LL<<24, 1LL<<23, 1LL<<22, 1LL<<21, 1LL<<20, 1LL<<19, 1LL<<18, 1LL<<17, 1LL<<16, 1LL<<15, 1LL<<14, 1LL<<13, 1LL<<12, 1LL<<11, 1LL<<10, 1LL<<9, 1LL<<8, 1LL<<7, 1LL<<6, 1LL<<5, 1LL<<4, 1LL<<3, 1LL<<2, 1LL<<1, 1LL}; unsigned int bitmask32[33] = {0, 0x80000000, 0x40000000, 0x20000000, 0x10000000, 0x08000000, 0x04000000, 0x02000000, 0x01000000, 0x00800000, 0x00400000, 0x00200000, 0x00100000, 0x00080000, 0x00040000, 0x00020000, 0x00010000, 0x00008000, 0x00004000, 0x00002000, 0x00001000, 0x00000800, 0x00000400, 0x00000200, 0x00000100, 0x00000080, 0x00000040, 0x00000020, 0x00000010, 0x00000008, 0x00000004, 0x00000002, 0x00000001}; unsigned int bitmask16[17] = {0, 0x8000, 0x4000, 0x2000, 0x1000, 0x0800, 0x0400, 0x0200, 0x0100, 0x0080, 0x0040, 0x0020, 0x0010, 0x0008, 0x0004, 0x0002, 0x0001}; unsigned int prevpc; /* backed program counter */ unsigned short amask; /* address mask */ #define FAULTMASK32 0x80000000 /* fault bit */ #define RINGMASK32 0x60000000 /* ring bits */ #define EXTMASK32 0x10000000 /* E-bit */ #define SEGMASK32 0x0FFF0000 /* segment number */ #define RINGMASK16 0x6000 /* ring bits */ #define EXTMASK16 0x1000 /* E-bit */ #define DTAR32(ea) (((ea)>>26) & 3) #define SEGNO32(ea) (((ea)>>16) & 07777) #define SEGNO16(ea) ((ea) & 07777) #define PAGENO(ea) (((ea)>>10) & 077) /* Fault/interrupt vectors */ #define FIRSTFAULT 062 #define RESTRICTFAULT 062 #define PROCESSFAULT 063 #define PAGEFAULT 064 #define SVCFAULT 065 #define UIIFAULT 066 #define SEMFAULT 067 /* note duplicate w/parity */ #define PARITYCHECK 067 #define MACHCHECK 070 #define MISSMEMCHECK 071 #define ILLINSTFAULT 072 #define ACCESSFAULT 073 #define ARITHFAULT 074 #define STACKFAULT 075 #define SEGFAULT 076 #define POINTERFAULT 077 #define LASTFAULT 077 ea_t tnoua_ea=0, tnou_ea=0; int verbose; /* -v (not used anymore) */ int domemdump; /* -memdump arg */ int pmap32bits; /* true if 32-bit page maps */ int csoffset; /* concealed stack segment offset */ int tport; /* -tport option (incoming terminals) */ int nport; /* -nport option (PNC/Ringnet) */ /* load map related data, specified with -map */ #define MAXSYMBOLS 15000 #define MAXSYMLEN 9 int numsyms = 0; static struct { char symname[MAXSYMLEN]; ea_t address; char symtype; /* o=other, c=common, e=ecb, p=proc, l=linkbase */ } mapsym[MAXSYMBOLS]; /* returns an index to a symbol, based on an address and type match; if the address isn't found exactly, the index returned will be the address lower than the requested address, or -1 if the symbol table is empty or the requested address is lower than any in the symbol table */ int findsym(ea_t addr, char type) { int low, high, mid, saveix; addr &= 0xFFFFFFF; /* strip fault, ring, E bits */ low = 0; high = numsyms-1; mid = -1; while (low <= high) { mid = (low+high)/2; if (addr < mapsym[mid].address) high = mid-1; else if (addr == mapsym[mid].address) break; else if (addr > mapsym[mid].address && mid != numsyms-1 && addr >= mapsym[mid+1].address) low = mid+1; else break; } saveix = mid; if (type != 'x' && mid >= 0) while (addr > mapsym[saveix].address && saveix != numsyms-1 && addr > mapsym[saveix+1].address && mapsym[saveix].symtype != type) saveix++; return saveix; } addsym(char *sym, unsigned short seg, unsigned short word, char type) { short symlen,ix,ix2; ea_t addr; symlen = strlen(sym); if (symlen > 0 && symlen < MAXSYMLEN) { addr = MAKEVA(seg, word); ix = findsym(addr, 'x'); if (ix+1 < numsyms) /* make room for the new symbol */ for (ix2 = numsyms; ix2 > ix; ix2--) mapsym[ix2] = mapsym[ix2-1]; //TRACEA("%s = %o/%o\n", sym, seg, words); strcpy(mapsym[ix+1].symname, sym); mapsym[ix+1].address = addr; mapsym[ix+1].symtype = type; numsyms++; } } readloadmap(char *filename) { FILE *mapf; char line[100]; int lc,ix; char sym[100]; unsigned int segno, wordno, ecbseg, ecbword, pbseg, pbword, lbseg, lbword; ea_t lastaddr; TRACEA("Reading load map from %s... ", filename); if ((mapf = fopen(filename, "r")) == NULL) { perror("Map file open"); fatal(NULL); } lc = 0; while (fgets(line, sizeof(line), mapf) != NULL) { lc++; if (strstr(line, "*START")) break; if (sscanf(line, "%s %o %o %o %o %*o %*o %o %o", sym, &ecbseg, &ecbword, &pbseg, &pbword, &lbseg, &lbword) == 7) { addsym(sym, ecbseg, ecbword, 'e'); addsym(sym, pbseg, pbword, 'p'); addsym(sym, lbseg, lbword, 'l'); //printf("adding proc symbol, line=%s\n", line); if (tnou_ea == 0 && strcmp(sym,"TNOU") == 0) tnou_ea = MAKEVA(ecbseg, ecbword); if (tnoua_ea == 0 && strcmp(sym,"TNOUA") == 0) tnoua_ea = MAKEVA(ecbseg, ecbword); } else if (sscanf(line, "%s %o %o", sym, &segno, &wordno) == 3) { addsym(sym, segno, wordno, 'x'); //printf("adding symbol, line=%s\n", line); } else if (strcspn(line, " \n") == 0) continue; else TRACEA("Can't parse map line #%d: %s\n", lc, line); if (numsyms == MAXSYMBOLS) { TRACEA("Symbol table limit!"); break; } } fclose(mapf); TRACEA("%d symbols loaded\n", numsyms); lastaddr = 0; for (ix=0; ix < numsyms; ix++) { if (mapsym[ix].address < lastaddr) TRACEA("Symbol table out of order: ix=%d, sym=%s, addr=%o/%o, lastaddr=%o/%o\n", ix, mapsym[ix].symname, mapsym[ix].address>>16, mapsym[ix].address&0xffff, lastaddr>>16, lastaddr&0xffff); lastaddr = mapsym[ix].address; } } /* returns a pointer to a static character string like DSKBLK+25, to print with the effective address for an instruction. There is a stack of return results so that if this is called twice on a function call, different results can be returned */ char *searchloadmap(int addr, char type) { short ix, diff; #define MAXBUFIX 10 static char blank = 0; static char buf[MAXBUFIX][100]; static int bufix=-1; if ((SEGNO32(addr) <= 01777 | SEGNO32(addr) >= 06000) && (ix = findsym(addr, type)) > 0) { diff = addr - mapsym[ix].address; if (diff) { if (++bufix == MAXBUFIX) bufix = 0; snprintf(buf[bufix], sizeof(buf[0]), "%s+'%o", mapsym[ix].symname, diff); return buf[bufix]; } else return mapsym[ix].symname; } else return ␣ } /* intended memory access types: 1 = PCL (PACC) 2 = read (RACC) 3 = write (WACC) 4 = execute (XACC) */ #define PACC 0 #define RACC 2 #define WACC 3 #define XACC 4 void fault(unsigned short fvec, unsigned short fcode, ea_t faddr); /* NOTE: this is the 6350 STLB hash function, giving a 9-bit index 0-511 */ #define STLBIX(ea) ((((((ea) >> 12) ^ (ea)) & 0xc000) >> 7) | (((ea) & 0x70000) >> 12) | ((ea) & 0x3c00) >> 10) /* maps a Prime 28-bit virtual address to a physical memory address, checks access, returns actual access (for PCL) May cause: - segment fault if segment number is too big - segment fault if segment's fault bit is set - access fault if intended access isn't permitted - page fault if page isn't resident Typically, the real program counter is passed in and the ring bits from it are used. For some special cases (gate PCL), a fake program counter is passed in with the desired ring bits, for example, 0, a R0 program counter, or 020000/0, a R1 program counter. (getr,putr)(16,32,64) allow specifying a PC. */ pa_t mapva(ea_t ea, short intacc, unsigned short *access, ea_t rp) { short relseg,seg,nsegs,ring; unsigned short pte, stlbix, iotlbix; stlbe_t *stlbp; unsigned int dtar,sdw,staddr,ptaddr,pmaddr,ppn; pa_t pa; seg = SEGNO32(ea); ring = ((rp | ea) >> 29) & 3; /* current ring | ea ring = access ring */ /* map virtual address if segmentation is enabled */ if (crs[MODALS] & 4) { stlbix = STLBIX(ea); stlbp = stlb+stlbix; if (stlbix >= STLBENTS) { printf("STLB index %d is out of range for va %o/%o!\n", stlbix, ea>>16, ea&0xffff); fatal(NULL); } /* if the STLB entry isn't valid, or the segments don't match, or the segment is private and the process id doesn't match, then the STLB has to be loaded first */ if (!stlbp->valid || stlbp->seg != seg || (seg >= 04000 && stlbp->procid != crs[OWNERL])) { dtar = *(unsigned int *)(crs+DTAR0-2*DTAR32(ea)); /* get dtar register */ nsegs = 1024-(dtar>>22); relseg = seg & 0x3FF; /* segment within segment table */ TRACE(T_MAP, " MAP: ea=%o/%o, seg=%o, dtar=%o, nsegs=%d, relseg=%d, page=%d\n", ea>>16, ea&0xFFFF, seg, dtar, nsegs, relseg, PAGENO(ea)); if (relseg >= nsegs) fault(SEGFAULT, 1, ea); /* fcode = segment too big */ staddr = (dtar & 0x003F0000) | ((dtar & 0x7FFF)<<1); sdw = *(unsigned int *)(mem+staddr+relseg*2); TRACE(T_MAP," staddr=%o, sdw=%o\n", staddr, sdw); if (sdw & 0x8000) fault(SEGFAULT, 2, ea); /* fcode = sdw fault bit set */ ptaddr = (((sdw & 0x3F)<<10) | (sdw>>22)) << 6; if (pmap32bits) { pmaddr = ptaddr + 2*PAGENO(ea); pte = mem[pmaddr]; ppn = mem[pmaddr+1]; } else { pmaddr = ptaddr + PAGENO(ea); pte = mem[pmaddr]; ppn = pte & 0xFFF; } TRACE(T_MAP," ptaddr=%o, pmaddr=%o, pte=%o\n", ptaddr, pmaddr, pte); if (!(pte & 0x8000)) fault(PAGEFAULT, 0, ea); mem[pmaddr] |= 040000; /* set referenced bit */ stlbp->valid = 1; stlbp->unmodified = 1; stlbp->access[0] = 7; stlbp->access[1] = (sdw >> 12) & 7; stlbp->access[3] = (sdw >> 6) & 7; stlbp->procid = crs[OWNERL]; stlbp->seg = seg; stlbp->ppn = ppn; stlbp->pmep = mem+pmaddr; stlbp->load_ic = instcount; /* if this is an I/O segment reference, load the I/O TLB too. This is done because earlier machines didn't have the LIOT instruction to load the IOTLB; instead, they loaded it with regular memory reference instructions like LDA (they also only had a 64-entry IOTLB, so the emulation is not exact) */ if (seg < 4) { iotlbix = (ea & 0x3FFFF) >> 10; iotlb[iotlbix].valid = 1; iotlb[iotlbix].ppn = ppn; } } *access = stlbp->access[ring]; if (((intacc & *access) != intacc) || (intacc == PACC && ((*access & 3) == 0))) fault(ACCESSFAULT, 0, ea); if (intacc == WACC && stlbp->unmodified) { stlbp->unmodified = 0; *(stlbp->pmep) &= ~020000; /* reset unmodified bit in memory */ } pa = (stlbp->ppn << 10) | (ea & 0x3FF); TRACE(T_MAP," for ea %o/%o, stlbix=%d, pa=%o loaded at #%d\n", ea>>16, ea&0xffff, stlbix, pa, stlbp->load_ic); } else { pa = ea & (MEMSIZE-1); } if (pa <= MEMSIZE) return pa; printf(" map: Memory address %o (%o/%o) is out of range!\n", ea, ea>>16, ea & 0xffff); fatal(NULL); /* NOTE: could also take a missing memory check here... */ } /* for I/O, ea is either an 18-bit physical address (which is just returned if not in mapped I/O mode), or a 2-bit segment number and 16-bit word number for mapped I/O. A physical address is returned. */ unsigned int mapio(ea_t ea) { int iotlbix; ea &= 0x3FFFF; if (crs[MODALS] & 020) { /* mapped I/O mode? */ iotlbix = (ea >> 10) & 0xFF; /* TLB range is 0-255 */ if (iotlb[iotlbix].valid) return (iotlb[iotlbix].ppn << 10) | (ea & 0x3FF); else { printf("Mapped I/O request to %o/%o, but IOTLB is invalid!\n", ea>>16, ea&0xFFFF); fatal(NULL); } } return ea; } /* these are I/O versions of get/put that use the IOTLB rather than the STLB */ #define get16io(ea) mem[mapio((ea))] #define get32io(ea) *(unsigned int *)(mem+mapio((ea))) #define put16io(word,ea) mem[mapio((ea))] = word /* these are shorthand macros for get/put that use the current program counter - the typical usage - or Ring 0, the other typical case. The other places the ring field is important are PCL (ring may be changing) and queue instructions (user process uses current ring, while device controllers use Ring 0 (physical queues) */ #define get16(ea) (get16r((ea),RP)) #define get16r0(ea) (get16r((ea),0)) #define get32(ea) (get32r((ea),RP)) #define get32r0(ea) (get32r((ea),0)) #define get64(ea) (get64r((ea),RP)) #define get64r0(ea) (get64r((ea),0)) #define put16(value, ea) (put16r((value),(ea),RP)) #define put16r0(value, ea) (put16r((value),(ea),0)) #define put32(value, ea) (put32r((value),(ea),RP)) #define put32r0(value, ea) (put32r((value),(ea),0)) #define put64(value, ea) (put64r((value),(ea),RP)) #define put64r0(value, ea) (put64r((value),(ea),0)) /* get16t handles address trap fetches */ unsigned short get16t(ea_t ea, ea_t rpring) { ea = ea & 0xFFFF; if (ea < 7) return crs[memtocrs[ea]]; if (ea == 7) /* PC */ return RPL; RESTRICTR(rpring); if (ea < 020) /* CRS */ return crs[memtocrs[ea]]; if (ea < 040) /* DMX */ return regs.sym.regdmx[((ea & 036) << 1) | (ea & 1)]; printf(" Live register address %o too big!\n", ea); fatal(NULL); } inline unsigned short get16r(ea_t ea, ea_t rpring) { unsigned short access; /* sign bit is set for live register access */ if (*(int *)&ea >= 0) return mem[mapva(ea, RACC, &access, rpring)]; else return get16t(ea, rpring); } unsigned int get32r(ea_t ea, ea_t rpring) { pa_t pa; unsigned short access; unsigned short m[2]; /* check for live register access */ if (ea & 0x80000000) warn("address trap in get32"); pa = mapva(ea, RACC, &access, rpring); if ((pa & 01777) <= 01776) return *(unsigned int *)(mem+pa); else { m[0] = mem[pa]; m[1] = get16r(INCVA(ea,1), rpring); return *(unsigned int *)m; } } double get64r(ea_t ea, ea_t rpring) { pa_t pa; unsigned short access; unsigned short m[4]; /* check for live register access */ if (ea & 0x80000000) warn("address trap in get64"); pa = mapva(ea, RACC, &access, rpring); if ((pa & 01777) <= 01774) return *(double *)(mem+pa); else { m[0] = mem[pa]; m[1] = get16r(INCVA(ea,1), rpring); m[2] = get16r(INCVA(ea,2), rpring); m[3] = get16r(INCVA(ea,3), rpring); return *(double *)m; } } /* Instruction version of get16 (can be replaced by get16 too...) This needs to be checked more... not sure it actually improves performance all that much and is potentially dangerous. I tried using get64 (with appropriate mask changes) and performance was much worse than not prefetching at all on a G4 NOTE: disabled 3/22/07 because an informal test showed instpermsec was lower with iget16 enabled. :( */ #if 0 inline unsigned short iget16(ea_t ea) { static ea_t eafirst = -1; /* ea of instruction buffer */ static unsigned short insts[2]; /* instruction buffer */ if (!(crs[KEYS] & 010000)) { /* don't buffer in R-mode */ eafirst = -1; return get16(ea); } if ((ea & 0xFFFFFFFE) != eafirst) { /* load instruction buffer */ eafirst = ea & 0xFFFFFFFE; *(int *)insts = get32(eafirst); } return insts[ea & 1]; } #else #define iget16(ea) get16((ea)) #endif /* put16t handles address trap stores */ put16t(unsigned short value, ea_t ea, ea_t rpring) { ea = ea & 0xFFFF; if (ea < 7) crs[memtocrs[ea]] = value; else if (ea == 7) { RPL = value; } else { RESTRICTR(rpring); if (ea <= 017) /* CRS */ crs[memtocrs[ea]] = value; else if (ea <= 037) /* DMX */ regs.sym.regdmx[((ea & 036) << 1) | (ea & 1)] = value; else { printf(" Live register store address %o too big!\n", ea); fatal(NULL); } } } /* NOTE: inlining this runs slower on G4; no idea why */ put16r(unsigned short value, ea_t ea, ea_t rpring) { unsigned short access; if (*(int *)&ea >= 0) mem[mapva(ea, WACC, &access, rpring)] = value; else put16t(value, ea, rpring); } put32r(unsigned int value, ea_t ea, ea_t rpring) { pa_t pa; unsigned short access; unsigned short *m; /* check for live register access */ if (ea & 0x80000000) warn("address trap in put32"); pa = mapva(ea, WACC, &access, rpring); if ((pa & 01777) <= 01776) *(unsigned int *)(mem+pa) = value; else { m = (void *)&value; mem[pa] = m[0]; put16r(m[1], INCVA(ea,1), rpring); } } put64r(double value, ea_t ea, ea_t rpring) { pa_t pa; unsigned short access; unsigned short *m; /* check for live register access */ if (ea & 0x80000000) warn("address trap in put64"); pa = mapva(ea, WACC, &access, rpring); if ((pa & 01777) <= 01774) *(double *)(mem+pa) = value; else { m = (void *)&value; mem[pa] = m[0]; put16r(m[1], INCVA(ea,1), rpring); put16r(m[2], INCVA(ea,2), rpring); put16r(m[3], INCVA(ea,3), rpring); } } fatal(char *msg) { ea_t pcbp, csea; unsigned short first,next,last,this; unsigned short cs[6]; printf("Fatal error: instruction #%d at %o/%o %s: %o %o\nowner=%o %s, keys=%o, modals=%o\n", instcount, prevpc >> 16, prevpc & 0xFFFF, searchloadmap(prevpc,' '), get16(prevpc), get16(prevpc+1), crs[OWNERL], searchloadmap(*(unsigned int *)(crs+OWNER),' '), crs[KEYS], crs[MODALS]); /* dump concealed stack entries */ if (crs[MODALS] & 010) { /* process exchange is enabled */ pcbp = *(ea_t *)(crs+OWNER); /* my pcb pointer */ first = get16r0(pcbp+PCBCSFIRST); next = get16r0(pcbp+PCBCSNEXT); last = get16r0(pcbp+PCBCSLAST); while (next != first) { this = next-6; csea = MAKEVA(crs[OWNERH]+csoffset, this); *(unsigned int *)(cs+0) = get32r0(csea+0); *(double *)(cs+2) = get64r0(csea+2); printf("Fault: RP=%o/%o, keys=%06o, fcode=%o, faddr=%o/%o\n", cs[0], cs[1], cs[2], cs[3], cs[4], cs[5]); next = this; } } if (msg) printf("%s\n", msg); /* should do a register dump, RL dump, PCB dump, etc. here... */ close(tracefile); exit(1); } warn(char *msg) { printf("emulator warning:\n instruction #%d at %o/%o: %o %o keys=%o, modals=%o\n %s\n", instcount, prevpc >> 16, prevpc & 0xFFFF, get16(prevpc), get16(prevpc+1),crs[KEYS], crs[MODALS], msg); } /* NOTE: the calf instruction may be running in an outer ring, so accesses to protected data need to use get16r0 */ void calf(ea_t ea) { ea_t pcbp, stackfp, csea; unsigned short first,next,last,this; unsigned short cs[6]; pcbp = *(ea_t *)(crs+OWNER); /* my pcb pointer */ /* get concealed stack entry address */ first = get16r0(pcbp+PCBCSFIRST); next = get16r0(pcbp+PCBCSNEXT); last = get16r0(pcbp+PCBCSLAST); TRACE(T_FAULT, "CALF: first=%o, next=%o, last=%o\n", first, next, last); if (next == first) this = last; else this = next-6; csea = MAKEVA(crs[OWNERH]+csoffset, this); TRACE(T_FAULT,"CALF: cs frame is at %o/%o\n", csea>>16, csea&0xFFFF); /* make sure ecb specifies zero args (not part of the architecture) NOTE: this check needs get16r0 too because in Rev 19, segment 5 only has gate access and this read caused an access fault when an R-mode I/O instruction occurs under Primos (causing a restricted inst fault that is handled in the outer ring). */ if (get16r0(ea+5) != 0) { printf("CALF ecb at %o/%o has arguments!\n", ea>>16, ea&0xFFFF); fatal(NULL); } pcl(ea); /* get the concealed stack entries and adjust the new stack frame */ *(unsigned int *)(cs+0) = get32r0(csea+0); *(double *)(cs+2) = get64r0(csea+2); TRACE(T_FAULT, "CALF: cs entry: retpb=%o/%o, retkeys=%o, fcode=%o, faddr=%o/%o\n", cs[0], cs[1], cs[2], cs[3], cs[4], cs[5]); stackfp = *(unsigned int *)(crs+SB); put16(1, stackfp+0); /* flag it as CALF frame */ put32(*(unsigned int *)(cs+0), stackfp+2); /* return PB */ put16(cs[2], stackfp+8); /* return keys */ put16(cs[3], stackfp+10); /* fault code */ put32(*(unsigned int *)(cs+4), stackfp+11); /* fault address */ /* pop the concealed stack */ put16r0(this, pcbp+PCBCSNEXT); } /* set new processor keys */ newkeys (unsigned short new) { switch ((new & 016000) >> 10) { case 0: /* 16S */ TRACE(T_MODE, "Entering 16S mode, keys=%o\n", new); amask = 037777; break; case 1: /* 32S */ TRACE(T_MODE, "Entering 32S mode, keys=%o\n", new); amask = 077777; break; case 2: /* 64R */ TRACE(T_MODE, "Entering 64R mode, keys=%o\n", new); amask = 0177777; break; case 3: /* 32R */ TRACE(T_MODE, "Entering 32R mode, keys=%o\n", new); amask = 077777; break; case 4: /* 32I */ TRACE(T_MODE, "Entering 32I mode, keys=%o\n", new); amask = 0177777; break; case 6: /* 64V */ TRACE(T_MODE, "Entering 64V mode, keys=%o\n", new); amask = 0177777; break; default: /* invalid */ printf("Invalid CPU mode: %o\n", new); fatal(NULL); } crs[KEYS] = new; } void fault(unsigned short fvec, unsigned short fcode, ea_t faddr) { static unsigned char faultname[LASTFAULT-FIRSTFAULT+2][4] = {"RXM", "PRC", "PAG", "SVC", "UII", "SEM", "MCK", "MM", "ILL", "ACC", "ARI", "STK", "SEG", "PTR", "-?-"}; unsigned char *faultnamep; ea_t pcbp, pxfvec, csea, ea; unsigned short first, next, last; unsigned short m; unsigned short ring; int i,namlen; unsigned short name[128]; ea_t faultrp; /* NOTE: Prime Hackers Guide says RP is backed for SVC fault, other docs say it is current */ if (fvec == PROCESSFAULT || fvec == SVCFAULT || fvec == ARITHFAULT) faultrp = RP; else faultrp = prevpc; /* save RP, keys in regfile, fcode and faddr in crs */ regs.sym.pswpb = faultrp; regs.sym.pswkeys = crs[KEYS]; crs[FCODE] = fcode; *(unsigned int *)(crs+FADDR) = faddr; if (FIRSTFAULT <= fvec && fvec <= LASTFAULT) faultnamep = faultname[fvec-FIRSTFAULT]; else faultnamep = faultname[LASTFAULT-FIRSTFAULT+1]; TRACE(T_FAULT, "#%d: fault '%o (%s), fcode=%o, faddr=%o/%o, faultrp=%o/%o\n", instcount, fvec, faultnamep, fcode, faddr>>16, faddr&0xFFFF, faultrp>>16, faultrp&0xFFFF); if (crs[MODALS] & 010) { /* process exchange is enabled */ ring = (RPH>>13) & 3; /* save current ring */ pcbp = *(ea_t *)(crs+OWNER); if (fvec == PROCESSFAULT || fvec == SEMFAULT || fvec == ACCESSFAULT || fvec == STACKFAULT || fvec == SEGFAULT) pxfvec = get32r0(pcbp+PCBFVR0); /* use R0 handler */ else if (fvec == PAGEFAULT) pxfvec = get32r0(pcbp+PCBFVPF); /* use page fault handler, also R0 */ else { pxfvec = get32r0(pcbp+PCBFVEC+2*ring); /* use current ring handler */ pxfvec |= ((int)ring) << 29; /* weaken */ } /* push a concealed stack entry */ first = get16r0(pcbp+PCBCSFIRST); next = get16r0(pcbp+PCBCSNEXT); last = get16r0(pcbp+PCBCSLAST); TRACE(T_FAULT, "fault: PX enabled, pcbp=%o/%o, cs first=%o, next=%o, last=%o\n", pcbp>>16, pcbp&0xFFFF, first, next, last); if (next > last) { #if 1 /* this is better for debugging */ TRACE(T_FAULT, "fault: Concealed stack wraparound to first"); fatal("fault: Concealed stack wraparound to first"); #else /* this is the normal mode of operation & necessary for DIAG */ TRACE(T_FAULT, "fault: Concealed stack wraparound to first"); next = first; #endif } csea = MAKEVA(crs[OWNERH]+csoffset, next); put32r0(faultrp, csea); put16r0(crs[KEYS], csea+2); put16r0(fcode, csea+3); put32r0(faddr, csea+4); put16r0(next+6, pcbp+PCBCSNEXT); TRACE(T_FAULT, "fault: updated cs next=%o\n", get16r0(pcbp+PCBCSNEXT)); /* update RP to jump to the fault vector in the fault table */ RP = pxfvec + (fvec-062)*4; newkeys(014000); /* V-mode */ inhcount = 1; /* supposed to do this only for Ring 0, but shouldn't hurt */ #if 0 if (T_FAULT && fvec == POINTERFAULT) { ea = get32(faddr); if ((ea & 0xF0000000) == 0x80000000) { ea &= 0x0FFFFFFF; namlen = get16(ea); for (i=0; i<(namlen+1)/2; i++) name[i] = get16(ea+i+1) & 0x7f7f; name[i] = 0; TRACE(T_FAULT, "fault: DYNT addr=%o/%o, length=%d, name=%s\n", ea>>16, ea&0xffff, namlen, name); } } #endif TRACE(T_FAULT, "fault: jumping to fault table entry at RP=%o/%o\n", RPH, RPL); } else { /* process exchange is disabled */ //TRACE(T_FAULT, "fault '%o occurred at %o/%o, instruction=%o, modals=%o\n", fvec, faultrp>>16, faultrp&0xffff, get16(faultrp), crs[MODALS]); /* XXX: need to check for standard/vectored interrupt mode here... */ m = get16(fvec); if (m != 0) { TRACE(T_FLOW, " fault JST* '%o [%o]\n", fvec, m); put16(faultrp & 0xFFFF, m); /* NOTE: should this set RP to m (segment 0), or just set RPL? */ #if 0 RPL = m; #else RP = m; #endif RPL++; } else { printf("#%d: fault '%o, fcode=%o, faddr=%o/%o, faultrp=%o/%o\n", instcount, fvec, fcode, faddr>>16, faddr&0xFFFF, faultrp>>16, faultrp&0xFFFF); fatal("Fault vector is zero, process exchange is disabled."); } } longjmp(jmpbuf, 1); fatal("fault: returned after longjmp\n"); } /* I/O device map table, containing function pointers to handle device I/O */ int devpoll[64] = {0}; #include "emdev.h" #if 0 /* this is the "full system" controller configuration */ int (*devmap[64])(int, int, int) = { /* '0x */ devnone,devnone,devnone,devnone,devasr,devnone,devnone,devpnc, /* '1x */ devnone,devnone,devnone,devnone,devmt,devamlc, devamlc, devamlc, /* '2x */ devcp,devnone,devdisk,devdisk,devdisk,devdisk,devdisk,devdisk, /* '3x */ devnone,devnone,devamlc,devnone,devnone,devamlc,devnone,devnone, /* '4x */ devnone,devnone,devnone,devnone,devnone,devnone,devnone,devnone, /* '5x */ devnone,devnone,devamlc,devamlc,devamlc,devnone,devnone,devnone, /* '6x */ devnone,devnone,devnone,devnone,devnone,devnone,devnone,devnone, /* '7x */ devnone,devnone,devnone,devnone,devnone,devnone,devnone,devnone}; #else /* this is the "minimum system" controller configuration */ int (*devmap[64])(int, int, int) = { /* '0x */ devnone,devnone,devnone,devnone,devasr,devnone,devnone,devpnc, #if 1 /* '1x */ devnone,devnone,devnone,devnone,devmt,devnone, devnone, devnone, #else /* '1x */ devnone,devnone,devnone,devnone,devnone,devnone, devnone, devnone, #endif /* '2x */ devcp,devnone,devnone,devnone,devnone,devnone,devdisk,devnone, /* '3x */ devnone,devnone,devnone,devnone,devnone,devnone,devnone,devnone, /* '4x */ devnone,devnone,devnone,devnone,devnone,devnone,devnone,devnone, /* '5x */ devnone,devnone,devnone,devnone,devamlc,devnone,devnone,devnone, /* '6x */ devnone,devnone,devnone,devnone,devnone,devnone,devnone,devnone, /* '7x */ devnone,devnone,devnone,devnone,devnone,devnone,devnone,devnone}; #endif /* 16S Addressing Mode */ ea_t ea16s (unsigned short inst, short x) { unsigned short ea, m, rpl, amask, live, i; ea_t va; i = inst & 0100000; /* indirect */ if (crs[MODALS] & 4) /* segmentation enabled? */ live = 010; /* yes, limit register traps */ else live = 040; amask = 037777; rpl = prevpc; if (inst & 001000) ea = (rpl & 037000) | (inst & 0777); /* current sector */ else ea = (inst & 0777); /* sector 0 */ while (1) { if (x) /* indexed */ ea += crs[X]; if (!i) /* not indirect */ break; if (ea < live) m = get16(0x80000000|ea); else m = get16(MAKEVA(RPH,ea)); i = m & 0100000; x = m & 040000; ea = m & 037777; /* go indirect */ } va = MAKEVA(RPH, ea); if (ea < live) /* flag live register ea */ return va | 0x80000000; return va; } /* 32S Addressing Mode */ ea_t ea32s (unsigned short inst, short x) { unsigned short ea, m,rpl, amask, live, i; ea_t va; i = inst & 0100000; /* indirect */ if (crs[MODALS] & 4) /* segmentation enabled? */ live = 010; /* yes, limit register traps */ else live = 040; amask = 077777; rpl = prevpc; if (inst & 001000) ea = (rpl & 077000) | (inst & 0777); /* current sector */ else { ea = (inst & 0777); /* sector 0 */ if (ea < 0100 && x) { /* preindex by X */ ea += crs[X]; x = 0; } } while (i) { if (ea < 040) m = get16(0x80000000|ea); else m = get16(MAKEVA(RPH,ea)); i = m & 0100000; ea = m & 077777; /* go indirect */ } if (x) /* postindex */ ea += crs[X]; ea &= amask; va = MAKEVA(RPH, ea); if (ea < live) /* flag live register ea */ return va | 0x80000000; return va; } /* NOTE: the difference between 32R and 64R, besides the extra address bit, is that 32R indirect words have an indirect bit for multi-level indirects */ ea_t ea32r64r (ea_t earp, unsigned short inst, short x, unsigned short *opcode) { unsigned short live, ea, m, rph, rpl, amask, class, i; ea_t va; i = inst & 0100000; /* indirect */ if (crs[MODALS] & 4) /* segmentation enabled? */ live = 010; /* yes, limit register traps */ else live = 040; amask = 0177777; if ((crs[KEYS] & 016000) == 06000) /* 32R mode? */ amask = 077777; rpl = earp; rph = (earp >> 16) & 0x7FFF; /* clear fault (live register) bit from RP */ TRACE(T_EAR, " ea32r64r: i=%o, x=%o, amask=%o\n", i!= 0, x!=0, amask); if (inst & 001000) /* sector bit 7 set? */ if ((inst & 0760) != 0400) { /* PC relative? */ ea = rpl + (((short) (inst << 7)) >> 7); /* yes, sign extend D */ TRACE(T_EAR, " PC relative, P=%o, new ea=%o\n", rpl, ea); } else goto special; /* special cases */ else { ea = (inst & 0777); /* sector 0 */ TRACE(T_EAR, " Sector 0, new ea=%o\n", ea); if (ea < 0100 && x) { /* preindex by X */ TRACE(T_EAR, " Preindex, ea=%o, X='%o/%d\n", ea, crs[X], *(short *)(crs+X)); ea += crs[X]; TRACE(T_EAR, " Preindex, new ea=%o\n", ea); x = 0; } } while (i) { if (ea < live) m = get16(0x80000000|ea); else m = get16(MAKEVA(rph,ea)); TRACE(T_EAR, " Indirect, old ea=%o, [ea]=%o\n", ea, m); if ((crs[KEYS] & 016000) == 06000) /* 32R mode? */ i = m & 0100000; /* yes, multiple indirects */ else i = 0; /* no, 64R mode, single indirect */ ea = m & amask; /* go indirect */ TRACE(T_EAR, " Indirect, new i=%d, new ea=%o\n", i!=0, ea); } if (x) { TRACE(T_EAR, " Postindex, old ea=%o, X='%o/%d\n", ea, crs[X], *(short *)(crs+X)); ea += crs[X]; TRACE(T_EAR, " Postindex, new ea=%o\n", ea); } ea &= amask; va = MAKEVA(rph, ea); if (ea < live) /* flag live register ea */ return va | 0x80000000; return va; special: class = inst & 3; /* class bits = 15 & 16 */ *opcode = *opcode | ((inst >> 2) & 3); /* opcode extension */ TRACE(T_EAR, " special, new opcode=%5#0o, class=%d\n", *opcode, class); if (class < 2) { /* class 0/1 */ ea = get16(MAKEVA(RPH,RPL++)); /* get A from next word */ TRACE(T_EAR, " Class %d, new ea=%o\n", class, ea); if (class == 1) ea += crs[S]; if (x) { TRACE(T_EAR, " Preindex, ea=%o, X='%o/%d\n", ea, crs[X], *(short *)(crs+X)); ea += crs[X]; TRACE(T_EAR, " Preindex, new ea=%o\n", ea); } while (i) { if (ea < live) m = get16(0x80000000|ea); else m = get16(MAKEVA(rph,ea)); TRACE(T_EAR, " Indirect, old ea=%o, [ea]=%o\n", ea, m); if ((crs[KEYS] & 016000) == 06000) i = m & 0100000; else i = 0; ea = m & amask; TRACE(T_EAR, " Indirect, new i=%d, new ea=%o\n", i!=0, ea); } } else if (i && x) { /* class 2/3, ix=11 */ TRACE(T_EAR, " class 2/3, ix=11\n"); ea = get16(MAKEVA(RPH,RPL++)); /* get A from next word */ TRACE(T_EAR, " ea=%o\n", ea); if (class == 3) ea += (short) crs[S]; while (i) { if (ea < live) m = get16(0x80000000|ea); else m = get16(MAKEVA(rph,ea)); TRACE(T_EAR, " Indirect, ea=%o, [ea]=%o\n", ea, m); if ((crs[KEYS] & 016000) == 06000) i = m & 0100000; else i = 0; ea = m & amask; TRACE(T_EAR, " Indirect, new i=%d, new ea=%o\n", i!=0, ea); } TRACE(T_EAR, " Postindex, old ea=%o, X='%o/%d\n", ea, crs[X], *(short *)(crs+X)); ea += (short) crs[X]; TRACE(T_EAR, " Postindex, new ea=%o\n", ea); } else { /* class 2/3, ix != 11 */ if (class == 2) ea = crs[S]++; else ea = --crs[S]; TRACE(T_EAR, " Class 2/3, new ea=%o, new S=%o\n", ea, crs[S]); if (x) { if (ea < live) m = get16(0x80000000|ea); else m = get16(MAKEVA(rph,ea)); if ((crs[KEYS] & 016000) == 06000) i = m & 0100000; ea = m & amask; } while (i) { if (ea < live) m = get16(0x80000000|ea); else m = get16(MAKEVA(rph,ea)); if ((crs[KEYS] & 016000) == 06000) i = m & 0100000; else i = 0; ea = m & amask; } if (x) ea += crs[X]; } ea &= amask; va = MAKEVA(rph, ea); if (ea < live) /* flag live register ea */ return va | 0x80000000; return va; } #include "ea64v.h" #include "ea32i.h" ea_t apea(unsigned short *bitarg) { unsigned short ibr, ea_s, ea_w, bit, br, a; ea_t ea, ip; ibr = iget16(RP); RPL++; a = iget16(RP); RPL++; bit = (ibr >> 12) & 0xF; br = (ibr >> 8) & 3; TRACE(T_EAAP, " AP ibr=%o, br=%d, i=%d, bit=%d, a=%o\n", ibr, br, (ibr & 004000) != 0, bit, a); /* XXX: should ea ring be weakened with RP ring? */ ea_s = crs[PBH + 2*br]; ea_w = crs[PBL + 2*br] + a; ea = MAKEVA(ea_s, ea_w); TRACE(T_EAAP, " AP ea = %o/%o %s\n", ea_s, ea_w, searchloadmap(ea,' ')); if (ibr & 004000) { if (ea & 0x80000000) fault(POINTERFAULT, ea>>16, 0); /* XXX: faddr=0? */ ip = get32(ea); if (ip & EXTMASK32) bit = get16(INCVA(ea,2)) >> 12; else bit = 0; ea = ip; TRACE(T_EAAP, " After indirect, AP ea = %o/%o, bit=%d %s\n", ea>>16, ea & 0xFFFF, bit, searchloadmap(ea,' ')); } if (bit) ea |= EXTMASK32; if (bitarg != NULL) *bitarg = bit; return ea; } /* exception handler types: 'i' = integer exception 'd' = decimal exception 'f' = floating point exception Depending on the keys settings, take the appropriate fault. Always sets the C-bit. */ #define FC_SFP_OFLOW 0400 #define FC_SFP_ZDIV 0401 #define FC_SFP_STORE 0402 #define FC_SFP_INT 0403 #define FC_DFP_OFLOW 01000 #define FC_DFP_ZDIV 01001 #define FC_INT_OFLOW 01400 #define FC_INT_ZDIV 01401 #define FC_DEC_OFLOW 03400 #define FC_DEC_ZDIV 03401 #define FC_DEC_CONV 03402 mathexception(unsigned char extype, unsigned short fcode, ea_t faddr) { crs[KEYS] |= 0x8000; switch (extype) { case 'i': if (crs[KEYS] & 0400) fault(ARITHFAULT, fcode, faddr); break; case 'd': if (crs[KEYS] & 040) fault(ARITHFAULT, fcode, faddr); break; case 'f': if (!(crs[KEYS] & 01000)) fault(ARITHFAULT, fcode, faddr); break; default: printf(" Unrecognized exception type '%c'\n", extype); fatal(NULL); } } memdump(int start, int end) { int ea; if (domemdump) { /* dump sector zero for debugging */ TRACEA("\nSector 0:\n"); for (ea=0; ea<01000; ea=ea+8) if (mem[ea]|mem[ea+1]|mem[ea+2]|mem[ea+3]|mem[ea+4]|mem[ea+5]|mem[ea+6]|mem[ea+7]) TRACEA("%3o: %6o %6o %6o %6o %6o %6o %6o %6o\n", ea, mem[ea], mem[ea+1], mem[ea+2], mem[ea+3], mem[ea+4], mem[ea+5], mem[ea+6], mem[ea+7]); /* dump main memory for debugging */ TRACEA("\nMain memory:\n"); for (ea=start; ea<=end; ea=ea+8) if (mem[ea]|mem[ea+1]|mem[ea+2]|mem[ea+3]|mem[ea+4]|mem[ea+5]|mem[ea+6]|mem[ea+7]) TRACEA("%o: %6o %6o %6o %6o %6o %6o %6o %6o\n", ea, mem[ea], mem[ea+1], mem[ea+2], mem[ea+3], mem[ea+4], mem[ea+5], mem[ea+6], mem[ea+7]); } } dumpsegs() { short seg,nsegs,i,page,segno; unsigned short pte,xxx; unsigned int dtar,staddr,sdw,ptaddr,pmaddr; TRACEA("\nSEGMENT TABLE DUMP:\n"); for (i=0; i<4; i++) { dtar = *(unsigned int *)(crs+DTAR0-2*i); /* get dtar register */ nsegs = 1024-(dtar>>22); staddr = (dtar & 0x003F0000) | ((dtar & 0xFFFF)<<1); TRACEA("DTAR %d: register=%o, size=%d, seg table addr=%o\n", i, dtar, nsegs, staddr); for (seg=0; seg>22); TRACEA("Segment '%o: F=%d, R1:%o R3:%o PT = %o\n", segno, (sdw>>15)&1, (sdw>>12)&7, (sdw>>6)&7, ptaddr); xxx = (sdw>>16)&0x3F; if (xxx != 0) TRACEA("WARNING: X=%o\n", xxx); if (ptaddr != 0) for (page=0; page<64; page++) { pmaddr = (ptaddr<<6) + page; pte = mem[pmaddr]; TRACEA(" Seg %o page %d: pmaddr=%o, V=%d R=%d U=%d S=%d PPA=%o\n", segno, page, pmaddr, pte>>15, (pte>>14)&1, (pte>>13)&1, (pte>>12)&1, pte&0xFFF); } staddr += 2; } } } /* NOTE: this needs get16r0 */ unsigned short dumppcb(unsigned short pcb) { short i; unsigned short nextpcb; ea_t ea; ea = MAKEVA(crs[OWNERH],pcb); TRACEA("PCB %06o:\n", pcb); TRACEA(" Level: %o\n", get16(ea+0)); nextpcb = get16(ea+1); TRACEA(" Link: %o\n", nextpcb); TRACEA(" Wait list: %o/%o\n", get16(ea+2), get16(ea+3)); TRACEA(" Abort flags: %o\n", get16(ea+4)); TRACEA(" CPU flags: %o\n", get16(ea+5)); TRACEA(" 6,7 (reserved): %o %o\n", get16(ea+6), get16(ea+7)); TRACEA(" Elapsed timers: %d %d\n", get16(ea+8), get16(ea+9)); TRACEA(" DTAR 2 & 3: %o|%o %o|%o\n", get16(ea+10), get16(ea+11), get16(ea+12), get16(ea+13)); TRACEA(" Process interval timer: %o\n", get16(ea+14)); TRACEA(" 15 (reserved): %o\n", get16(ea+15)); TRACEA(" Save mask: %o\n", get16(ea+16)); TRACEA(" Keys: %o\n", get16(ea+17)); for (i=0; i<16; i++) { TRACEA(" %06o %06o", get16(ea+18+2*i), get16(ea+19+2*i)); if (i==7 || i==15) TRACEA("\n"); } TRACEA(" R0 Fault vec: %o/%o\n", get16(ea+50), get16(ea+51)); TRACEA(" R1 Fault vec: %o/%o\n", get16(ea+52), get16(ea+53)); TRACEA(" R2 Fault vec: %o/%o\n", get16(ea+54), get16(ea+55)); TRACEA(" R3 Fault vec: %o/%o\n", get16(ea+56), get16(ea+57)); TRACEA(" PG Fault vec: %o/%o\n", get16(ea+58), get16(ea+59)); TRACEA(" Conc. Stack Hdr: %o %o %o\n", get16(ea+60), get16(ea+61), get16(ea+62)); TRACEA("\n"); return nextpcb; } /* stack extension, called with size of extension in 16-bit words, returns a pointer to the extension */ ea_t stex(unsigned int extsize) { short stackrootseg; ea_t stackrootp, stackfp; if (extsize & 1) extsize++; stackrootseg = get16((*(unsigned int *)(crs+SB))+1); stackrootp = MAKEVA(stackrootseg,0); stackfp = get32(stackrootp); if (stackfp == 0) fatal("stex: stack free pointer is zero"); /* find a stack segment where this extension will fit */ while (stackfp != 0 && (stackfp & 0xFFFF) + extsize > 0xFFFF) { stackfp = get32(MAKEVA(stackfp>>16, 2)); TRACE(T_INST, " no room for frame, extension pointer is %o/%o\n", stackfp>>16, stackfp&0xFFFF); } if (stackfp == 0) fault(STACKFAULT, 0, MAKEVA(stackrootseg,0) | (RP & RINGMASK32)); /* update the stack free pointer */ put32((stackfp+extsize) & ~RINGMASK32, stackrootp); TRACE(T_INST, " stack extension is at %o/%o\n", stackfp>>16, stackfp&0xffff); return stackfp; } /* for PRTN, load values into temps first so that if any faults occur, PRTN can be restarted XXX: the order of this look wrong - stack free pointer shouldn't be updated if a fault occurs fetching base registers */ void prtn() { unsigned short stackrootseg; ea_t newrp,newsb,newlb; unsigned short keys; stackrootseg = get16(*(unsigned int *)(crs+SB)+1); put32(*(unsigned int *)(crs+SB), MAKEVA(stackrootseg,0)); newrp = get32(*(unsigned int *)(crs+SB)+2); newsb = get32(*(unsigned int *)(crs+SB)+4); newlb = get32(*(unsigned int *)(crs+SB)+6); keys = get16(*(unsigned int *)(crs+SB)+8); RP = newrp | (RP & RINGMASK32); *(unsigned int *)(crs+SB) = newsb; *(unsigned int *)(crs+LB) = newlb; newkeys(keys & 0177770); TRACE(T_INST, " Finished PRTN, RP=%o/%o\n", RPH, RPL); } /* NOTE: the brsave array contains copies of the PB, SB, and LB base registers at the time of the PCL, to compute argument effective addresses. If the PCL faults during argument transfer, the ARGT instruction will reload this array from the new stack frame header. */ ea_t pclea(unsigned short brsave[6], ea_t rp, unsigned short *bitarg, short *store, short *lastarg) { unsigned short ibr, br, ea_s, ea_w, bit, a; unsigned int utempl; ea_t ea, iwea; iwea = 0; *store = 0; utempl = get32(rp); ibr = utempl >> 16; a = utempl & 0xFFFF; bit = (ibr >> 12) & 0xF; *store = ibr & 0100; *lastarg = ibr & 0200; br = (ibr >> 8) & 3; TRACE(T_PCL, " PCLAP @ %o/%o, ibr=%o, br=%d, i=%d, bit=%d, store=%d, lastarg=%d, a=%o\n", rp>>16, rp&0xffff, ibr, br, (ibr & 004000) != 0, bit, (*store != 0), (*lastarg != 0), a); if (br != 3) { ea_s = brsave[2*br] | (RPH & RINGMASK16); ea_w = brsave[2*br + 1]; ea_w += a; } else { ea_s = crs[XBH] | (RPH & RINGMASK16); ea_w = crs[XBL]; ea_w += a; if (crs[XB] & EXTMASK16) { bit += crs[X]; if (bit > 15) { bit -= 16; ea_w++; } if (bit == 0) ea_s &= ~EXTMASK16; } } ea = MAKEVA(ea_s, ea_w); if (bit) ea |= EXTMASK32; TRACE(T_PCL, " PCLAP ea = %o/%o, bit=%d\n", ea_s, ea_w, bit); if (ibr & 004000) { /* indirect */ if (ea & 0x80000000) fault(POINTERFAULT, ea>>16, 0); /* XXX: faddr=0? */ iwea = ea; ea = get32(iwea) | (RP & RINGMASK32); TRACE(T_PCL, " Indirect pointer is %o/%o\n", ea>>16, ea & 0xFFFF); /* Case 35 wants a fault when the IP is 120000/0: #28307386 24000/27740: PCL 24000/30045 ecb @ 24000/30045, access=7 ecb.pb: 4000/30041 ecb.framesize: 16 ecb.stackroot 4000 ecb.argdisp: 12 ecb.nargs: 1 ecb.lb: 4000/60000 ecb.keys: 14000 stack free pointer: 4000/70000, current ring=20000 before update, stackfp=24000/70000, SB=0/0 new SB=24000/70000 new RP=24000/30041 Entered ARGT Transferring arg, 1 left, Y=12 PCLAP ibr=4300, br=0, i=1, bit=0, store=1, lastarg=1, a=27117 PCLAP ea = 24000/27117, bit=0 Indirect pointer is 120000/0 After indirect, PCLAP ea = 120000/0, bit=0 Storing arg, 1 left, Y=12 Stored #29019968: fault '62, fcode=0, faddr=0/0, faultrp=24000/1356 [ Failure Report ] address instruction scope loop 024000/027740 021410/030045 024000/027547 Actual: NO POINTER FAULT Expected: POINTER FAULT But, Case 37 doesn't want a fault: #28891410 24000/30760: PCL 24000/31065 ecb @ 24000/31065, access=7 ecb.pb: 4000/31054 ecb.framesize: 16 ecb.stackroot 4000 ecb.argdisp: 12 ecb.nargs: 1 ecb.lb: 4000/60000 ecb.keys: 14000 stack free pointer: 4000/70000, current ring=20000 before update, stackfp=24000/70000, SB=0/0 new SB=24000/70000 new RP=24000/31054 Entered ARGT Transferring arg, 1 left, Y=12 PCLAP ibr=4300, br=0, i=1, bit=0, store=1, lastarg=1, a=27117 PCLAP ea = 24000/27117, bit=0 Indirect pointer is 120000/0 #28891410: fault '77, fcode=120000, faddr=24000/27117, faultrp=24000/30760 0003 Unexpected POINTER fault. Returning to 030760 Changing <= to < in the ring comparison makes Case 37 work and Case 35 fail. */ #if 0 /* NOTE: this code causes every command to give a pointer fault: #281037430 [SUPPCB 100100] SB: 6003/754 LB: 6/100112 PGMAPA XB: 6/100272 6/100367: 11415 A='201/129 B='11/9 X=2/2 Y=20/16 C=0 L=0 LT=0 EQ=0 K=14000 M=100177 opcode=00400, i=0, x=0 2-word format, a=22 new opcode=00403, y=0, br=1, ixy=0, xok=1 2-word format, a=1142 new opcode=01002, y=1, br=2, ixy=3, xok=1 Long indirect, ea=60013/24350, ea_s=60013, ea_w=24350 After indirect, ea_s=60013, ea_w=60422, bit=0 EA: 60013/60422 MISSIN PCL MISSIN ecb @ 60013/60422, access=6 ecb.pb: 13/60404 ecb.framesize: 14 ecb.stackroot 0 ecb.argdisp: 12 ecb.nargs: 1 ecb.lb: 13/60022 ecb.keys: 14000 stack root in ecb was zero, stack root from caller is 6002 stack free pointer: 6002/3770, current ring=3, new ring=3 before update, stackfp=66002/3770, SB=66002/1434 new SB=66002/3770 Entering 64V mode, keys=14000 new RP=60013/60404 Entered ARGT Transferring arg, 1 left, Y=12 PCLAP ibr=4700, br=1, i=1, bit=0, store=1, lastarg=1, a=143 PCLAP ea = 66002/1577, bit=0 Indirect pointer is 160000/0 fault '77, fcode=160000, faddr=66002/1577, faultrp=60013/60404 fault: PX enabled, pcbp=65/100100, cs first=1026, next=1026, last=1064 fault: updated cs next=1034 Entering 64V mode, keys=14000 fault: jumping to fault table entry at RP=60013/61212 */ if (ea & 0x80000000) if ((ea & 0xFFFF0000) != 0x80000000) if ((ea & 0x1FFF0000) || ((RP & RINGMASK32) <= (ea & RINGMASK32))) fault(POINTERFAULT, ea>>16, iwea); #else if ((ea & 0x80000000) && (ea & 0x1FFF0000)) fault(POINTERFAULT, ea>>16, iwea); #endif bit = 0; /* CPU.PCL Case 33 shows that the bit field is not stored in the stack frame for a 3-word indirect pointer, even though the E bit remains set. NOTE: this comment is screwy, and probably reflects a microcode bug on certain machines. If this code is disabled, the SAC command doesn't work: SAC X JIMMY:PDALURW sets permission as JIMMY:PAUW NOTE 2: turns out that this code was fetching the bit offset from ea+2 instead of from iwea+2, which could account for lots of weirdness! */ if (ea & EXTMASK32) bit = get16(iwea+2) >> 12; TRACE(T_PCL, " After indirect, PCLAP ea = %o/%o, bit=%d\n", ea>>16, ea & 0xFFFF, bit); } if (!*store) { #if 0 /* Case 36 wants a pointer fault here... See Case 31, 34, 37 also */ if (ea & 0x80000000) if ((ea & 0xFFFF0000) != 0x80000000) if ((ea & 0x1FFF0000) || ((RP & RINGMASK32) <= (ea & RINGMASK32))) fault(POINTERFAULT, ea>>16, iwea); #else if (ea & 0x80000000) fault(POINTERFAULT, ea>>16, iwea); #endif *(unsigned int *)(crs+XB) = ea; crs[X] = bit; } if (bit) { ea |= EXTMASK32; *bitarg = bit; } else { *bitarg = 0; } return ea; } pcl (ea_t ecbea) { short i,j; unsigned short access; unsigned short ecb[9]; short bit; /* bit offset for args */ ea_t newrp; /* start of new proc */ ea_t ea; ea_t rp; /* return pointer */ short stackrootseg; short stacksize; short store; /* true if store bit set on AP */ short storedargs; /* # of arguments that have been stored */ short lastarg; /* true if "last" bit seen in PCL arglist */ ea_t argp; /* where to store next arg in new frame */ ea_t stackfp; /* new stack frame pointer */ pa_t pa; /* physical address of ecb */ unsigned short brsave[6]; /* old PB,SB,LB */ unsigned short utempa; unsigned char tnstring[500]; unsigned short tnlen, tnword; unsigned char tnchar; #define UNWIND_ MAKEVA(013,0106577) #if 0 if (ecbea == UNWIND_) { printf("pcl: calling unwind_ at %d\n", instcount); savetraceflags = ~TB_MAP; } #endif /* get segment access; mapva ensures either read or gate */ pa = mapva(ecbea, PACC, &access, RP); TRACE(T_PCL, " ecb @ %o/%o, access=%d\n", ecbea>>16, ecbea&0xFFFF, access); /* get a copy of the ecb. gates must be aligned on a 16-word boundary, therefore can't cross a page boundary, and mapva has already ensured that the ecb page is resident. For a non-gate ecb, check to see if it crosses a page boundary. If not, a memcpy is okay; if it does, do fetches */ if (access == 1) { if ((ecbea & 0xF) != 0) fault(ACCESSFAULT, 0, ecbea); memcpy(ecb,mem+pa,sizeof(ecb)); } else if ((pa & 01777) <= 01750) { memcpy(ecb,mem+pa,sizeof(ecb)); } else { *(double *)(ecb+0) = get64(ecbea+0); *(double *)(ecb+4) = get64(ecbea+4); ecb[8] = get16(ecbea+8); } /* XXX: P400 docs say "no ring change takes place if not a gate"; does that mean that if R0 calls a R3 ecb, it's still in R0, or should it be weakened to the ecb ring? (Case 24 of CPU.PCL indicates it should be weakened) */ TRACE(T_PCL, " ecb.pb: %o/%o\n ecb.framesize: %d\n ecb.stackroot %o\n ecb.argdisp: %o\n ecb.nargs: %d\n ecb.lb: %o/%o\n ecb.keys: %o\n", ecb[0], ecb[1], ecb[2], ecb[3], ecb[4], ecb[5], ecb[6], ecb[7], ecb[8]); newrp = *(unsigned int *)(ecb+0); if (access != 1) #if 0 newrp = (newrp & ~RINGMASK32) | (RP & RINGMASK32); /* no ring change */ #else newrp = newrp | (RP & RINGMASK32); /* Case 24 indicates to weaken ring */ #endif /* setup stack frame NOTE: newrp must be used here so that accesses succeed when calling an inner ring procedure. */ stackrootseg = ecb[3]; if (stackrootseg == 0) { stackrootseg = get16((*(unsigned int *)(crs+SB)) + 1); TRACE(T_PCL, " stack root in ecb was zero, stack root from caller is %o\n", stackrootseg); } #if 0 /* NOTE: higher revs of Primos establish stacks in segment zero during coldstart and bomb if this check is enabled */ if (stackrootseg == 0) fatal("Stack base register root segment is zero"); #endif stackfp = get32r(MAKEVA(stackrootseg,0), newrp); #if 0 if (stackfp == 0) fatal("Stack free pointer is zero"); #endif TRACE(T_PCL, " stack free pointer: %o/%o, current ring=%o, new ring=%o\n", stackfp>>16, stackfp&0xFFFF, (RPH&RINGMASK16)>>13, (newrp&RINGMASK32)>>29); stacksize = ecb[2]; /* if there isn't room for this frame, check the stack extension pointer */ if ((stackfp & 0xFFFF) + stacksize > 0xFFFF) { stackfp = get32r(MAKEVA(stackrootseg,2), newrp); TRACE(T_PCL, " no room for frame, extension pointer is %o/%o\n", stackfp>>16, stackfp&0xFFFF); /* XXX: faddr may need to be the last segment tried when this is changed to loop. CPU.PCL Case 26 wants fault address word number to be 3; set EHDB */ if (stackfp == 0 || (stackfp & 0xFFFF) + stacksize > 0xFFFF) fault(STACKFAULT, 0, MAKEVA(stackrootseg,0) | (newrp & RINGMASK32)); } /* setup the new stack frame at stackfp NOTE: Ring must be added to stackfp so that any page faults that occur while setting up the stack will have the correct ring for CPU.PCL tests */ stackfp |= (newrp & RINGMASK32); put16r(0, stackfp, newrp); put16r(stackrootseg, stackfp+1, newrp); put32r(RP, stackfp+2, newrp); put32r(*(unsigned int *)(crs+SB), stackfp+4, newrp); put32r(*(unsigned int *)(crs+LB), stackfp+6, newrp); put16r(crs[KEYS], stackfp+8, newrp); put16r(RPL, stackfp+9, newrp); #if 0 /* LATER: save caller's base registers for address calculations, and pass to argt */ if (ecb[5] > 0) { brsave[0] = RPH; brsave[1] = 0; brsave[2] = crs[SBH]; brsave[3] = crs[SBL]; brsave[4] = crs[LBH]; brsave[5] = crs[LBL]; } #endif /* load new execution state from ecb */ TRACE(T_PCL, " before update, stackfp=%o/%o, SB=%o/%o\n", stackfp>>16, stackfp&0xFFFF, crs[SBH], crs[SBL]); if (access == 1) *(unsigned int *)(crs+SB) = stackfp; else *(unsigned int *)(crs+SB) = (stackfp & ~RINGMASK32) | (RP & RINGMASK32); TRACE(T_PCL, " new SB=%o/%o\n", crs[SBH], crs[SBL]); *(unsigned int *)(crs+LB) = *(unsigned int *)(ecb+6); newkeys(ecb[8] & 0177770); /* update the stack free pointer; this has to wait until after all memory accesses, in case of stack page faults (PCL restarts). Some ucode versions incorrectly store the ring in the free pointer if the extension pointer was followed. Set EHDB to suppress this spurious DIAG error. */ ea = MAKEVA(stackrootseg,0) | (newrp & RINGMASK32); put32r((stackfp+stacksize) & ~RINGMASK32, ea, newrp); /* transfer arguments if arguments are expected. There is no documentation explaining how the Y register is used during argument transfer, so: Y(high) = stack frame offset to store next argument Y(low) = number of arguments left to transfer (JW hack!) */ /* if a page fault occurs during argument transfer, we need to make sure to use the current RP, which points to the ARGT instruction. Otherwise, the return from the page fault is to the PCL instruction, which has already completed at this point */ RP = newrp; prevpc = RP; TRACE(T_PCL, " new RP=%o/%o\n", RPH, RPL); if (ecb[5] > 0) { crs[Y] = ecb[4]; crs[YL] = ecb[5]; crs[XL] = 0; argt(); /* if tracing terminal output, display it now. This has to occur after ARGT has setup the argument pointers. Note that if a fault occurs while accessing the arguments here, it will return to ARGT in the main emulator loop and nothing will be logged. */ if (TRACEUSER && ((ecbea & 0xFFFFFFF) == tnou_ea || (ecbea & 0xFFFFFFF) == tnoua_ea)) { ea = *(unsigned int *)(crs+SB) + ecb[4]; utempa = get16(get32(ea)); /* 1st arg: userid */ if (utempa == ((crs[OWNERL]>>6) & 0xff)) { ea = ea + 6; /* 3rd arg: length */ tnlen = get16(get32(ea)); ea = get32(ea-3); /* 2nd arg: string */ j = 0; for (i=0; i> 8) & 0x7f; } if (j > sizeof(tnstring)-5) j = sizeof(tnstring)-5; if (tnchar >= ' ' && tnchar < 0177) tnstring[j++] = tnchar; else { sprintf((char *)(tnstring+j), "%03o ", tnchar); j = j+4; } } tnstring[j] = 0; TRACE(T_TERM, " TNOUx user %d, len %d: %s\n", utempa, tnlen, tnstring); } } RPL++; /* advance real RP past ARGT after argument transfer */ } } /* for ARGT: Registers: - RP points to the ARGT instruction - SB points to the new stack frame - LB is for the called procedure - Y is new frame offset of the next argument - YL is the number of arguments left to transfer (HACK!) - X is used to store the EA bit offset (for unstored AP) - XL is used to store the "lastarg seen" flag - XB is used to store the EA seg/word (for unstored AP) Stack frame: - PB points to the next argument template to be evaluated - SB is the caller's saved SB - LB is the caller's saved LB */ argt() { unsigned short brsave[6]; unsigned short argsleft, argdisp, bit; short lastarg, store; unsigned int utempl; unsigned short ecby; /* last offset where ecb temp ea was stored */ ea_t ea, stackfp, rp, ecbea; unsigned short advancepb, advancey; TRACE(T_PCL, "Entered ARGT\n"); /* stackfp is the new stack frame, rp is in the middle of argument templates and is advanced after each transfer */ stackfp = *(unsigned int *)(crs+SB); rp = get32(stackfp+2); /* reload the caller's base registers for EA calculations */ brsave[0] = rp >> 16; brsave[1] = 0; *(double *)(brsave+2) = get64(stackfp+4); argdisp = crs[Y]; argsleft = crs[YL]; while (argsleft > 0 || !crs[XL]) { TRACE(T_PCL, " Transferring arg, %d left, Y=%o\n", argsleft, crs[Y]); advancey = 0; if (crs[XL]) { ea = 0x80000000; store = 1; advancepb = 0; } else { ea = pclea(brsave, rp, &bit, &store, &lastarg) | (RP & RINGMASK32); advancepb = 1; } if (argsleft > 0 && store) { TRACE(T_PCL, " Storing arg, %d left, Y=%o\n", argsleft, crs[Y]); /* NOTE: some version of ucode only store 16 bits for omitted args. Set EHDB to prevent this error. Case 29 wants ring/E-bits preserved for omitted arguments */ #if 0 #define OMITTEDARG_MASK 0x8FFFFFFF #else #define OMITTEDARG_MASK 0xEFFFFFFF #endif if ((ea & 0x8FFF0000) == 0x80000000) { ea = ea & OMITTEDARG_MASK; /* strip ring &/or E bits */ ea = MAKEVA(0100000,0); put32(ea, stackfp+crs[Y]); } else { put32(ea, stackfp+crs[Y]); if (ea & EXTMASK32) put16(bit<<12, stackfp+crs[Y]+2); } TRACE(T_PCL, " Stored arg IP at %o/%o\n\n", stackfp>>16, (stackfp+crs[Y]) & 0xFFFF); argsleft--; advancey = 1; } /* advance rp/pb in new stack frame past this template, and advance Y to the next arg displacement in the stack. Y has to be advanced last because the PB store may fault. If it does, the ARGT starts over, and this argument will have to be transferred again. */ if (advancepb) { rp += 2; put32(rp, stackfp+2); crs[XL] = lastarg; } if (advancey) { crs[Y] += 3; crs[YL]--; } } TRACE(T_PCL, " Return RP=%o/%o\n", rp>>16, rp&0xffff); } /* process exchange register save: saves the current register set to the process pcb. NOTES: - adding "wait" arg and only saving base registers fixed Case 63 */ pxregsave(unsigned short wait) { ea_t pcbp, regp; unsigned short i, mask; /* if registers aren't owned or are already saved, return */ if (crs[OWNERL] == 0) { TRACE(T_PX, "pxregsave: OWNERL is zero: no save\n"); return; } if (crs[KEYS] & 1) { TRACE(T_PX, "pxregsave: SD=1: no save\n"); return; } TRACE(T_PX, "pxregsave: saving registers owned by %o (wait=%d)\n", crs[OWNERL], wait); /* NB: I think hardware might save the base registers in a predictable location in the PCB register save area, rather than compressed in a random order, because IIRC, Primos sometimes looks at a waiting process' PB to see where it is waiting */ pcbp = *(unsigned int *)(crs+OWNER); regp = pcbp+PCBREGS; mask = 0; for (i=(wait?014:0); i<020; i++) { if (crsl[i] != 0) { mask |= bitmask16[i+1]; put32r0(crsl[i], regp); regp += 2; } } put16r0(mask, pcbp+PCBMASK); put32r0(*(unsigned int *)(crs+TIMER), pcbp+PCBIT); /* save interval timer */ crs[KEYS] |= 1; /* set save done bit */ put16r0(crs[KEYS], pcbp+PCBKEYS); } /* pxregload: load pcbp's registers from their pcb to the current register set, set OWNERL NOTE: RP must be set by the caller since this happens whenever a process is dispatched - not just when registers are loaded */ pxregload (ea_t pcbp) { ea_t regp; unsigned short i, mask, modals; TRACE(T_PX, "pxregload loading registers for process %o/%o\n", pcbp>>16, pcbp&0xFFFF); regp = pcbp+PCBREGS; mask = get16r0(pcbp+PCBMASK); for (i=0; i<020; i++) { if (mask & bitmask16[i+1]) { crsl[i] = get32r0(regp); regp += 2; } else { crsl[i] = 0; } } newkeys(get16r0(pcbp+PCBKEYS)); *(unsigned int *)(crs+DTAR2) = get32r0(pcbp+PCBDTAR2); *(unsigned int *)(crs+DTAR3) = get32r0(pcbp+PCBDTAR3); *(unsigned int *)(crs+TIMER) = get32r0(pcbp+PCBIT); crs[OWNERL] = pcbp & 0xFFFF; TRACE(T_PX, "pxregload: registers loaded, ownerl=%o, modals=%o\n", crs[OWNERL], crs[MODALS]); } /* selects a register set and sets modals and crs/crsl to that register set. pcbw is OWNERL of the process that will use the register set. */ ors(unsigned short pcbw) { static short regq[] = {0,1,2,3,4,5,6,7}; short i,rx; unsigned short ownerl, currs, rs; short ownedx, freex, savedx; unsigned short modals; #define NUREGS 8 currs = (crs[MODALS] & 0340) >> 5; TRACE(T_PX, "ors: currs = %d, modals = %o\n", currs, crs[MODALS]); #if 0 /* this is the code for handling more than 2 register sets. It is "smarter" than the Prime u-code, so probably doesn't pass DIAG tests. I haven't tested whether the extra overhead of keeping a LRU queue for register sets is worth it vs. the simpler Prime way. One problem is that different models had different #'s of registers, and the emulator needs a table of these values. Either that, or it probably could initialize all register sets using the first (user) register set as a template when process exchange is enabled. (Primos only initializes the number of user register sets that a particular model actually has.) */ ownedx = freex = savedx = -1; for (rx = NUREGS-1; rx >= 0; rx--) { /* search LRU first */ rs = regq[rx]; TRACE(T_PX, "ors: check rs %d: owner=%o/%o, saved=%d\n", rs, regs.sym.userregs[rs][21]>>16, regs.sym.userregs[rs][21] & 0xFFFF, regs.sym.userregs[rs][20] & 1); ownerl = regs.sym.userregs[rs][21] & 0xFFFF; /* OWNERH/OWNERL */ /* NOTE: could stick breaks after a rs is found, except that for debug, I wanted to make sure a process never owns 2 register sets */ if (ownerl == pcbw) { if (ownedx >= 0) fatal("Process owns more than 1 register set!"); ownedx = rx; } else if (ownerl == 0) freex = rx; else if (savedx < 0 && regs.sym.userregs[rs][20] & 1) /* KEYS/MODALS */ savedx = rx; } if (ownedx >= 0) { rx = ownedx; TRACE(T_PX, "ors: using owned reg set %d\n", regq[rx]); } else if (freex >= 0) { rx = freex; TRACE(T_PX, "ors: using free reg set %d\n", regq[rx]); } else if (savedx >= 0) { rx = savedx; TRACE(T_PX, "ors: using saved reg set %d\n", regq[rx]); } else { rx = NUREGS-1; /* least recently used */ TRACE(T_PX, "ors: no reg set found; using %d\n", regq[rx]); } rs = regq[rx]; if (rs > NUREGS) fatal("ors: rs chosen is too big"); modals = (crs[MODALS] & ~0340) | (rs << 5); /* put the register set selected at the front of the queue */ for (i=rx; i>0; i--) regq[i] = regq[i-1]; regq[0] = rs; #else modals = crs[MODALS] ^ 040; rs = (modals & 0340) >> 5; #endif crsl = regs.sym.userregs[rs]; crs = (void *)crsl; crs[MODALS] = modals; TRACE(T_PX, "ors: rs = %d, reg set in modals = %d, modals = %o\n", rs, (crs[MODALS] & 0340)>>5, crs[MODALS]); #if 0 if (rs > 1) savetraceflags = ~0; #endif } /* the process exchange dispatcher's job is to: - determine the highest priority process ready to run - find a register set to use - save the registers if they are currently owned and not already saved - load this process' registers into the register set - clear the save done bit in keys - cause a process fault if any of this process' pcb abort flags are set If no process can be found to run, the dispatcher idles and waits for an external interrupt. */ dispatcher() { ea_t pcbp, rlp; unsigned short pcbw; /* pcb word address */ unsigned short rsnum; unsigned short rlbol; unsigned short utempa; crs[MODALS] |= 0100000; /* ISG says dispatcher enables int. */ if (regs.sym.pcba != 0) { pcbp = MAKEVA(crs[OWNERH], regs.sym.pcba); TRACE(T_PX, "disp: dispatching PPA, pcba=%o, pla=%o\n", regs.sym.pcba, regs.sym.pla); } else if (regs.sym.pcbb != 0) { pcbp = MAKEVA(crs[OWNERH], regs.sym.pcbb); regs.sym.pcba = regs.sym.pcbb; regs.sym.pla = regs.sym.plb; regs.sym.pcbb = 0; TRACE(T_PX, "disp: dispatching PPB, pcba=%o, pla=%o\n", regs.sym.pcba, regs.sym.pla); } else { TRACE(T_PX, "disp: scanning RL\n"); if (regs.sym.pla != 0) rlp = MAKEVA(crs[OWNERH], regs.sym.pla); else if (regs.sym.plb != 0) fatal("disp: pla is invalid, plb is valid?"); else fatal("dispatch: both pla and plb are zero; can't locate ready list"); while(1) { rlbol = get16r0(rlp); if (rlbol != 0) break; rlp += 2; } if (rlbol == 1) goto idle; pcbp = MAKEVA(crs[OWNERH], rlbol); regs.sym.pcba = rlbol; regs.sym.pla = rlp & 0xFFFF; } pcbw = pcbp & 0xFFFF; TRACE(T_PX, "disp: process %o/%o selected\n", pcbp>>16, pcbw); #if 0 /* debug tests to verify ready list structure NOTE: this test causes some DIAGS to fail, so has been disabled */ rlp = MAKEVA(crs[OWNERH], regs.sym.pla); rlbol = get16r0(rlp); if (rlbol != pcbw) { printf("disp: rl bol=%o, != process dispatched=%o\n", rlbol, pcbw); fatal(NULL); } #if 0 /* NOTE: if a running process has its priority changed (in the pcb), this test fails, so it has been disabled */ if (get16r0(pcbp+PCBLEV) != regs.sym.pla) { printf("disp: dispatched process level=%o, != pla=%o\n", get16r0(pcbp+PCBLEV), regs.sym.pla); fatal(NULL); } #endif #endif /* pcbp now points to the process we're going to run (pcbw is the 16-bit word number that will go in OWNERL). By definition, this process should not be on any wait lists, so pcb.waitlist(seg) should be zero. Check it */ #if 1 /* NOTE: CPU.PXT1 can fail with this enabled */ utempa = get16r0(pcbp+PCBWAIT); if (utempa != 0) { printf("disp: pcb %o/%o selected, but wait segno = %o\n", pcbp>>16, pcbp&0xFFFF, utempa); fatal(NULL); } #endif /* save RP in current register set before possibly switching */ *(unsigned int *)(crs+PB) = RP; /* find a register set for this process */ #if 0 rsnum = (crs[MODALS] & 0340)>>5; if (crs[OWNERL] != pcbw && crs[OWNERL] != 0) if (regs.rs16[rsnum ^ 1][OWNERL] == 0 || (regs.rs16[rsnum ^ 1][OWNERL] == pcbw && (regs.rs16[rsnum ^ 1][KEYS] & 1)) || ((regs.rs16[rsnum ^ 1][KEYS] & 1) && !(crs[KEYS] & 1))) ors(); #endif /* Cases that fail w/o any register switch: - 3 err dispatch - 5 reg data not saved correctly - 7 crs.modals - 11 crs.modals - 13 crs.modals - 17 err dispatch - 19 crs.modals - 25 crs.modals - 27 err dispatch - 31 crs.modals - 45 err dispatch - 47 crs.modals - 49 err dispatch - 51 crs.modals - 61 crs.modals - 63 ors.X wrong - 81 save mask wrong - 83 crs.modals Cases that fail with simple register switch below: - 9 crs.modals - 23 crs.modals - 29 crs.modals * - 31 saved X wrong * - 83 crs.modals - 85 bad - 89 crs.modals - switches register sets - 90 crs.modals Adding "&& crs[OWNERL] != 0" and setting this to zero in IRTN if PPA is invalid fixes case 81 w/o breaking any other tests. */ #if 1 if (crs[OWNERL] != pcbw && crs[OWNERL] != 0) ors(pcbw); #endif /* If the selected register set is owned and hasn't been saved, save it before taking it */ if (crs[OWNERL] == pcbw) { TRACE(T_PX, "disp: reg set already owned by %o: no save or load\n", crs[OWNERL]); /* NOTE: call newkeys to make sure amask gets set correctly! Otherwise, 32R mode programs are flaky */ newkeys(crs[KEYS]); } else { pxregsave(0); pxregload(pcbp); } RP = *(unsigned int *)(crs+PB); crs[PBL] = 0; crs[KEYS] &= ~3; /* erase "in dispatcher" and "save done" */ TRACE(T_PX, "disp: returning from dispatcher, running process %o/%o at %o/%o, modals=%o, ppa=%o, pla=%o, ppb=%o, plb=%o\n", crs[OWNERH], crs[OWNERL], RPH, RPL, crs[MODALS], regs.sym.pcba, regs.sym.pla, regs.sym.pcbb, regs.sym.plb); /* if this process' abort flags are set, clear them and take process fault */ utempa = get16r0(pcbp+PCBABT); if (utempa != 0) { TRACE(T_PX, "dispatch: abort flags for %o are %o\n", crs[OWNERL], utempa); //printf("dispatch: abort flags for %o are %o\n", crs[OWNERL], utempa); put16r0(0, pcbp+PCBABT); fault(PROCESSFAULT, utempa, 0); fatal("fault returned after process fault"); } return; idle: fatal("dispatch idle..."); } /* take me off the ready list, setting my pcb link pointer to the arg passed in. The dispatcher should always be entered after this routine. */ unready (ea_t waitlist, unsigned short newlink) { unsigned short level, bol, eol; unsigned int rl; ea_t rlp, pcbp; #if 0 /* this fails with rev 23.4: Fatal error: instruction #86286965 at 6/15274 UNLOAD+'120: 315 1400 owner=71600 DUMPCB, keys=14000, modals=37 unready: pcba mismatch */ if (regs.sym.pcba != crs[OWNERL]) fatal("unready: pcba mismatch"); #endif pcbp = *(ea_t *)(crs+OWNER); rlp = MAKEVA(crs[OWNERH], regs.sym.pla); rl = get32r0(rlp); bol = rl >> 16; eol = rl & 0xFFFF; #if 0 /* this fails with rev 23.4: rlp=240/136, bol=100500, eol=100500, pcbp=240/71600, pla=136, pcba=100500 Fatal error: instruction #86212270 at 6/15274 UNLOAD+'120: 315 1400 owner=71600 DUMPCB, keys=14000, modals=77 unready: I'm not first on the ready list */ if (bol != (pcbp & 0xFFFF)) { printf("rlp=%o/%o, bol=%o, eol=%o, pcbp=%o/%o, pla=%o, pcba=%o\n", rlp>>16, rlp&0xFFFF, bol, eol, pcbp>>16, pcbp&0xFFFF, regs.sym.pla, regs.sym.pcba); fatal("unready: I'm not first on the ready list"); } #endif if (bol == eol) { bol = 0; eol = 0; } else { bol = get16r0(pcbp+1); } rl = (bol<<16) | eol; put32r0(rl, rlp); /* update ready list */ TRACE(T_PX, "unready: new rl bol/eol = %o/%o\n", rl>>16, rl&0xFFFF); put16r0(newlink, pcbp+1); /* update my pcb link */ put32r0(waitlist, pcbp+2); /* update my pcb wait address */ *(unsigned int *)(crs+PB) = RP; pxregsave(1); regs.sym.pcba = 0; } /* pcbp points to the pcb to put on the ready list begend is 1 for beginning, 0 for end returns true if this process is higher priority than me */ unsigned short ready (ea_t pcbp, unsigned short begend) { ea_t rlp; ea_t xpcbp; unsigned short bol,eol,pcbw,level,resched; unsigned int rl; if ((pcbp & 0xFFFF) == crs[OWNERL]) fatal("Tried to put myself on the ready list!"); #if 0 /* NOTE: restore drive b, boot 14314, halts here after login_server */ if (regs.sym.pcba != crs[OWNERL]) fatal("I'm running, but not regs.sym.pcba!"); #endif level = get16r0(pcbp+PCBLEV); rlp = MAKEVA(crs[OWNERH],level); rl = get32r0(rlp); TRACE(T_PX, "ready: pcbp=%o/%o\n", pcbp>>16, pcbp&0xFFFF); TRACE(T_PX, "ready: old bol/eol for level %o = %o/%o\n", level, rl>>16, rl&0xFFFF); pcbw = pcbp; /* pcb word number */ if ((rl>>16) == 0) { /* bol=0: this RL level was empty */ put32r0(0, pcbp+1); /* set link and wait SN in pcb */ rl = (pcbw<<16) | pcbw; /* set beg=end */ } else if (begend) { /* notify to beginning */ put32r0(rl & 0xFFFF0000, pcbp+1); /* set link and wait SN in pcb */ rl = (pcbw<<16) | rl&0xFFFF; /* new is bol, eol is unchanged */ } else { /* notify to end */ put32r0(0, pcbp+1); /* set link and wait SN in pcb */ xpcbp = MAKEVA(crs[OWNERH],rl&0xFFFF); /* get ptr to last pcb at this level */ put16r0(pcbw,xpcbp+1); /* set last pcb's forward link */ rl = (rl & 0xFFFF0000) | pcbw; /* rl bol is unchanged, eol is new */ } put32r0(rl, rlp); TRACE(T_PX, "ready: new bol/eol for level %o = %o/%o, pcb's link is %o\n", level, rl>>16, rl&0xFFFF, get16r0(pcbp+1)); /* is this new process higher priority than me? If so, return 1 so that the dispatcher is entered. If not, check for new plb/pcbb */ resched = 0; if (level < regs.sym.pla || (level == regs.sym.pla && begend)) { regs.sym.plb = regs.sym.pla; regs.sym.pcbb = regs.sym.pcba; regs.sym.pla = level; regs.sym.pcba = pcbw; resched = 1; } else if (level < regs.sym.plb || (level == regs.sym.plb && begend)) { regs.sym.plb = level; regs.sym.pcbb = pcbw; } return resched; } pwait() { ea_t ea; ea_t pcbp, prevpcbp; unsigned int utempl; unsigned int pcblevnext; /* pcb level and link */ unsigned short bol; unsigned short pcblev; unsigned short pcbnext; unsigned short mylev; short count; ea = apea(NULL); TRACE(T_PX, "%o/%o: wait on %o/%o, pcb %o, keys=%o, modals=%o\n", RPH, RPL, ea>>16, ea&0xFFFF, crs[OWNERL], crs[KEYS], crs[MODALS]); utempl = get32r0(ea); /* get count and BOL */ count = utempl>>16; /* count (signed) */ bol = utempl & 0xFFFF; /* beginning of wait list */ TRACE(T_PX, " wait list count was %d, bol was %o\n", count, bol); count++; if (count > 0) { /* I have to wait */ if (count == 1 && bol != 0) fatal("WAIT: count == 1 but bol != 0"); if (count > 1 && bol == 0) fatal("WAIT: count > 1 but bol == 0"); if (regs.sym.pcba == 0) fatal("WAIT: pcba is zero"); #if 0 /* enabling this causes rev 23.4 to fail: WAIT: pcba=100500 != ownerl=71600 Fatal error: instruction #86137885 at 6/15274 UNLOAD+'120: 315 1400 owner=71600 DUMPCB, keys=14000, modals=77 */ if (regs.sym.pcba != crs[OWNERL]) { printf("WAIT: pcba=%o != ownerl=%o\n", regs.sym.pcba, crs[OWNERL]); fatal(NULL); } #endif mylev = get16r0(*(ea_t *)(crs+OWNER)); if (bol != 0) { pcbp = MAKEVA(crs[OWNERH],bol); pcblevnext = get32r0(pcbp); pcblev = pcblevnext >> 16; } TRACE(T_PX, " my level=%o, pcblev=%o\n", mylev, pcblev); if (count == 1 || mylev < pcblev) { /* add me to the beginning */ utempl = (count<<16) | crs[OWNERL]; put32r0(utempl, ea); /* update semaphore count/bol */ } else { /* do a priority scan... */ while (pcblev <= mylev && bol != 0) { prevpcbp = pcbp; bol = pcblevnext & 0xFFFF; if (bol != 0) { pcbp = MAKEVA(crs[OWNERH],bol); pcblevnext = get32r0(pcbp); pcblev = pcblevnext >> 16; } } put16r0(crs[OWNERL], prevpcbp+PCBLINK); put16r0(*(unsigned short *)&count, ea); /* update count */ TRACE(T_PX, " new count=%d, new link for pcb %o=%o, bol=%o\n", count, prevpcbp&0xffff, crs[OWNERL], bol); } unready(ea, bol); dispatcher(); } else put16(*(unsigned short *)&count, ea); /* just update count and continue */ } /* this handles several forms of notify: - 001210 = NFYE - 001211 = NFYB - 001214 = INEN, notify to end, no CAI - 001215 = INBN, notify to beg, no CAI - 001216 = INEC, notify to end, CAI - 001217 = INBC, notify to beg, CAI */ nfy(unsigned short inst) { unsigned short resched, begend, bol, rsnum; ea_t ea, pcbp; unsigned int utempl; short scount; static char *nfyname[] = {"nfye","nfyb"," "," ","inen","inbn","inec","inbc"}; resched = 0; begend = inst & 1; if (regs.sym.pcba != crs[OWNERL]) { printf("NFY: regs.pcba = %o, but crs[OWNERL] = %o\n", regs.sym.pcba, crs[OWNERL]); fatal(NULL); } ea = apea(NULL); utempl = get32r0(ea); /* get count and BOL */ scount = utempl>>16; /* count (signed) */ bol = utempl & 0xFFFF; /* beginning of wait list */ TRACE(T_PX, "%o/%o: opcode %o %s, ea=%o/%o, count=%d, bol=%o, I am %o\n", RPH, RPL, inst, nfyname[inst-01210], ea>>16, ea&0xFFFF, scount, bol, crs[OWNERL]); /* on later models, semaphore overflow should cause a fault */ if (scount == -32768) { printf("NFY: semaphore overflow at ea %o/%o %s\n", ea>>16, ea&0xFFFF, searchloadmap(ea, 'x')); fatal(NULL); } if (scount > 0) { if (bol == 0) { printf("NFY: bol is zero, count is %d for semaphore at %o/%o\n", scount, ea>>16, ea&0xFFFF); fatal(NULL); } pcbp = MAKEVA(crs[OWNERH], bol); utempl = get32r0(pcbp+PCBWAIT); if (utempl != ea) { printf("NFY: bol=%o, pcb waiting on %o/%o != ea %o/%o\n", utempl>>16, utempl&0xFFFF, ea>>16, ea&0xFFFF); fatal(NULL); } bol = get16r0(pcbp+PCBLINK); /* get new beginning of wait list */ resched = ready(pcbp, begend); /* put this pcb on the ready list */ } scount = scount-1; #if 0 /* NOTE: shouldn't have to do this if everything is working right, but with PRIMOS we get: CFatal error: instruction #81929908 at 6/54311: 315 4400 WAIT: count == 1 but bol != 0 keys = 14200, modals=137CFatal error: instruction #81929908 at 6/54311: 315 4400 WAIT: count == 1 but bol != 0 keys = 14200, modals=137 */ if (scount <= 0) bol = 0; #endif utempl = (scount<<16) | bol; put32r0(utempl, ea); /* update the semaphore */ if (inst & 4) { /* interrupt notify */ if (inst & 2) /* clear active interrupt */ intvec = -1; /* not sure about all this... Case 85/87 */ RP = regs.sym.pswpb; crs[PBH] = RPH; newkeys(regs.sym.pswkeys); } if (resched || (inst & 4)) dispatcher(); } lpsw() { ea_t ea; unsigned short m; TRACE(T_PX, "\n%o/%o: LPSW issued\n", RPH, RPL); TRACE(T_PX, "LPSW: before load, RPH=%o, RPL=%o, keys=%o, modals=%o\n", RPH, RPL, crs[KEYS], crs[MODALS]); TRACE(T_PX, "LPSW: crs=%d, ownerl[2]=%o, keys[2]=%o, modals[2]=%o, ownerl[3]=%o, keys[3]=%o, modals[3]=%o\n", crs==regs.rs16[2]? 2:3, regs.rs16[2][OWNERL], regs.rs16[2][KEYS], regs.rs16[2][MODALS], regs.rs16[3][OWNERL], regs.rs16[3][KEYS], regs.rs16[3][MODALS]); ea = apea(NULL); RPH = get16(ea); RPL = get16(INCVA(ea,1)); newkeys(get16(INCVA(ea,2))); m = get16(INCVA(ea,3)); if ((m & 0340) != (crs[MODALS] & 0340)) { TRACE(T_PX, "LPSW: WARNING: changed current register set: current modals=%o, new modals=%o\n", crs[MODALS], m); #if 1 /* not sure about doing this... */ printf("WARNING: LPSW changed current register set: current modals=%o, new modals=%o\n", crs[MODALS], m); crsl = regs.sym.userregs[(m & 0340) >> 5]; crs = (void *)crsl; #endif } crs[MODALS] = m; inhcount = 1; TRACE(T_PX, "LPSW: NEW RPH=%o, RPL=%o, keys=%o, modals=%o\n", RPH, RPL, crs[KEYS], crs[MODALS]); TRACE(T_PX, "LPSW: crs=%d, ownerl[2]=%o, keys[2]=%o, modals[2]=%o, ownerl[3]=%o, keys[3]=%o, modals[3]=%o\n", crs==regs.rs16[2]? 2:3, regs.rs16[2][OWNERL], regs.rs16[2][KEYS], regs.rs16[2][MODALS], regs.rs16[3][OWNERL], regs.rs16[3][KEYS], regs.rs16[3][MODALS]); if (crs[MODALS] & 020) TRACE(T_PX, "Mapped I/O enabled\n"); if (crs[MODALS] & 4) { TRACE(T_PX, "Segmentation enabled\n"); if (domemdump) dumpsegs(); //traceflags = ~TB_MAP; } #if 0 savetraceflags |= TB_FLOW; /****/ #endif if (crs[MODALS] & 010) { TRACE(T_PX, "Process exchange enabled:\n"); TRACE(T_PX, "LPSW: PLA=%o, PCBA=%o, PLB=%o, PCBB=%o\n", regs.sym.pla, regs.sym.pcba, regs.sym.plb, regs.sym.pcbb); #if 0 for (i=regs.sym.pla;; i += 2) { ea = MAKEVA(crs[OWNERH], i); utempa = get16(ea); TRACE(T_PX, " Level %o: BOL=%o, EOL=%o\n", i, utempa, get16(ea+1)); if (utempa == 1) break; while (utempa > 0) utempa = dumppcb(utempa); } #endif if (crs[KEYS] & 2) { TRACE(T_PX, "LPSW: before disp, RPH=%o, RPL=%o, keys=%o, modals=%o\n", RPH, RPL, crs[KEYS], crs[MODALS]); dispatcher(); TRACE(T_PX, "LPSW: after disp, RPH=%o, RPL=%o, keys=%o, modals=%o\n", RPH, RPL, crs[KEYS], crs[MODALS]); TRACE(T_PX, "LPSW: crs=%d, ownerl[2]=%o, keys[2]=%o, modals[2]=%o, ownerl[3]=%o, keys[3]=%o, modals[3]=%o\n", crs==regs.rs16[2]? 2:3, regs.rs16[2][OWNERL], regs.rs16[2][KEYS], regs.rs16[2][MODALS], regs.rs16[3][OWNERL], regs.rs16[3][KEYS], regs.rs16[3][MODALS]); } } #if 0 /* XXX: hack to disable serial number checking if a cpuid > 4 is used. This code is very rev and/or build dependent; this is for 23.4. Look for ERA/ANA sequence after SSSN, set the ANA operand to zero. */ ea = MAKEVA(014,040747); printf("Current value of 14/40747 is: %o\n", get16(ea)); put16(0,ea); /* patch SBL instruction to clear L instead */ ea = MAKEVA(014,020104); printf("Current value of 14/20104 is: %o\n", get16(ea)); put16(0140010, ea); put16(0140010, ea+1); #endif } sssn() { ea_t ea; int i; printf("SSSN @ %o/%o\n", RPH, RPL); /* savetraceflags = traceflags = ~TB_MAP; /*****/ TRACE(T_FLOW, " SSSN\n"); #if 1 ea = *(unsigned int *)(crs+XB); for (i=0; i<16; i++) { put16(0, ea+i); } #else fault(UIIFAULT, RPL, RP); #endif } /* C-Pointer conversion macros EACP: convert Prime effective address to C-Pointer value (the bit offset moves to the right bit so that byte math can be performed) CPEA: convert a C-Pointer back to an effective address. The fault and ring bits from the ea argument are used (can pass in zero) */ #define EACP(v) (((v) & 0x0FFFFFFF)<<1) | (((v)>>28) & 1) #define CPEA(ea,v) ((ea) & 0xE0000000) | (((v) & 1)<<28) | (((v)>>1) & 0x0FFFFFFF) /* Character instructions */ #define GETFLR(n) (((crsl[FLR0+2*(n)] >> 11) & 0x1FFFE0) | (crsl[FLR0+2*(n)] & 0x1F)) #define PUTFLR(n,v) crsl[FLR0+2*(n)] = (((v) << 11) & 0xFFFF0000) | (crsl[FLR0+2*(n)] & 0xF000) | ((v) & 0x1F) unsigned short ldc(int n, unsigned short result) { unsigned int utempl; unsigned short m; unsigned int far, flr; ea_t ea; far = FAR0; flr = FLR0; if (n) { far = FAR1; flr = FLR1; } utempl = GETFLR(n); if (utempl > 0) { ea = crsl[far]; m = get16(crsl[far]); if (crsl[flr] & 0x8000) { result = m & 0xFF; crsl[flr] &= 0xFFFF0FFF; crsl[far] = (crsl[far] & 0x6FFF0000) | ((crsl[far]+1) & 0xFFFF); \ TRACE(T_INST, " ldc %d = '%o (%c) from %o/%o right\n", n, result, result&0x7f, ea>>16, ea&0xffff); //printf(" ldc %d = '%o (%c) from %o/%o right\n", n, result, result&0x7f, ea>>16, ea&0xffff); } else { result = m >> 8; crsl[flr] |= 0x8000; /* set bit offset */ TRACE(T_INST, " ldc %d = '%o (%c) from %o/%o left\n", n, result, result&0x7f, ea>>16, ea&0xffff); //printf(" ldc %d = '%o (%c) from %o/%o left\n", n, result, result&0x7f, ea>>16, ea&0xffff); } utempl--; PUTFLR(n,utempl); crs[KEYS] &= ~0100; /* reset EQ */ } else { /* utempl == 0 */ TRACE(T_INST, " LDC %d limit\n", n); //printf(" LDC %d limit\n", n); crs[KEYS] |= 0100; /* set EQ */ } return result; } stc(int n, unsigned short ch) { unsigned int utempl; unsigned short m; unsigned int far, flr; ea_t ea; far = FAR0; flr = FLR0; if (n) { far = FAR1; flr = FLR1; } utempl = GETFLR(n); if (utempl > 0) { ea = crsl[far]; m = get16(crsl[far]); if (crsl[flr] & 0x8000) { TRACE(T_INST, " stc %d = '%o (%c) to %o/%o right\n", n, ch, ch&0x7f, ea>>16, ea&0xffff); //printf(" stc %d = '%o (%c) to %o/%o right\n", n, ch, ch&0x7f, ea>>16, ea&0xffff); m = (m & 0xFF00) | (ch & 0xFF); put16(m,crsl[far]); crsl[flr] &= 0xFFFF0FFF; crsl[far] = (crsl[far] & 0x6FFF0000) | ((crsl[far]+1) & 0xFFFF); } else { TRACE(T_INST, " stc %d = '%o (%c) to %o/%o left\n", n, ch, ch&0x7f, ea>>16, ea&0xffff); //printf(" stc %d = '%o (%c) to %o/%o left\n", n, ch, ch&0x7f, ea>>16, ea&0xffff); m = (ch << 8) | (m & 0xFF); put16(m,crsl[far]); crsl[flr] |= 0x8000; /* set bit offset */ } utempl--; PUTFLR(n,utempl); crs[KEYS] &= ~0100; /* reset EQ */ } else { /* utempl == 0 */ TRACE(T_INST, " STC %d limit\n", n); //printf(" STC %d limit\n", n); crs[KEYS] |= 0100; /* set EQ */ } } /* add a bit offset, passed in "val", to field address register n */ arfa(int n, int val) { int utempl; TRACE(T_INST, " before add, FAR=%o/%o, FLR=%o\n", crsl[FAR0+2*n]>>16, crsl[FAR0+2*n]&0xFFFF, crsl[FLR0+2*n]); utempl = ((crsl[FAR0+2*n] & 0xFFFF) << 4) | ((crsl[FLR0+2*n] >> 12) & 0xF); utempl += val; crsl[FAR0+2*n] = (crsl[FAR0+2*n] & 0xFFFF0000) | ((utempl >> 4) & 0xFFFF); crsl[FLR0+2*n] = (crsl[FLR0+2*n] & 0xFFFF0FFF) | ((utempl & 0xF) << 12); TRACE(T_INST, " after add, FAR0=%o/%o, FLR=%o\n", crsl[FAR0+2*n]>>16, crsl[FAR0+2*n]&0xFFFF, crsl[FLR0+2*n]); } /* 32-bit shifts */ unsigned int lrs(unsigned int val, short scount) { CLEARCL; if (scount <= 32) { EXPCL(val & bitmask32[33-scount]); return (*(int *)&val) >> scount; } else if (val & 0x80000000) { SETCL; return 0xFFFFFFFF; } else return 0; } unsigned int lls(unsigned int val, short scount) { int templ; CLEARCL; if (scount < 32) { templ = 0x80000000; templ = templ >> scount; /* create mask */ templ = templ & val; /* grab bits */ templ = templ >> (31-scount); /* extend them */ EXPCL(!(templ == -1 || templ == 0)); return *(int *)&val << scount; } else { EXPCL(val != 0); return 0; } } unsigned int lll(unsigned int val, short scount) { CLEARCL; if (scount <= 32) { EXPCL(val & bitmask32[scount]); return val << scount; } else return 0; } unsigned int lrl(unsigned int val, short scount) { CLEARCL; if (scount <= 32) { EXPCL(val & bitmask32[33-scount]); return val >> scount; } else return 0; } /* 16-bit shifts */ unsigned short arl (unsigned short val, short scount) { CLEARCL; if (scount <= 16) { EXPCL(val & bitmask16[17-scount]); return val >> scount; } else { return 0; } } unsigned short all (unsigned short val, short scount) { CLEARCL; if (scount <= 16) { EXPCL(val & bitmask16[scount]); return val << scount; } else { return 0; } } unsigned short als (unsigned short val, short scount) { short tempa; CLEARCL; if (scount <= 15) { tempa = 0100000; tempa = tempa >> scount; /* create mask */ tempa = tempa & val; /* grab bits */ tempa = tempa >> (15-scount); /* extend them */ EXPCL(!(tempa == -1 || tempa == 0)); return val << scount; } if (val != 0) SETCL; return 0; } unsigned short ars (unsigned short val, short scount) { CLEARCL; if (scount <= 16) { EXPCL(val & bitmask16[17-scount]); return (*(short *)&val) >> scount; } else if (val & 0x8000) { SETCL; return 0xFFFF; } else return 0; } /* 32-bit rotates */ unsigned int lrr(unsigned int val, short scount) { CLEARCL; if (scount > 32) scount = scount - 32; EXPCL(val & bitmask32[33-scount]); return (val >> scount) | (val << (32-scount)); } unsigned int llr(unsigned int val, short scount) { CLEARCL; if (scount > 32) scount = scount - 32; EXPCL(val & bitmask32[scount]); return (val << scount) | (val >> (32-scount)); } /* 16-bit rotates */ unsigned int alr(unsigned short val, short scount) { CLEARCL; scount = ((scount-1)%16)+1; /* make scount 1-16 */ EXPCL(val & bitmask16[scount]); return (val << scount) | (val >> (16-scount)); } unsigned int arr(unsigned short val, short scount) { CLEARCL; scount = ((scount-1)%16)+1; /* make scount 1-16 */ EXPCL(val & bitmask16[17-scount]); return (val >> scount) | (val << (16-scount)); } /* queue instructions NOTE: ABQ is typically used in software to add an item to a hardware (physical) queue and RTQ is used by DMQ hardware to fetch items from the queue. All of the queue instructions _should_ support physical queues, but only ABQ and RTQ currently support them (they're needed for AMLC boards). If ICS support is added, the other queue instructions will probably need to support physical queues. The CPU KEYS are not set here because this would not happen on a DMQ request - only when the instruction is executed by software. */ int rtq(ea_t qcbea, unsigned short *qent, ea_t rp) { unsigned int qtop, qbot, qtemp; unsigned short qseg, qmask; ea_t qentea; qtop = get16r(qcbea, rp); qbot = get16r(qcbea+1, rp); if (qtop == qbot) { *qent = 0; return 0; /* queue is empty */ } qseg = get16r(qcbea+2, rp); qmask = get16r(qcbea+3, rp); qentea = MAKEVA(qseg & 0xfff, qtop); if (qseg & 0x8000) /* virtual queue */ *qent = get16r(qentea, rp); else { RESTRICTR(rp); /* XXX: this should probably go through mapio */ *qent = mem[qentea]; } qtop = (qtop & ~qmask) | ((qtop+1) & qmask); put16r(qtop & 0xFFFF, qcbea, rp); return 1; } int abq(ea_t qcbea, unsigned short qent, ea_t rp) { unsigned int qtop, qbot, qtemp; unsigned short qseg, qmask; ea_t qentea; qtop = get16r(qcbea, rp); qbot = get16r(qcbea+1, rp); qseg = get16r(qcbea+2, rp); qmask = get16r(qcbea+3, rp); qtemp = (qbot & ~qmask) | ((qbot+1) & qmask); if (qtemp == qtop) /* queue full */ return 0; qentea = MAKEVA(qseg & 0xfff,qbot); if (qseg & 0x8000) /* virtual queue */ put16r(qent, qentea, rp); else { RESTRICTR(rp); /* XXX: this should probably go through mapio */ mem[qentea] = qent; } put16r(qtemp, qcbea+1, rp); return 1; } int rbq(ea_t qcbea, unsigned short *qent, ea_t rp) { unsigned int qtop, qbot, qtemp; unsigned short qseg, qmask; ea_t qentea; qtop = get16(qcbea); qbot = get16(qcbea+1); if (qtop == qbot) { /* queue empty */ *qent = 0; return 0; } qseg = get16(qcbea+2) & 0x7FFF; qmask = get16(qcbea+3); qbot = (qbot & ~qmask) | ((qbot-1) & qmask); qentea = MAKEVA(qseg,qbot); *qent = get16(qentea); put16(qbot, qcbea+1); return 1; } int atq(ea_t qcbea, unsigned short qent, ea_t rp) { unsigned int qtop, qbot, qtemp; unsigned short qseg, qmask; ea_t qentea; qtop = get16(qcbea); qbot = get16(qcbea+1); qseg = get16(qcbea+2) & 0x7FFF; qmask = get16(qcbea+3); qtemp = (qtop & ~qmask) | ((qtop-1) & qmask); if (qtemp == qbot) /* queue full */ return 0; qentea = MAKEVA(qseg,qtemp); put16(qent,qentea); put16(qtemp, qcbea); return 1; } unsigned short tstq(ea_t qcbea) { unsigned int qtop, qbot, qmask; qtop = get16(qcbea); qbot = get16(qcbea+1); qmask = get16(qcbea+3); return (qbot-qtop) & qmask; } /* math functions */ tcr(unsigned int *un) { unsigned int utempl; utempl = - (*(int *)un); *un = utempl; SETCC_32(utempl); SETL(utempl == 0); if (utempl != 0x80000000) { CLEARC; } else { crs[KEYS] &= ~0200; mathexception('i', FC_INT_OFLOW, 0); } } tch (unsigned short *un) { unsigned short utemp; utemp = - (*(short *)un); *un = utemp; SETCC_16(utemp); SETL(utemp == 0); if (utemp != 0x8000) { CLEARC; } else { crs[KEYS] &= ~0200; mathexception('i', FC_INT_OFLOW, 0); } } /* NOTE: ea is only used to set faddr should an arithmetic exception occur */ int add32(unsigned int *a1, unsigned int a2, unsigned int a3, ea_t ea) { unsigned int uorig, uresult; unsigned long long utemp; short link, eq, lt; crs[KEYS] &= ~0120300; link = eq = lt = 0; uorig = *a1; /* save original for sign check */ utemp = uorig; /* expand to higher precision */ utemp += a2; /* double-precision add */ utemp += a3; /* again, for subtract */ uresult = utemp; /* truncate result to result size */ *a1 = uresult; /* store result */ if (utemp & 0x100000000LL) /* set L-bit if carry occurred */ link = 020000; if (uresult == 0) /* set EQ? */ eq = 0100; if ((~uorig ^ a2) & (uorig ^ uresult) & 0x80000000) { if (*(int *)&uresult >= 0) lt = 0200; crs[KEYS] = crs[KEYS] | link | eq | lt; /* update now: might fault */ mathexception('i', FC_INT_OFLOW, ea); } else if (*(int *)&uresult < 0) lt = 0200; crs[KEYS] = crs[KEYS] | link | eq | lt; } int add16(unsigned short *a1, unsigned short a2, unsigned short a3, ea_t ea) { unsigned short uorig, uresult; unsigned int utemp; short link, eq, lt; crs[KEYS] &= ~0120300; link = eq = lt = 0; uorig = *a1; /* save original for sign check */ utemp = uorig; /* expand to higher precision */ utemp += a2; /* double-precision add */ utemp += a3; /* again, for subtract */ uresult = utemp; /* truncate result to result size */ *a1 = uresult; /* store result */ if (utemp & 0x10000) /* set L-bit if carry occurred */ link = 020000; if (uresult == 0) /* set EQ? */ eq = 0100; if ((~uorig ^ a2) & (uorig ^ uresult) & 0x8000) { if (*(int *)&uresult >= 0) lt = 0200; crs[KEYS] = crs[KEYS] | link | eq | lt; /* update now: might fault */ mathexception('i', FC_INT_OFLOW, ea); } else if (*(int *)&uresult < 0) lt = 0200; crs[KEYS] = crs[KEYS] | link | eq | lt; } adlr(int dr) { if (crs[KEYS] & 020000) add32(crsl+dr, 1, 0, 0); else { crs[KEYS] &= ~0120300; /* clear C, L, LT, EQ */ SETCC_32(crsl[dr]); } } /* NOTE: PMA manuals say the range for absolute RF addressing is 0-'377, but this does not allow addressing a machine with 8 user register sets. The range should probably be an emulator config variable, based on the cpuid */ int ldar(ea_t ea) { unsigned short utempa; unsigned int result; if (ea & 040000) { /* absolute RF addressing */ RESTRICT(); if ((ea & 0777) > 0477) { printf("em: LDLR ea '%o is out of range\n", ea); fatal(NULL); } ea &= 0777; if (ea == 020) result = 1; else if (ea == 024) result = -1; else result = regs.u32[ea]; } else { ea &= 037; if (ea > 017) RESTRICT(); result = crsl[ea]; } return result; } star(unsigned int val32, ea_t ea) { if (ea & 040000) { /* absolute RF addressing */ RESTRICT(); if ((ea & 0777) > 0477) { printf("em: STLR ea '%o is out of range; this -cpuid may not be supported by this version of software\n", ea); fatal(NULL); } regs.u32[ea & 0777] = val32; } else { ea &= 037; if (ea > 017) RESTRICT(); crsl[ea] = val32; } } main (int argc, char **argv) { static short bootdiskctrl[4] = {026, 027, 022, 023}; int boot; /* true if reading a boot record */ char *bootarg; /* argument to -boot, if any */ char bootfile[16]; /* boot file to load (optional) */ int bootfd=-1; /* initial boot file fd */ int bootctrl, bootunit; /* boot device controller and unit */ int bootskip=0; /* skip this many bytes on boot dev */ short tempa,tempa1,tempa2; unsigned short utempa,utempa1,utempa2; int templ,templ1,templ2; long long templl,templl1,templl2; unsigned long long utempll, utempll1, utempll2; unsigned int utempl,utempl1,utempl2,utempl3,utempl4; float tempf,tempf1,tempf2; double tempd,tempd1,tempd2; unsigned short tempda[4],tempda1[4]; ea_t tempea; ea_t ea; /* final MR effective address */ ea_t earp; /* RP to use for eff address calcs */ int brop; int dr; unsigned short eabit; unsigned short opcode; short i,j,x; unsigned short savemask; unsigned short class; int nw,nw2; unsigned short rvec[9]; /* SA, EA, P, A, B, X, keys, dummy, dummy */ unsigned short inst; unsigned short m,m1,m2; unsigned short qtop,qbot,qseg,qmask,qtemp; ea_t qea; short scount; /* shift count */ unsigned short trapvalue; ea_t trapaddr; unsigned short stpm[8]; unsigned short access; unsigned long immu32; unsigned long long immu64; unsigned short zresult, zclen1, zclen2, zaccess; unsigned int zlen1, zlen2; ea_t zea1, zea2; unsigned char zch1, zch2, *zcp1, *zcp2, zspace; struct timeval boot_tv; struct timezone tz; /* open trace log */ if ((tracefile=fopen("trace.log", "w")) == NULL) { perror("Unable to open trace.log"); exit(1); } /* master clear: - clear all registers - user register set is 0 - modals: -- interrupts inhibited -- standard interrupt mode -- user register set is 0 -- non-mapped I/O -- process exchange disabled -- segmentation disabled -- machine checks disabled - keys: -- C, L, LT, EQ clear -- single precision -- 16S mode -- take fault on FP exception -- no fault on integer or decimal exception -- characters have high bit on -- FP rounding disabled -- not in dispatcher -- register set is not saved - set P to '1000 - all stlb entries are invalid - all iotlb entries are invalid - clear 64K words of memory */ for (i=0; i < 32*REGSETS; i++) regs.u32[i] = 0; crs = (void *)regs.sym.userregs[0]; /* first user register set */ crsl = (void *)crs; crs[MODALS] = 0; /* interrupts inhibited */ newkeys(0); RP = 01000; for (i=0; i < STLBENTS; i++) stlb[i].valid = 0; for (i=0; i < IOTLBENTS; i++) iotlb[i].valid = 0; bzero(mem, 64*1024*2); /* zero first 64K words */ verbose = 0; domemdump = 0; boot = 0; bootarg = NULL; bootfile[0] = 0; pmap32bits = 0; csoffset = 0; tport = 0; nport = 0; /* check args */ for (i=1; i= MAXTRACEPROCS) fprintf(stderr,"Only %d trace procs are allowed\n", MAXTRACEPROCS); else { printf("Request to trace proc %s\n", argv[i]); traceprocs[numtraceprocs].oneshot = 1; for (j=0; argv[i][j]; j++) if (argv[i][j] == '+') traceprocs[numtraceprocs].oneshot = 0; else traceprocs[numtraceprocs].name[j] = argv[i][j]; traceprocs[numtraceprocs].name[j] = 0; traceprocs[numtraceprocs].sb = -1; traceprocs[numtraceprocs].ecb = 0; numtraceprocs++; } } else { fprintf(stderr,"Unrecognized trace flag: %s\n", argv[i]); printf("Unrecognized trace flag: %s\n", argv[i]); } } else if (strcmp(argv[i],"-boot") == 0) { boot = 1; if (i+1 < argc && argv[i+1][0] != '-') { i++; if (strlen(argv[i]) <= 6 && sscanf(argv[i],"%o", &templ) == 1) sswitch = templ; else bootarg = argv[i]; } } else { fprintf(stderr,"Unrecognized argument: %s\n", argv[i]); printf("Unrecognized argument: %s\n", argv[i]); } } /* finish setting up tracing after all options are read, ie, maps */ if (traceuser != 0) TRACEA("Tracing enabled for OWNERL %o\n", traceuser); else TRACEA("Tracing enabled for all users\n"); savetraceflags = traceflags; TRACEA("Trace flags = 04x%x\n", savetraceflags); for (i=0; i= 26); if ((26 <= cpuid && cpuid <= 29) || cpuid >= 35) csoffset = 1; /* the emulator has occasionally exited to command level; try ignoring SIGPIPE to see if that is the problem */ signal (SIGPIPE, SIG_IGN); /* initialize all devices */ for (i=0; i<64; i++) if (devmap[i](-1, 0, i)) { /* if initialization fails, */ devmap[i] = devnone; /* remove device */ fprintf(stderr, "emulator: device '%o failed initialization - device removed\n", i); } /* if a filename follows -boot, load and execute this R-mode runfile image. For example, -boot *DOS64 would load *DOS64 from the Unix file system and begin executing Primos II. SECURITY: check that boot filename isn't a pathname? */ if (bootarg) { if ((bootfd=open(bootarg, O_RDONLY)) == -1) { perror("Error opening boot file"); fatal(NULL); } if (read(bootfd, rvec, 18) != 18) { perror("Error reading boot file's rvec header"); fatal(NULL); } } else { /* If no filename follows -boot, then the sense switches are used to determine whether the boot record should be read from tape or disk and select the controller and drive unit. Bits 14-16 are 4 for disk boot, 5 for tape boot Bit 13 is 1 for disk boot, don't care for tape boot Bits 11-12 are the unit number, 0-4 */ bootunit = (sswitch>>7) & 3; rvec[2] = 01000; /* starting address */ rvec[3] = rvec[4] = rvec[5] = rvec[6] = 0; if ((sswitch & 0x7) == 4) { /* disk boot */ bootctrl = bootdiskctrl[(sswitch>>4) & 3]; rvec[0] = 0760; /* disk load starts at '760 */ rvec[1] = rvec[0]+1040-1; /* read 1 disk block */ /* setup DMA register '20 (address only) for the next boot record */ regs.sym.regdmx[041] = 03000; if (globdisk(bootfile, sizeof(bootfile), bootctrl, bootunit) != 0) fatal("Can't find disk boot device file"); } else if ((sswitch & 0x7) == 5) { /* tape boot */ bootctrl = 014; rvec[0] = 0200; /* tape load starts at '200 */ rvec[1] = rvec[0]+2355-1; /* read in at most 3 pages (6K) */ bootskip = 4; /* to skip .TAP header */ /* setup DMA register '20 (address only) for the next boot record */ regs.sym.regdmx[041] = 0200+2355;; snprintf(bootfile, sizeof(bootfile), "dev%ou%d", bootctrl, bootunit); } else { printf("\ \n\ The -boot option is used to boot from disk, tape, or to load a Prime\n\ runfile directly from the Unix file system. For example:\n\ \n\ -boot 14xx4 to boot from disk (see below)\n\ -boot 10005 to boot from tape.\n\ -boot *DOS64 to load *DOS64 from the Unix file and execute it\n\ \n\ For disk boots, the last 3 digits can be:\n\ \n\ 114 = dev26u0 ctrl '26 unit 0 154 = dev22u0 ctrl '22 unit 0\n\ 314 = dev26u1 ctrl '26 unit 1 354 = dev22u1 ctrl '22 unit 1\n\ 514 = dev26u2 ctrl '26 unit 2 554 = dev22u2 ctrl '22 unit 2\n\ 714 = dev26u3 ctrl '26 unit 3 754 = dev22u3 ctrl '22 unit 3\n\ \n\ 134 = dev27u0 ctrl '27 unit 0 174 = dev23u0 ctrl '23 unit 0\n\ 334 = dev27u1 ctrl '27 unit 1 374 = dev23u1 ctrl '23 unit 1\n\ 534 = dev27u2 ctrl '27 unit 2 574 = dev23u2 ctrl '23 unit 2\n\ 734 = dev27u3 ctrl '27 unit 3 774 = dev23u3 ctrl '23 unit 3\n\ \n\ The default option is -boot 14114, to boot from disk dev26u0\n"); exit(1); } TRACEA("Boot file is %s\n", bootfile); if ((bootfd=open(bootfile, O_RDONLY)) == -1) { perror("Error opening boot device file"); fatal(NULL); } if (lseek(bootfd, bootskip, SEEK_CUR) == -1) { perror("Error skipping on boot device"); fatal(NULL); } } TRACEA("Sense switches set to %o\n", sswitch); TRACE(T_FLOW, "Boot SA=%o, EA=%o, P=%o, A=%o, B=%o, X=%o, K=%o\n\n", rvec[0], rvec[1], rvec[2], rvec[3], rvec[4], rvec[5], rvec[6]); if (rvec[2] > rvec[1]) fatal("Program start > ending: boot image is corrupt"); /* read memory image from SA to EA inclusive */ nw = rvec[1]-rvec[0]+1; if ((nw2=read(bootfd, mem+rvec[0], nw*2)) == -1) { perror("Error reading memory image"); fatal(NULL); } close(bootfd); /* check we got it all, except for tape boots; the boot program size is unpredictable on tape */ if (nw2 != nw*2 && ((sswitch & 0x7) == 4 || bootarg)) { printf("rvec[0]=%d, rvec[1]=%d, nw2=%d, nw=%d, nw*2=%d\n", rvec[0], rvec[1], nw2, nw, nw*2); fatal("Didn't read entire boot program"); } /* setup execution (registers, keys, address mask, etc.) from rvec */ crs[A] = rvec[3]; crs[B] = rvec[4]; crs[X] = rvec[5]; newkeys(rvec[6]); RPL = rvec[2]; memdump(rvec[0], rvec[1]); /* initialize the timer stuff */ if (gettimeofday(&boot_tv, &tz) != 0) { perror("gettimeofday failed"); fatal(NULL); } /* main instruction decode loop faults longjmp here: the top of the instruction fetch loop */ if (setjmp(jmpbuf)) ; while (1) { #if 0 if (instcount > 10300000) savetraceflags = ~0; #endif #if 0 /* NOTE: doing something like this causes Primos to do a controlled shutdown, flushing disk buffers, etc. */ RPH = 07777; #endif #if 0 /* trace AC$SET call not working NOTE: a 2-word range is needed for RPL because a procedure with arguments may start executing at the ARGT instruction (listed in the load map as procedure start), or at the instruction following ARGT (if PCL completes w/o faults) */ if (TRACEUSER && SEGNO16(RPH) == 041 && 06200 <= RPL && RPL <= 06201) { /* ac$set */ savetraceflags = ~TB_MAP; printf("enable trace, RPH=%o, RPL=%o\n", SEGNO16(RPH), RPL); } if (TRACEUSER && SEGNO16(RPH) == 013 && 044030 <= RPL && RPL <= 044031) { /* setrc$ */ savetraceflags = 0; printf("disable trace, RPH=%o, RPL=%o\n", SEGNO16(RPH), RPL); } #endif #if 0 /* this is for FTN Generic 3 trace */ if (SEGNO16(RPH) == 04000 && RPL >= 034750 && RPL <= 034760) savetraceflags = ~TB_MAP; else savetraceflags = 0; #endif #if 0 /* NOTE: this tends to cause a page fault loop if the location being monitored isn't wired */ if (trapaddr != 0 && (crs[OWNERL] & 0100000) && (crs[MODALS] & 010)) { traceflags = -1; printf("TRAP: at #%d\n", instcount); utempa = get16(trapaddr); if (utempa != trapvalue) { printf("TRAP: at #%d, old value of %o/%o was %o; new value is %o\n", instcount, trapaddr>>16, trapaddr&0xffff, trapvalue, utempa); trapvalue = utempa; printf("TRAP: new trap value is %o\n", trapvalue); } } #endif /* is this user being traced? */ if (TRACEUSER && ((traceseg == 0) || (traceseg == (RPH & 0xFFF)))) traceflags = savetraceflags; else traceflags = 0; /* hack to activate trace in 32I mode */ #if 0 if ((crs[KEYS] & 0016000) == 0010000) traceflags = savetraceflags; else traceflags = 0; #endif #if 0 /* NOTE: rev 23.4 halts at inst #75379065 with the error: "System Serial Number does not agree with this version of Primos." To track this down, turn on tracing just before this instruction. */ if (75370000 < instcount && instcount < 75380000) traceflags = ~TB_MAP; #endif #if 0 /* turn on tracing near instruction #47704931 to debug I/O TLB error in rev 22.1 */ if (instcount > 47700000) traceflags = ~0; #endif /* poll any devices that requested a poll */ for (i=0; i<64; i++) if (devpoll[i] && (--devpoll[i] <= 0)) { devmap[i](4, 0, i); } /* is an interrupt pending, with interrupts enabled? */ if (intvec >= 0 && (crs[MODALS] & 0100000) && inhcount == 0) { //printf("fetch: taking interrupt vector '%o, modals='%o\n", intvec, crs[MODALS]); TRACE(T_INST, "\nfetch: taking interrupt vector '%o, modals='%o\n", intvec, crs[MODALS]); regs.sym.pswpb = RP; regs.sym.pswkeys = crs[KEYS]; if (crs[MODALS] & 010) { /* PX enabled */ //traceflags = ~TB_MAP; newkeys(014000); RPH = 4; RPL = intvec; } else if (crs[MODALS] & 040000) { /* vectored interrupt mode */ m = get16(intvec); if (m != 0) { put16(RPL, m); RP = m+1; } else { printf("fetch: interrupt vector '%o = 0 in vectored interrupt mode\n", intvec); fatal(NULL); } } else { /* standard interrupt mode */ m = get16(063); printf("Standard mode interrupt vector loc = %o\n", m); //traceflags = ~TB_MAP; if (m != 0) { put16(RPL, m); RP = m+1; } else { fatal("fetch: loc '63 = 0 in standard interrupt mode"); } } crs[MODALS] &= 077777; /* inhibit interrupts */ } if (inhcount) inhcount--; /* as a speedup later, fetch 32/64 bits (or the rest of the page) and maintain a prefetch queue */ prevpc = RP; ea = RP; #if 0 /* NOTE: Rev 21 Sys Arch Guide, 2nd Ed, pg 3-32 says: "When bits 17 to 32 of the program counter contain a value within the ATR (address trap range) and the processor is reading an instruction, an address trap always occurs. The only exception to this is if the machine is operating in 32I mode." However, if this code is enabled, the Primos boot fails very early, before verifying memory. */ if ((ea & 0xFFFF) < 040) ea = 0x80000000 | (ea & 0xFFFF); #endif inst = iget16(ea); RPL++; instcount++; /* while a process is running, RP is the real program counter, PBH is the active procedure segment, and PBL is zero. When a process stops running, RP is copied to PB. When a process starts running again, PB is copied to RP. */ crs[PBH] = RPH; crs[PBL] = 0; earp = RP; if (crs[MODALS] & 010) { /* px enabled, bump 1ms process timer */ if (crs[TIMERL]++ > instpermsec) { crs[TIMERL] = 0; /* if 1ms resolution process timer overflows, set pcb abort flag */ crs[TIMER]++; if (crs[TIMER] == 0) { TRACE(T_PX, "#%d: pcb %o timer overflow\n", instcount, crs[OWNERL]); ea = *(ea_t *)(crs+OWNER); m = get16r0(ea+4) | 1; /* set process abort flag */ put16r0(m, ea+4); } } } #if 0 /* NOTE: this is to debug generic instruction 3's in Primos boot */ if (instcount > 75376100) //traceflags = -1; traceflags = TB_DIO; #endif xec: /* NOTE: don't trace JMP * instructions (used to test PX) */ #if 0 if (inst == 03777) traceflags = 0; #endif #if 0 if (crs[OWNERL] == 0100200 && inst == 001114 && savetraceflags) traceflags = ~0; else traceflags = 0; #endif TRACE(T_FLOW, "\n #%u [%s %o] IT=%d SB: %o/%o LB: %o/%o %s XB: %o/%o\n%o/%o: %o A='%o/%:0d B='%o/%d L='%o/%d E='%o/%d X=%o/%d Y=%o/%d C=%d L=%d LT=%d EQ=%d K=%o M=%o\n", instcount, searchloadmap(*(unsigned int *)(crs+OWNER),'x'), crs[OWNERL], *(short *)(crs+TIMER), crs[SBH], crs[SBL], crs[LBH], crs[LBL], searchloadmap(*(unsigned int *)(crs+LBH),'l'), crs[XBH], crs[XBL], RPH, RPL-1, inst, crs[A], *(short *)(crs+A), crs[B], *(short *)(crs+B), *(unsigned int *)(crs+L), *(int *)(crs+L), *(unsigned int *)(crs+E), *(int *)(crs+E), crs[X], *(short *)(crs+X), crs[Y], *(short *)(crs+Y), (crs[KEYS]&0100000) != 0, (crs[KEYS]&020000) != 0, (crs[KEYS]&0200) != 0, (crs[KEYS]&0100) != 0, crs[KEYS], crs[MODALS]); /* begin instruction decode: generic? */ if ((inst & 036000) == 0) { class = inst>>14; if (class == 0) { TRACE(T_INST, " generic class 0\n"); switch (inst) { /* V-mode/frequent instructions */ case 000201: TRACE(T_FLOW, " IAB\n"); tempa = crs[B]; crs[B] = crs[A]; crs[A] = tempa; continue; case 001314: TRACE(T_FLOW, " CGT\n"); tempa = iget16(RP); /* get number of words */ if (1 <= crs[A] && crs[A] < tempa) RPL = iget16(INCVA(RP,crs[A])); else RPL += tempa; continue; case 000115: TRACE(T_FLOW, " PIDA\n"); *(int *)(crs+L) = *(short *)(crs+A); continue; case 000305: TRACE(T_FLOW, " PIDL\n"); *(long long *)(crs+L) = *(int *)(crs+L); continue; /* NOTE: PMA manual says copy B reg to A reg, but DIAG seems to indicate a swap */ case 000015: TRACE(T_FLOW, " PIMA\n"); templ = crsl[GR2]; crsl[GR2] = (crsl[GR2] << 16) | (crsl[GR2] >> 16); templ2 = (templ << 16) >> 16; if (templ != templ2) mathexception('i', FC_INT_OFLOW, 0); else CLEARC; continue; case 000301: TRACE(T_FLOW, " PIML\n"); templ = *(int *)(crs+L); *(int *)(crs+L) = *(int *)(crs+E); if (((templ ^ *(int *)(crs+E)) & 0x80000000) || (templ != 0 && templ != -1)) mathexception('i', FC_INT_OFLOW, 0); else CLEARC; continue; /* character/field instructions */ case 001302: TRACE(T_FLOW, " LDC 0\n"); crs[A] = ldc(0, crs[A]); continue; case 001312: TRACE(T_FLOW, " LDC 1\n"); crs[A] = ldc(1, crs[A]); continue; case 001322: TRACE(T_FLOW, " STC 0\n"); stc(0, crs[A]); continue; case 001332: TRACE(T_FLOW, " STC 1\n"); stc(1, crs[A]); continue; case 001300: TRACE(T_FLOW, " EAFA 0\n"); ea = apea(&eabit); crsl[FAR0] = ea & 0x6FFFFFFF; crsl[FLR0] = (crsl[FLR0] & 0xFFFF0FFF) | (eabit << 12); TRACE(T_INST, " FAR0=%o/%o, eabit=%d, FLR=%x\n", crsl[FAR0]>>16, crsl[FAR0]&0xFFFF, eabit, crsl[FLR0]); continue; case 001310: TRACE(T_FLOW, " EAFA 1\n"); ea = apea(&eabit); crsl[FAR1] = ea & 0x6FFFFFFF; crsl[FLR1] = (crsl[FLR1] & 0xFFFF0FFF) | (eabit << 12); TRACE(T_INST, " FAR1=%o/%o, eabit=%d, FLR=%x\n", crsl[FAR1]>>16, crsl[FAR1]&0xFFFF, eabit, crsl[FLR1]); continue; case 001301: TRACE(T_FLOW, " ALFA 0\n"); arfa(0, *(int *)(crs+L)); continue; case 001311: TRACE(T_FLOW, " ALFA 1\n"); arfa(1, *(int *)(crs+L)); continue; case 001303: TRACE(T_FLOW, " LFLI 0\n"); utempa = iget16(RP); RPL++; PUTFLR(0,utempa); TRACE(T_INST, " Load Field length with %d, FLR=%x, actual = %d\n", utempa, crsl[FLR0], GETFLR(0)); continue; case 001313: TRACE(T_FLOW, " LFLI 1\n"); utempa = iget16(RP); RPL++; PUTFLR(1,utempa); TRACE(T_INST, " Load Field length with %d, FLR=%x, actual = %d\n", utempa, crsl[FLR1], GETFLR(1)); continue; case 001320: TRACE(T_FLOW, " STFA 0\n"); ea = apea(NULL); utempl = crsl[FAR0] & 0x6FFFFFFF; utempa = crsl[FLR0] & 0xF000; stfa: if (utempa != 0) { utempl = utempl | EXTMASK32; put16(utempa,INCVA(ea,2)); TRACE(T_INST, " stored 3-word pointer %o/%o %o\n", utempl>>16, utempl&0xffff, utempa); } else { TRACE(T_INST, " stored 2-word pointer %o/%o\n", utempl>>16, utempl&0xffff); } put32(utempl,ea); continue; case 001330: TRACE(T_FLOW, " STFA 1\n"); ea = apea(NULL); utempl = crsl[FAR1] & 0x6FFFFFFF; utempa = crsl[FLR1] & 0xF000; goto stfa; case 001321: TRACE(T_FLOW, " TLFL 0\n"); PUTFLR(0,*(unsigned int *)(crs+L)); TRACE(T_INST, " Transfer %d to FLR0, FLR=%x, actual = %d\n", *(unsigned int *)(crs+L), crsl[FLR0], GETFLR(0)); continue; case 001331: TRACE(T_FLOW, " TLFL 1\n"); PUTFLR(1,*(unsigned int *)(crs+L)); TRACE(T_INST, " Transfer %d to FLR1, FLR=%x, actual = %d\n", *(unsigned int *)(crs+L), crsl[FLR1], GETFLR(1)); continue; case 001323: TRACE(T_FLOW, " TFLL 0\n"); *(unsigned int *)(crs+L) = GETFLR(0); continue; case 001333: TRACE(T_FLOW, " TFLL 1\n"); *(unsigned int *)(crs+L) = GETFLR(1); continue; case 000611: TRACE(T_FLOW, " PRTN\n"); prtn(); /* if this PRTN is for a procedure being traced, disable tracing if one-shot is true */ if (numtraceprocs > 0 && TRACEUSER) for (i=0; i= 0; i--) { if (crsl[i] != 0) { TRACE(T_INST, " crsl[%d] saved, value=%o (%o/%o)\n", i, crsl[i], crsl[i]>>16, crsl[i]&0xffff); put32(crsl[i], INCVA(ea,j)); savemask |= bitmask16[16-i]; } j += 2; } put32(*(int *)(crs+XB), INCVA(ea,25)); TRACE(T_INST, " XB saved, value=%o/%o\n", crs[XBH], crs[XBL]); put16(savemask, ea); TRACE(T_INST, " Saved, mask=%o\n", savemask); continue; case 000717: TRACE(T_FLOW, " RRST\n"); ea = apea(NULL); savemask = get16(ea); TRACE(T_INST, " Save mask=%o\n", savemask); j = 1; for (i = 11; i >= 0; i--) { if (savemask & bitmask16[16-i]) { crsl[i] = get32(INCVA(ea,j)); TRACE(T_INST, " crsl[%d] restored, value=%o (%o/%o)\n", i, crsl[i], crsl[i]>>16, crsl[i]&0xffff); } else { crsl[i] = 0; } j += 2; } *(unsigned int *)(crs+XB) = get32(INCVA(ea,25)); TRACE(T_INST, " XB restored, value=%o/%o\n", crs[XBH], crs[XBL]); continue; case 000400: case 000401: case 000402: TRACE(T_FLOW, " ENB\n"); RESTRICT(); crs[MODALS] |= 0100000; inhcount = 1; continue; case 001000: case 001001: case 001002: TRACE(T_FLOW, " INH\n"); RESTRICT(); crs[MODALS] &= ~0100000; continue; case 01200: TRACE(T_FLOW, " STAC\n"); ea = apea(NULL); if (get16(ea) == crs[B]) { put16(crs[A], ea); crs[KEYS] |= 0100; /* set EQ */ } else crs[KEYS] &= ~0100; /* reset EQ */ continue; case 01204: TRACE(T_FLOW, " STLC\n"); ea = apea(NULL); if (get32(ea) == *(unsigned int *)(crs+E)){ put32(*(unsigned int *)(crs+L), ea); crs[KEYS] |= 0100; /* set EQ */ } else crs[KEYS] &= ~0100; /* reset EQ */ continue; /* NOTE: when ARGT is executed as an instruction, it means that a fault occurred during PCL argument processing. */ case 000605: TRACE(T_FLOW|T_PCL, " ARGT\n"); argt(); continue; case 000705: TRACE(T_FLOW|T_PCL, " CALF\n"); ea = apea(NULL); calf(ea); continue; /* Decimal and character instructions */ #define ZGETC(zea, zlen, zcp, zclen, zch) \ if (zclen == 0) { \ zcp = (unsigned char *) (mem+mapva(zea, RACC, &zaccess, RP)); \ zclen = 2048 - (zea & 01777)*2; \ if (zea & EXTMASK32) { \ zcp++; \ zclen--; \ } \ if (zclen >= zlen) \ zclen = zlen; \ else \ zea = (zea & 0xEFFF0000) | ((zea+0x400) & 0xFC00); \ } \ zch = *zcp; \ zcp++; \ zclen--; \ zlen-- #define ZPUTC(zea, zlen, zcp, zclen, zch) \ if (zclen == 0) { \ zcp = (unsigned char *) (mem+mapva(zea, WACC, &zaccess, RP)); \ zclen = 2048 - (zea & 01777)*2; \ if (zea & EXTMASK32) { \ zcp++; \ zclen--; \ } \ if (zclen >= zlen) \ zclen = zlen; \ else \ zea = (zea & 0xEFFF0000) | ((zea+0x400) & 0xFC00); \ } \ *zcp = zch; \ zcp++; \ zclen--; \ zlen-- #if 1 /* if the high-speed code is enabled, and eafa doesn't mask the far, Primos boots but emacs fails badly: 1. garbage display on the mode line 2. ^x^f won't load a file (filename is off by one character) 3. explore P command (dive) doesn't work if the medium-speed code is enabled (ldc/stc loop), Primos boots and emacs mostly works except: 1. explore P command (dive) doesn't work if the Prime UII library is used, which is identical to the medium speed loop as far as I can tell, everything works. ?? :( */ case 001114: TRACE(T_FLOW, " ZMV\n"); zspace = 0240; if (crs[KEYS] & 020) zspace = 040; TRACE(T_INST, "ZMV: source=%o/%o, len=%d, dest=%o/%o, len=%d, keys=%o\n", crsl[FAR0]>>16, crsl[FAR0]&0xffff, GETFLR(0), crsl[FAR1]>>16, crsl[FAR1]&0xffff, GETFLR(1), crs[KEYS]); #if 1 zlen1 = GETFLR(0); zlen2 = GETFLR(1); zea1 = crsl[FAR0]; if (crsl[FLR0] & 0x8000) zea1 |= EXTMASK32; zea2 = crsl[FAR1]; if (crsl[FLR1] & 0x8000) zea2 |= EXTMASK32; TRACE(T_INST, " ea1=%o/%o, len1=%d, ea2=%o/%o, len2=%d\n", zea1>>16, zea1&0xffff, zlen1, zea2>>16, zea2&0xffff, zlen2); zclen1 = 0; zclen2 = 0; while (zlen2) { if (zlen1) { ZGETC(zea1, zlen1, zcp1, zclen1, zch1); } else zch1 = zspace; TRACE(T_INST, " zch1=%o (%c)\n", zch1, zch1&0x7f); ZPUTC(zea2, zlen2, zcp2, zclen2, zch1); } #else /* this should work, but emacs explore "dive" (P) breaks :( I think what might happen is that if a fault occurs in the loop because of the ldc/stc memory references, the ZMVD is completely restarted but the field address/length registers (and keys) have been modified and are not in the same state as when the ZMVD started. Emulating ZMVD via UII works because the individual stc/ldc causing the fault is restarted rather than the whole ZMVD */ utempa1 = crs[KEYS]; /* UII does this because of fault */ do { utempa = ldc(0,0); if (crs[KEYS] & 0100) utempa = zspace; stc(1, utempa); } while (!(crs[KEYS] & 0100)); crs[KEYS] = utempa1; #endif continue; case 001115: TRACE(T_FLOW, " ZMVD\n"); zlen1 = GETFLR(1); zlen2 = zlen1; zea1 = crsl[FAR0]; if (crsl[FLR0] & 0x8000) zea1 |= EXTMASK32; zea2 = crsl[FAR1]; if (crsl[FLR1] & 0x8000) zea2 |= EXTMASK32; TRACE(T_INST, " ea1=%o/%o, ea2=%o/%o, len=%d\n", zea1>>16, zea1&0xffff, zea2>>16, zea2&0xffff, zlen1); zclen1 = 0; zclen2 = 0; while (zlen2) { ZGETC(zea1, zlen1, zcp1, zclen1, zch1); TRACE(T_INST, " zch1=%o (%c)\n", zch1, zch1&0x7f); ZPUTC(zea2, zlen2, zcp2, zclen2, zch1); } continue; /* NOTE: ZFIL is used early after PX enabled, and can be used to cause a UII fault to debug CALF etc. Could use memset(zcp2, zch2, zclen2) to fill by pieces. */ case 001116: TRACE(T_FLOW, " ZFIL\n"); zlen2 = GETFLR(1); zea2 = crsl[FAR1]; if (crsl[FLR1] & 0x8000) zea2 |= EXTMASK32; zch2 = crs[A]; TRACE(T_INST, " ea=%o/%o, len=%d, fill=%o (%c)\n", zea2>>16, zea2&0xffff, zlen2, zch2, zch2&0x7f); //printf("ZFIL: ea=%o/%o, len=%d\n", zea2>>16, zea2&0xffff, zlen2); zclen2 = 0; while (zlen2) { ZPUTC(zea2, zlen2, zcp2, zclen2, zch2); } continue; case 001117: TRACE(T_FLOW, " ZCM\n"); if (crs[KEYS] & 020) zspace = 040; else zspace = 0240; zlen1 = GETFLR(0); zlen2 = GETFLR(1); zea1 = crsl[FAR0]; if (crsl[FLR0] & 0x8000) zea1 |= EXTMASK32; zea2 = crsl[FAR1]; if (crsl[FLR1] & 0x8000) zea2 |= EXTMASK32; TRACE(T_INST, " ea1=%o/%o, len1=%d, ea2=%o/%o, len2=%d\n", zea1>>16, zea1&0xffff, zlen1, zea2>>16, zea2&0xffff, zlen2); zresult = 0100; /* assume equal */ zclen1 = 0; zclen2 = 0; while (zlen1 || zlen2) { if (zlen1) { ZGETC(zea1, zlen1, zcp1, zclen1, zch1); } else zch1 = zspace; if (zlen2) { ZGETC(zea2, zlen2, zcp2, zclen2, zch2); } else zch2 = zspace; TRACE(T_INST, " zch1=%o (%c), zch2=%o (%c)\n", zch1, zch1&0x7f, zch2, zch2&0x7f); if (zch1 < zch2) { zresult = 0200; break; } else if (zch1 > zch2) { zresult = 0; break; } } crs[KEYS] = (crs[KEYS] & ~0300) | zresult; continue; case 001110: TRACE(T_FLOW, " ZTRN\n"); zlen1 = GETFLR(1); zlen2 = zlen1; utempl = zlen1; zea1 = crsl[FAR0]; if (crsl[FLR0] & 0x8000) zea1 |= EXTMASK32; zea2 = crsl[FAR1]; if (crsl[FLR1] & 0x8000) zea2 |= EXTMASK32; TRACE(T_INST, " ea1=%o/%o, len1=%d, ea2=%o/%o, len2=%d\n", zea1>>16, zea1&0xffff, zlen1, zea2>>16, zea2&0xffff, zlen2); zclen1 = 0; zclen2 = 0; ea = *(ea_t *)(crs+XB); while (zlen2) { ZGETC(zea1, zlen1, zcp1, zclen1, zch1); utempa = get16(INCVA(ea,zch1/2)); if (zch1 & 1) zch2 = utempa & 0xFF; else zch2 = utempa >> 8; TRACE(T_INST, " zch1=%o (%c), zch2=%o (%c)\n", zch1, zch1&0x7f, zch2, zch2&0x7f); ZPUTC(zea2, zlen2, zcp2, zclen2, zch2); } PUTFLR(1, 0); arfa(0, utempl); arfa(1, utempl); continue; case 001111: TRACE(T_FLOW, " ZED\n"); zlen1 = GETFLR(0); zlen2 = 128*1024; /* XXX: not sure about max length of result */ zea1 = crsl[FAR0]; if (crsl[FLR0] & 0x8000) zea1 |= EXTMASK32; zea2 = crsl[FAR1]; if (crsl[FLR1] & 0x8000) zea2 |= EXTMASK32; TRACE(T_INST, " ea1=%o/%o, len1=%d, ea2=%o/%o, len2=%d\n", zea1>>16, zea1&0xffff, zlen1, zea2>>16, zea2&0xffff, zlen2); if (crs[KEYS] & 020) zspace = 040; else zspace = 0240; zclen1 = 0; zclen2 = 0; ea = *(ea_t *)(crs+XB); for (i=0; i < 32767; i++) { /* do edit pgms have a size limit? */ utempa = get16(INCVA(ea, i)); m = utempa & 0xFF; switch ((utempa >> 8) & 3) { case 0: /* copy M chars */ while (m && zlen1) { ZGETC(zea1, zlen1, zcp1, zclen1, zch1); ZPUTC(zea2, zlen2, zcp2, zclen2, zch1); m--; } while (m) { ZPUTC(zea2, zlen2, zcp2, zclen2, zspace); m--; } break; case 1: /* insert character M */ ZPUTC(zea2, zlen2, zcp2, zclen2, m); break; case 2: /* skip M characters */ if (m >= zlen1) zlen1 = 0; else while (m) { ZGETC(zea1, zlen1, zcp1, zclen1, zch1); m--; } break; case 3: /* insert M blanks */ while (m) { ZPUTC(zea2, zlen2, zcp2, zclen2, zspace); m--; } break; default: fatal("ZED em bug"); } if (utempa & 0x8000) break; } continue; #endif /* 001100 = XAD* 001101 = XMV* 001102 = XCM* 001104 = XMP* 001107 = XDV* 001110 = ZTRN 001111 = ZED 001112 = XED* 001114 = ZMV 001115 = ZMVD 001116 = ZFIL 001117 = ZCM 001145 = XBTD* 001146 = XDTB* * = These are not yet implemented */ case 000510: TRACE(T_FLOW, " STTM\n", inst); ea = *(ea_t *)(crs+OWNER); utempl = get32r0(ea+PCBPET); /* get PCB elapsed timer */ utempl += crs[TIMERH]; /* add live timer */ ea = *(ea_t *)(crs+XB); put32(utempl, ea); /* store process time */ put16(crs[TIMERL], INCVA(ea,2)); /* and live timer residue */ continue; /* OS/restricted instructions */ case 000511: TRACE(T_FLOW, " RTS\n", inst); RESTRICT(); tempa = crs[TIMERH]; templ = tempa - *(short *)(crs+A); ea = *(ea_t *)(crs+OWNER); templ += get32r0(ea+PCBPET); put32r0(templ, ea+PCBPET); crs[TIMERH] = crs[A]; continue; case 000315: TRACE(T_FLOW, " WAIT\n", inst); RESTRICT(); pwait(); continue; case 001210: case 001211: case 001214: case 001215: case 001216: case 001217: TRACE(T_FLOW, " NFY\n", inst); RESTRICT(); nfy(inst); continue; case 001212: case 001213: fatal("Unrecognized NFY instruction"); case 001315: TRACE(T_FLOW, " STEX\n"); *(ea_t *)(crs+L) = stex(*(unsigned int *)(crs+L)); continue; /* NOTE: L contains target virtual address, which is used to determine which pages of cache to invalidate. Since this emulator does not have a memory cache, L is unused. */ case 000044: TRACE(T_FLOW, " LIOT\n"); RESTRICT(); ea = apea(NULL); utempa = STLBIX(ea); stlb[utempa].valid = 0; TRACE(T_INST, " invalidated STLB index %d\n", utempa); mapva(ea, RACC, &access, RP); TRACE(T_INST, " loaded STLB for %o/%o\n", ea>>16, ea&0xffff); continue; case 000064: TRACE(T_FLOW, " PTLB\n"); RESTRICT(); utempl = *(unsigned int *)(crs+L); for (utempa = 0; utempa < STLBENTS; utempa++) if ((utempl & 0x80000000) || stlb[utempa].ppn == utempl) stlb[utempa].valid = 0; continue; case 000615: TRACE(T_FLOW, " ITLB\n"); RESTRICT(); utempl = *(unsigned int *)(crs+L); /* NOTE: Primos substitutes an ITLB loop for PTLB, and the ITLB segno is 1, ie, it looks like using segment 1 invalidates all pages that match, ignoring segment number?? Instead of doing that, we purge the STLB whenever address 1/0 is invalidated. */ if (utempl == 0x10000) { for (utempa = 0; utempa < STLBENTS; utempa++) stlb[utempa].valid = 0; TRACE(T_INST, " purged entire STLB\n"); } else { utempa = STLBIX(utempl); stlb[utempa].valid = 0; TRACE(T_INST, " invalidated STLB index %d\n", utempa); if (((utempl >> 16) & 07777) < 4) iotlb[(utempl >> 10) & 0xFF].valid = 0; } #if 0 /* HACK for DIAG to suppress ITLB loop in trace */ if (RP == 0106070) if (*(int *)(crs+L) == 0) { TRACEA(" Suppressing DIAG trace\n"); savetraceflags = traceflags; traceflags = 0; } else if (crs[A] == 07777 && crs[B] == 0176000) { TRACEA(" Restoring DIAG trace\n"); traceflags = savetraceflags; } #endif continue; case 000711: TRACE(T_FLOW, " LPSW\n"); RESTRICT(); lpsw(); continue; case 000024: TRACE(T_FLOW, " STPM\n", inst); RESTRICT(); for (i=0; i<8; i++) stpm[i] = 0; stpm[1] = cpuid; ea = *(unsigned int *)(crs+XB); put64(*(double *)(stpm+0), ea); put64(*(double *)(stpm+4), INCVA(ea,4)); continue; case 001700: case 001701: TRACE(T_FLOW, " DBGILL\n", inst); fault(ILLINSTFAULT, RPL, RP); fatal(NULL); /* JW: I think 1702 is an invalid opcode that Prime uses as an assertion when unexpected things happen, for example: LDA modals get modals SAS 1 interrupts enabled? 1702 no, they should be, die */ case 001702: TRACE(T_FLOW, " 1702?\n", inst); if (RP & RINGMASK32) fault(ILLINSTFAULT, RPL, RP); else fatal("Primos software assertion failure"); fatal(NULL); /* just in case of a bogus return (coding error) */ case 000601: TRACE(T_FLOW, " IRTN\n", inst); RESTRICT(); //fatal("IRTN causes a loop in CPU.CACHE Case 4"); irtn: RP = regs.sym.pswpb; crs[PBH] = RPH; newkeys(regs.sym.pswkeys); crs[MODALS] |= 0100000; #if 0 if (regs.sym.pcba != 0) { RP = regs.sym.pswpb; newkeys(regs.sym.pswkeys); } else crs[OWNERL] = 0; #endif dispatcher(); continue; case 000603: TRACE(T_FLOW, " IRTC\n", inst); RESTRICT(); intvec = -1; goto irtn; case 000411: TRACE(T_FLOW, " CAI\n", inst); RESTRICT(); intvec = -1; continue; /* R-mode/infrequent gen 0 instructions */ case 000005: /* SGL */ TRACE(T_FLOW, " SGL\n"); crs[KEYS] &= ~040000; continue; case 000011: /* E16S */ TRACE(T_FLOW, " E16S\n"); newkeys(crs[KEYS] & 0161777); continue; case 000013: /* E32S */ TRACE(T_FLOW, " E32S\n"); newkeys((crs[KEYS] & 0161777) | 1<<10); continue; case 001013: /* E32R */ TRACE(T_FLOW, " E32R\n"); newkeys((crs[KEYS] & 0161777) | 3<<10); continue; case 001011: /* E64R */ TRACE(T_FLOW, " E64R\n"); newkeys((crs[KEYS] & 0161777) | 2<<10); continue; case 000010: /* E64V */ TRACE(T_FLOW, " E64V\n"); newkeys((crs[KEYS] & 0161777) | 6<<10); continue; case 001010: /* E32I */ TRACE(T_FLOW, " E32I\n"); /* NOTE: this fault needs to occur on older models even in Ring 0, so the RESTRICT() macro can't be used here */ if (cpuid < 4) fault(RESTRICTFAULT, 0, 0); else newkeys((crs[KEYS] & 0161777) | 4<<10); continue; case 000505: /* SVC */ TRACE(T_FLOW, " SVC\n"); fault(SVCFAULT, 0, 0); fatal("Returned from SVC fault"); continue; case 000111: /* CEA */ TRACE(T_FLOW, " CEA\n"); switch ((crs[KEYS] & 016000) >> 10) { case 0: /* 16S */ ea = crs[A]; i = ea & 0100000; x = ea & 040000; ea &= 037777; while (1) { if (x) /* indexed */ ea += crs[X]; if (!i) /* not indirect */ break; if (ea < 040) m = get16(0x80000000|ea); else m = get16(MAKEVA(RPH,ea)); i = m & 0100000; x = m & 040000; ea = m & 037777; /* go indirect */ } crs[A] = ea; break; case 1: /* 32S */ case 3: /* 32R */ while (crs[A] & 0100000) { ea = crs[A] & 077777; if (ea < 040) crs[A] = get16(0x80000000|ea); else crs[A] = get16(MAKEVA(RPH,ea)); } } continue; case 000000: TRACE(T_FLOW, " HLT\n"); RESTRICT(); memdump(0,0xFFFF); fatal("CPU halt"); case 000205: /* PIM (R-mode) */ TRACE(T_FLOW, " PIM\n"); #if 0 /* NOTE: this fits the description in the Rev 21 ISG, but fails DIAG test CPU.INTEGER, Case 12 */ crs[A] = (crs[A] & 0x8000) | (crs[B] & 0x7FFF); #else crs[A] = (crs[A] & 0x8000) | crs[B]; #endif continue; case 000211: /* PID (R-mode) */ TRACE(T_FLOW, " PID\n"); *(int *)(crs+L) = *(short *)(crs+A); crs[B] &= 0x7fff; continue; /* DBL activates 31-bit mode (R-mode only): LDA -> DLD (double load) STA -> DST (double store) ADD -> DAD (double add) SUB -> DSB (double subtract) Other R-mode, 31-bit instructions include: PID, DIV, MPY, PIM, INT, FLOT */ case 000007: /* DBL */ TRACE(T_FLOW, " DBL\n"); crs[KEYS] |= 040000; continue; case 000041: TRACE(T_FLOW, " SCA\n"); crs[A] = crs[VSC] & 0xFF; continue; case 000043: TRACE(T_FLOW, " INK\n"); crs[A] = (crs[KEYS] & 0xFF00) | (crs[VSC] & 0xFF); continue; case 000405: TRACE(T_FLOW, " OTK\n"); newkeys((crs[A] & 0xFF00) | (crs[KEYS] & 0xFF)); crs[VSC] = (crs[VSC] & 0xFF00) | (crs[A] & 0xFF); if ((RP & RINGMASK32) == 0) inhcount = 1; continue; case 000415: TRACE(T_FLOW, " ESIM\n"); RESTRICT(); crs[MODALS] &= ~040000; continue; case 000417: TRACE(T_FLOW, " EVIM\n"); RESTRICT(); crs[MODALS] |= 040000; continue; case 000101: TRACE(T_FLOW, " NRM\n"); crs[VSC] = 0; if (crs[A] == 0 && crs[B] == 0) continue; while (!((crs[A] ^ (crs[A] << 1)) & 0x8000)) { TRACE(T_INST, " step %d: crs[A]=%o, crs[B]=%o\n", crs[VSC], crs[A], crs[B]); crs[B] = crs[B] << 1; crs[A] = (crs[A] & 0x8000) | ((crs[A] << 1) & 0x7FFE) | (crs[B] >> 15); crs[VSC]++; } crs[B] &= 0x7FFF; TRACE(T_INST, " finished with %d shifts: crs[A]=%o, crs[B]=%o\n", crs[VSC], crs[A], crs[B]); continue; case 000105: TRACE(T_FLOW, " RTN\n"); m = get16(crs[S]+1); if (m == 0) fatal("RTN stack underflow"); crs[S] = get16(crs[S]); continue; /* unusual instructions */ case 000003: TRACE(T_FLOW, " gen 3?\n"); #if 0 /* After looking at the simh Honeywell 315/516 simulator, I decided that instruction 3 must be some kind of no-op on the Prime. I did verify that it is a legal instruction and doesn't generate a UII fault, even though it is not documented anywhere that I could find. */ TRACEA("#%d: %o/%o: Generic instruction 3?\n", instcount, RPH, RPL); savetraceflags = ~0; #endif continue; default: if (001100 <= inst && inst <= 001146) { TRACE(T_FLOW, " X/Z UII %o\n", inst); fault(UIIFAULT, RPL, RP); continue; } for (i=0; i 100 && m == RPL-1) { struct timeval tv0,tv1; long delayusec, actualmsec; /* for BDX *-1 loop (backstop process mainly), we want to change this to a long sleep so that the emulation host's CPU isn't pegged the whole time the emulator is running. So first, check to see if any device times expire sooner than this, and if so, limit the sleep time to the lowest expiration value (this is stored as number of instructions left until the timer expires). NOTE: In practice, the clock device ticks at 330 times a sec under standard Primos so we only get to delay about 3ms here, but it still keeps CPU usage to 4-5% on a 1.5GHz Mac. Primos mods to make the clock tick 20 times per second allows for much longer sleeps here, ie, CPU overhead is 0.7% while idle. */ utempl = instpermsec*100; /* limit delay to 100 msecs */ for (i=0; i<64; i++) /* check device timers */ if (devpoll[i]) /* poll set? */ if (devpoll[i] <= 100) { /* too fast! */ utempl = 1; break; } else if (devpoll[i] < utempl) utempl = devpoll[i]; utempl--; /* utempl = # instructions */ delayusec = utempl*1000/instpermsec; if (delayusec > 1000) { if (gettimeofday(&tv0, NULL) != 0) fatal("em: gettimeofday 0 failed"); usleep(delayusec); if (gettimeofday(&tv1, NULL) != 0) fatal("em: gettimeofday 1 failed"); actualmsec = (tv1.tv_sec-tv0.tv_sec-1)*1000 + (tv1.tv_usec+1000000-tv0.tv_usec)/1000; // TRACEA(" BDX loop at %o/%o, remainder=%d, owner=%o, utempl=%d, wanted %d us, got %d ms\n", prevpc>>16, prevpc&0xffff, crs[X], crs[OWNERL], utempl, delayusec, actualusec); /* do timer bookkeeping that would have occurred if we had actually looped on BDX utempl times */ for (i=0; i<64; i++) if (devpoll[i] > 0) devpoll[i] -= utempl; crs[X] = 0; utempa = crs[TIMER]; if (actualmsec > 0) { crs[TIMER] += actualmsec; if (crs[TIMER] < utempa) { tempea = *(ea_t *)(crs+OWNER); utempa = get16r0(tempea+4) | 1; /* set process abort flag */ put16r0(utempa, tempea+4); } } else { crs[TIMERL] += utempl; } instcount += actualmsec*instpermsec; } } #endif BXNE; continue; case 0141206: TRACE(T_FLOW, " A1A\n"); a1a: add16(crs+A, 1, 0, 0); continue; case 0140304: TRACE(T_FLOW, " A2A\n"); add16(crs+A, 2, 0, 0); continue; case 0141216: TRACE(T_FLOW, " ACA\n"); if (crs[KEYS] & 0100000) goto a1a; crs[KEYS] &= ~0120300; /* clear C, L, LT, EQ */ SETCC_A; continue; case 0140110: TRACE(T_FLOW, " S1A\n"); add16(crs+A, 0xFFFF, 0, 0); continue; case 0140310: TRACE(T_FLOW, " S2A\n"); add16(crs+A, 0xFFFE, 0, 0); continue; case 0141050: TRACE(T_FLOW, " CAL\n"); crs[A] &= 0xFF; continue; case 0141044: TRACE(T_FLOW, " CAR\n"); crs[A] &= 0xFF00; continue; case 0140040: TRACE(T_FLOW, " CRA\n"); crs[A] = 0; continue; /* On the P300, the B register is the low-order word of the DP floating pt fraction, so CRB was used to convert SPFP numbers to DPFP. On the P400 and up, the B register and DPFP accumulator do not overlap. For compatibility, there are 3 related instructions: '14 clears B and the low-order DPFP register '15 clears only B '16 clears only the low-order DPFP register */ case 0140014: TRACE(T_FLOW, " P300CRB\n"); crs[B] = 0; crs[FLTD] = 0; continue; case 0140015: TRACE(T_FLOW, " CRB\n"); crs[B] = 0; continue; case 0140016: TRACE(T_FLOW, " FDBL\n"); crs[FLTD] = 0; continue; case 0140010: TRACE(T_FLOW, " CRL\n"); *(int *)(crs+L) = 0; continue; case 0140214: TRACE(T_FLOW, " CAZ\n"); /* set keys like CAS =0 would (subtract) */ crs[KEYS] = (crs[KEYS] & ~0100) | 020200; /* clear EQ, set L, LT */ if (crs[A] == 0) { /* if zero, set EQ */ crs[KEYS] |= 0100; RPL++; } else if (*(short *)(crs+A) < 0) RPL += 2; continue; /* NOTE: using "if (crs[X]++ == 0)" doesn't work because of unsigned short type promotion! */ case 0140114: TRACE(T_FLOW, " IRX\n"); crs[X]++; if (crs[X] == 0) RPL++; continue; case 0140210: TRACE(T_FLOW, " DRX\n"); crs[X]--; if (crs[X] == 0) RPL++; continue; case 0141240: TRACE(T_FLOW, " ICR\n"); crs[A] = crs[A] << 8; continue; case 0141140: TRACE(T_FLOW, " ICL\n"); crs[A] = crs[A] >> 8; continue; case 0141340: TRACE(T_FLOW, " ICA\n"); crs[A] = (crs[A] >> 8) | (crs[A] << 8); continue; /* NOTE: Rev 21 Inst. Guide says CC are indeterminate, other references say they are set */ case 0140417: TRACE(T_FLOW, " LT\n"); crs[A] = 1; continue; case 0140416: TRACE(T_FLOW, " LF\n"); crs[A] = 0; continue; case 0140314: TRACE(T_FLOW, " TAB\n"); crs[B] = crs[A]; continue; case 0140504: TRACE(T_FLOW, " TAX\n"); crs[X] = crs[A]; continue; case 0140505: TRACE(T_FLOW, " TAY\n"); crs[Y] = crs[A]; continue; case 0140604: TRACE(T_FLOW, " TBA\n"); crs[A] = crs[B]; continue; case 0141034: TRACE(T_FLOW, " TXA\n"); crs[A] = crs[X]; continue; case 0141124: TRACE(T_FLOW, " TYA\n"); crs[A] = crs[Y]; continue; case 0140104: TRACE(T_FLOW, " XCA\n"); crs[B] = crs[A]; crs[A] = 0; continue; case 0140204: TRACE(T_FLOW, " XCB\n"); crs[A] = crs[B]; crs[B] = 0; continue; case 0140407: TRACE(T_FLOW, " TCA\n"); tch(crs+A); continue; case 0141210: TRACE(T_FLOW, " TCL\n"); tcr(crsl+GR2); continue; case 0140600: TRACE(T_FLOW, " SCB\n"); crs[KEYS] |= 0100000; continue; case 0140200: TRACE(T_FLOW, " RCB\n"); crs[KEYS] &= 077777; continue; case 0140024: TRACE(T_FLOW, " CHS\n"); crs[A] ^= 0x8000; continue; case 0140500: TRACE(T_FLOW, " SSM\n"); crs[A] |= 0100000; continue; case 0140100: TRACE(T_FLOW, " SSP\n"); crs[A] &= 077777; continue; case 0140401: TRACE(T_FLOW, " CMA\n"); crs[A] = ~crs[A]; continue; case 0140320: TRACE(T_FLOW, " CSA\n"); crs[KEYS] = (crs[KEYS] & 077777) | (crs[A] & 0x8000); crs[A] = crs[A] & 077777; continue; case 0141500: TRACE(T_FLOW, " LCLT\n"); crs[A] = LCLT; continue; case 0141501: TRACE(T_FLOW, " LCLE\n"); crs[A] = LCLE; continue; case 0141503: TRACE(T_FLOW, " LCEQ\n"); crs[A] = LCEQ; continue; case 0141502: TRACE(T_FLOW, " LCNE\n"); crs[A] = LCNE; continue; case 0141504: TRACE(T_FLOW, " LCGE\n"); crs[A] = LCGE; continue; case 0141505: TRACE(T_FLOW, " LCGT\n"); crs[A] = LCGT; continue; case 0140410: TRACE(T_FLOW, " LLT\n"); SETCC_A; crs[A] = LCLT; continue; case 0140411: TRACE(T_FLOW, " LLE\n"); SETCC_A; crs[A] = LCLE; continue; case 0140412: TRACE(T_FLOW, " LNE\n"); SETCC_A; crs[A] = LCNE; continue; case 0140413: TRACE(T_FLOW, " LEQ\n"); SETCC_A; crs[A] = LCEQ; continue; case 0140414: TRACE(T_FLOW, " LGE\n"); SETCC_A; crs[A] = LCGE; continue; case 0140415: TRACE(T_FLOW, " LGT\n"); SETCC_A; crs[A] = LCGT; continue; case 0141511: TRACE(T_FLOW, " LLLE\n"); SETCC_L; crs[A] = LCLE; continue; case 0141513: TRACE(T_FLOW, " LLEQ\n"); SETCC_L; crs[A] = LCEQ; continue; case 0141512: TRACE(T_FLOW, " LLNE\n"); SETCC_L; crs[A] = LCNE; continue; case 0141515: TRACE(T_FLOW, " LLGT\n"); SETCC_L; crs[A] = LCGT; continue; case 0141110: TRACE(T_FLOW, " LFLT\n"); SETCC_F; crs[A] = LCLT; continue; case 0141111: TRACE(T_FLOW, " LFLE\n"); SETCC_F; crs[A] = LCLE; continue; case 0141113: TRACE(T_FLOW, " LFEQ\n"); SETCC_F; crs[A] = LCEQ; continue; case 0141112: TRACE(T_FLOW, " LFNE\n"); SETCC_F; crs[A] = LCNE; continue; case 0141114: TRACE(T_FLOW, " LFGE\n"); SETCC_F; crs[A] = LCGE; continue; case 0141115: TRACE(T_FLOW, " LFGT\n"); SETCC_F; crs[A] = LCGT; continue; case 0140550: TRACE(T_FLOW, " FLOT\n"); templ = *(short *)(crs+A); templ = (templ<<15) | crs[B]; tempf = templ; tempf1 = tempf; ieeepr4(&tempf); crs[FLTH] = (*(unsigned int *)&tempf) >> 16; crs[FLTL] = (*(unsigned int *)&tempf) & 0xFF00; crs[FEXP] = (*(unsigned int *)&tempf) & 0xFF; crs[FLTD] = 0; TRACE(T_INST, " A|B=%d, conv=%f, FEXP=%d (dec), FLTH='%o, FLTL='%o\n", templ, tempf1, crs[FEXP], crs[FLTH], crs[FLTL]); continue; case 0140534: TRACE(T_FLOW, " FRN\n"); continue; case 0140574: TRACE(T_FLOW, " DFCM\n"); TRACE(T_INST, " FEXP=%d (dec), FLTH='%o, FLTL='%o\n", crs[FEXP], crs[FLTH], crs[FLTL]); tempda[0] = crs[FLTH]; tempda[1] = crs[FLTL]; tempda[2] = crs[FLTD]; tempda[3] = crs[FEXP]; prieee8(tempda); *(double *)tempda = -(*(double *)tempda); ieeepr8(tempda); crs[FLTH] = tempda[0]; crs[FLTL] = tempda[1]; crs[FLTD] = tempda[2]; crs[FEXP] = tempda[3]; XEXPC(0); continue; case 0141000: TRACE(T_FLOW, " ADLL\n"); adlr(2); continue; case 0140530: TRACE(T_FLOW, " FCM\n"); TRACE(T_INST, " FEXP=%d (dec), FLTH='%o, FLTL='%o\n", crs[FEXP], crs[FLTH], crs[FLTL]); *(int *)&tempf = (crs[FLTH]<<16) | (crs[FLTL] & 0xFF00) | (crs[FEXP] & 0xFF); prieee4(&tempf); tempf = -tempf; ieeepr4(&tempf); crs[FLTH] = (*(unsigned int *)&tempf) >> 16; crs[FLTL] = (*(unsigned int *)&tempf) & 0xFF00; crs[FEXP] = (*(unsigned int *)&tempf) & 0xFF; XEXPC(0); continue; case 0140510: TRACE(T_FLOW, " FSZE\n"); if (*(int *)(crs+FLTH) == 0) RPL++; continue; case 0140511: TRACE(T_FLOW, " FSNZ\n"); if (*(int *)(crs+FLTH) != 0) RPL++; continue; case 0140512: TRACE(T_FLOW, " FSMI\n"); if (*(int *)(crs+FLTH) < 0) RPL++; continue; case 0140513: TRACE(T_FLOW, " FSPL\n"); if (*(int *)(crs+FLTH) >= 0) RPL++; continue; case 0140514: TRACE(T_FLOW, " FSLE\n"); if (*(int *)(crs+FLTH) <= 0) RPL++; continue; case 0140515: TRACE(T_FLOW, " FSGT\n"); if (*(int *)(crs+FLTH) > 0) RPL++; continue; case 0140554: TRACE(T_FLOW, " INT\n"); tempda[0] = crs[FLTH]; tempda[1] = crs[FLTL]; tempda[2] = crs[FLTD]; tempda[3] = crs[FEXP]; prieee8(tempda); TRACE(T_INST, " DFAC value=%f, FEXP=%d (dec), FLTH='%o, FLTL='%o, fltd='%o\n", *(double *)tempda, crs[FEXP], crs[FLTH], crs[FLTL], crs[FLTD]); templ = *(double *)tempda; TRACE(T_INST, " INT value=%d\n", templ); crs[B] = templ & 0x7FFF; crs[A] = templ >> 15; if (*(double *)tempda > 1073741823.0 || *(double *)tempda < -1073741824.0) mathexception('f', FC_DFP_OFLOW, ea); else CLEARC; continue; case 0140531: TRACE(T_FLOW, " INTA\n"); tempda[0] = crs[FLTH]; tempda[1] = crs[FLTL]; tempda[2] = crs[FLTD]; tempda[3] = crs[FEXP]; prieee8(tempda); if (*(double *)tempda > 32767.0 || *(double *)tempda < -32768.0) mathexception('f', FC_DFP_OFLOW, ea); else CLEARC; *(short *)(crs+A) = *(double *)tempda; continue; case 0140532: TRACE(T_FLOW, " FLTA\n"); tempf = *(short *)(crs+A); ieeepr4(&tempf); crs[FLTH] = (*(unsigned int *)&tempf) >> 16; crs[FLTL] = (*(unsigned int *)&tempf) & 0xFF00; crs[FEXP] = (*(unsigned int *)&tempf) & 0xFF; crs[FLTD] = 0; continue; case 0140533: TRACE(T_FLOW, " INTL\n"); tempda[0] = crs[FLTH]; tempda[1] = crs[FLTL]; tempda[2] = crs[FLTD]; tempda[3] = crs[FEXP]; prieee8(tempda); if (*(double *)tempda > 2147483647.0 || *(double *)tempda < -2147483648.0) mathexception('f', FC_DFP_OFLOW, ea); else CLEARC; *(int *)(crs+L) = *(double *)tempda; continue; case 0140535: TRACE(T_FLOW, " FLTL\n"); tempf = *(int *)(crs+L); ieeepr4(&tempf); crs[FLTH] = (*(unsigned int *)&tempf) >> 16; crs[FLTL] = (*(unsigned int *)&tempf) & 0xFF00; crs[FEXP] = (*(unsigned int *)&tempf) & 0xFF; crs[FLTD] = 0; continue; case 0141711: TRACE(T_FLOW, " BMLE\n"); if (!(crs[KEYS] & 020000)) RPL = iget16(RP); else BCEQ; continue; #if 0 case 0141602: /* same opcode as BCEQ */ TRACE(T_FLOW, " BMEQ\n"); goto bceq; case 0141603: /* same opcode as BCNE */ TRACE(T_FLOW, " BMNE\n"); goto bcne; /* NOTE: BMGE is equivalent to BLS; this opcode doesn't exist in newer manuals */ case 0141606: TRACE(T_FLOW, " BMGE\n"); goto bls; #endif case 0141710: TRACE(T_FLOW, " BMGT\n"); if (crs[KEYS] & 020000) BCNE; else RPL++; continue; case 0141404: TRACE(T_FLOW, " CRE\n"); *(int *)(crs+E) = 0; continue; case 0141410: TRACE(T_FLOW, " CRLE\n"); *(int *)(crs+L) = 0; *(int *)(crs+E) = 0; continue; case 0141414: TRACE(T_FLOW, " ILE\n"); templ = *(int *)(crs+L); *(int *)(crs+L) = *(int *)(crs+E); *(int *)(crs+E) = templ; continue; /* queue instructions */ case 0141714: TRACE(T_FLOW, " RTQ\n"); ea = apea(NULL); if (rtq(ea, crs+A, RP)) crs[KEYS] &= ~0100; else crs[KEYS] |= 0100; continue; case 0141715: TRACE(T_FLOW, " RBQ\n"); ea = apea(NULL); if (rbq(ea, crs+A, RP)) crs[KEYS] &= ~0100; else crs[KEYS] |= 0100; continue; case 0141716: TRACE(T_FLOW, " ABQ\n"); ea = apea(NULL); if (abq(ea, crs[A], RP)) crs[KEYS] &= ~0100; else crs[KEYS] |= 0100; continue; case 0141717: TRACE(T_FLOW, " ATQ\n"); ea = apea(NULL); if (atq(ea, crs[A], RP)) crs[KEYS] &= ~0100; else crs[KEYS] |= 0100; continue; case 0141757: TRACE(T_FLOW, " TSTQ\n"); ea = apea(NULL); crs[A] = tstq(ea); SETCC_A; continue; default: TRACE(T_FLOW, " unrecognized generic class 3 instruction!\n"); printf(" unrecognized generic class 3 instruction %o!\n", inst); /* XXX: hacks for CPU.FAULT; not sure how to determine whether an instruction is illegal or unimplemented */ if (inst == 0141700) fault(ILLINSTFAULT, RPL, RP); else fault(UIIFAULT, RPL, RP); fatal(NULL); } } if (class == 1) { if ((crs[KEYS] & 0016000) == 0010000) { /* I-mode Generic */ switch (inst) { case 0040300: /* DRN */ warn("IXX I-mode Generic 040300"); break; case 0040301: /* DRNP */ warn("IXX I-mode Generic 040301"); break; case 0040302: /* DRNZ */ warn("IXX I-mode Generic 040302"); break; case 0040310: /* SSSN */ sssn(); break; default: TRACE(T_FLOW, " unrecognized I-mode generic class 1 instruction!\n"); printf(" unrecognized I-mode generic class 1 instruction %o!\n", inst); fatal(NULL); } } else { TRACE(T_INST, " shift group\n"); scount = -inst & 077; if (scount == 0) scount = 0100; switch (inst & 01700) { case 00000: /* LRL */ TRACE(T_FLOW, " LRL %d\n", scount); crsl[GR2] = lrl(crsl[GR2], scount); break; case 00100: /* LRS (different in R & V modes) */ TRACE(T_FLOW, " LRS %d\n", scount); if (crs[KEYS] & 010000) { /* V/I mode */ crsl[GR2] = lrs(crsl[GR2], scount); } else { CLEARCL; utempa = crs[B] & 0x8000; /* save B bit 1 */ if (scount <= 31) { templ = (crs[A]<<16) | ((crs[B] & 0x7FFF)<<1); EXPCL(templ & bitmask32[32-scount]); templ = templ >> (scount+1); crs[A] = templ >> 15; crs[B] = (templ & 0x7FFF) | utempa; } else if (crs[A] & 0x8000) { *(int *)(crs+A) = 0xFFFF7FFF | utempa; SETCL; } else { *(int *)(crs+A) = utempa; } } break; case 00200: /* LRR */ TRACE(T_FLOW, " LRR %d\n", scount); crsl[GR2] = lrr(crsl[GR2], scount); break; case 00300: if (inst == 040310) { sssn(); break; } goto badshift; case 00400: /* ARL */ TRACE(T_FLOW, " ARL %d\n", scount); crs[A] = arl(crs[A], scount); break; case 00500: /* ARS */ TRACE(T_FLOW, " ARS %d\n", scount); crs[A] = ars(crs[A], scount); break; case 00600: /* ARR */ TRACE(T_FLOW, " ARR %d\n", scount); crs[A] = arr(crs[A], scount); break; case 01000: /* LLL */ TRACE(T_FLOW, " LLL %d\n", scount); crsl[GR2] = lll(crsl[GR2], scount); break; case 01100: /* LLS (different in R/V modes) */ TRACE(T_FLOW, " LLS %d\n", scount); if (crs[KEYS] & 010000) /* V/I mode */ crsl[GR2] = lls(crsl[GR2], scount); else { CLEARCL; utempa = crs[B] & 0x8000; /* save B bit 1 */ if (scount < 31) { utempl = (crs[A]<<16) | ((crs[B] & 0x7FFF)<<1); templ2 = 0x80000000; templ2 = templ2 >> scount; /* create mask */ templ2 = templ2 & utempl; /* grab bits */ templ2 = templ2 >> (31-scount); /* sign extend them */ EXPCL(!(templ2 == -1 || templ2 == 0)); //printf(" before: A=%x, B=%x, utempl=%x, ", crs[A], crs[B], utempl); utempl = utempl << scount; crs[A] = utempl >> 16; crs[B] = ((utempl >> 1) & 0x7FFF) | utempa; //printf(" after: A=%x, B=%x, utempl=%x\n", crs[A], crs[B], utempl); } else { EXPCL(*(unsigned int *)(crs+A) != 0); *(unsigned int *)(crs+A) = utempa; } } if ((crs[KEYS] & 0100400) == 0100400) mathexception('i', FC_INT_OFLOW, 0); break; case 01200: /* LLR */ TRACE(T_FLOW, " LLR %d\n", scount); crsl[GR2] = llr(crsl[GR2], scount); break; case 01400: /* ALL */ TRACE(T_FLOW, " ALL %d\n", scount); crs[A] = all(crs[A], scount); break; case 01500: /* ALS */ TRACE(T_FLOW, " ALS %d\n", scount); crs[A] = als(crs[A], scount); if ((crs[KEYS] & 0100400) == 0100400) mathexception('i', FC_INT_OFLOW, 0); break; case 01600: /* ALR */ TRACE(T_FLOW, " ALR %d\n", scount); crs[A] = alr(crs[A], scount); break; default: badshift: printf("emulator warning: unrecognized shift instruction %o at %o/%o\n", inst, RPH, RPL); TRACE(T_FLOW, " unrecognized shift instruction!: %o\n", inst); } } continue; } if (class == 2) { TRACE(T_INST, " skip group\n"); if (inst == 0101000) { TRACE(T_FLOW, " NOP-SKP\n"); continue; } if (inst == 0100000) { TRACE(T_FLOW, " SKP\n"); RPL++; continue; } if (inst == 0101400) { TRACE(T_FLOW, " SMI/SLT\n"); if (*(short *)(crs+A) < 0) RPL++; continue; } if (inst == 0100400) { TRACE(T_FLOW, " SPL/SGE\n"); if (*(short *)(crs+A) >= 0) RPL++; continue; } if (inst == 0101100) { TRACE(T_FLOW, " SLN\n"); if (crs[A] & 1) RPL++; continue; } if (inst == 0100100) { TRACE(T_FLOW, " SLZ\n"); if (!(crs[A] & 1)) RPL++; continue; } if (inst == 0101040) { TRACE(T_FLOW, " SNZ/SNE\n"); if (crs[A] != 0) RPL++; continue; } if (inst == 0100040) { TRACE(T_FLOW, " SZE/SEQ\n"); if (crs[A] == 0) RPL++; continue; } if (inst == 0101220) { TRACE(T_FLOW, " SLE\n"); if (*(short *)(crs+A) <= 0) RPL++; continue; } if (inst == 0100220) { TRACE(T_FLOW, " SGT\n"); if (*(short *)(crs+A) > 0) RPL++; continue; } if (inst == 0101001) { TRACE(T_FLOW, " SSC\n"); if (crs[KEYS] & 0100000) RPL++; continue; } if (inst == 0100001) { TRACE(T_FLOW, " SRC\n"); if (!(crs[KEYS] & 0100000)) RPL++; continue; } if ((inst & 0177760) == 0100260) { m = (inst & 017)+1; TRACE(T_FLOW, " SAR %d\n", m); if (!(crs[A] & bitmask16[m])) RPL++; continue; } if ((inst & 0177760) == 0101260) { m = (inst & 017)+1; TRACE(T_FLOW, " SAS %d\n", m); if (crs[A] & bitmask16[m]) RPL++; continue; } if ((inst & 0177760) == 0100240) { m = (inst & 017)+1; TRACE(T_FLOW, " SNR %d\n", m); RESTRICT(); if (!(sswitch & bitmask16[m])) RPL++; continue; } if ((inst & 0177760) == 0101240) { m = (inst & 017)+1; TRACE(T_FLOW, " SNS %d\n", m); RESTRICT(); if (sswitch & bitmask16[m]) RPL++; continue; } if (inst == 0100200) { /* skip if machine check flop is reset */ TRACE(T_FLOW, " SMCR\n"); RESTRICT(); RPL++; continue; } if (inst == 0101200) { /* skip if machine check flop is set */ TRACE(T_FLOW, " SMCS\n"); RESTRICT(); continue; } #if 0 /* NOTE: this is the clock display instruction skip, but appears goofy to me, and looks more like an I/O instruction: unrecognized skip instruction 101704 at 6/3174 Fatal error: instruction #106825755 at 6/3173: 101704 677 keys = 14200, modals=100177 */ #endif if (inst == 0101704) { /* skip if machine check flop is set */ TRACE(T_FLOW, " clock SKP?\n"); RPL++; continue; } printf(" unrecognized skip instruction %o at %o/%o\n", inst, RPH, RPL); fatal(NULL); } else { printf("Generic class = %d, inst = '%o\n", class, inst); fatal("Coding error: bad generic class?"); } } if ((crs[KEYS] & 0016000) != 0010000) goto nonimode; /* branch and register generic instructions don't have ea, so they are tested outside the main switch, before an ea is computed */ opcode = inst >> 10; dr = (inst >> 7) & 7; if (opcode == 010) { /* register branch */ brop = inst & 0177; switch (brop) { case 0100: TRACE(T_FLOW, " BRLE\n"); SETCC_32(crsl[dr]); BCLE; break; case 0101: TRACE(T_FLOW, " BRGT\n"); SETCC_32(crsl[dr]); BCGT; break; case 0102: TRACE(T_FLOW, " BREQ\n"); SETCC_32(crsl[dr]); BCEQ; break; case 0103: TRACE(T_FLOW, " BRNE\n"); SETCC_32(crsl[dr]); BCNE; break; case 0104: TRACE(T_FLOW, " BRLT\n"); SETCC_32(crsl[dr]); BCLT; break; case 0105: TRACE(T_FLOW, " BRGE\n"); SETCC_32(crsl[dr]); BCGE; break; case 0110: TRACE(T_FLOW, " BHLE\n"); SETCC_16(crs[dr*2]); BCLE; break; case 0111: TRACE(T_FLOW, " BHGT\n"); SETCC_16(crs[dr*2]); BCGT; break; case 0112: TRACE(T_FLOW, " BHEQ\n"); SETCC_16(crs[dr*2]); BCEQ; break; case 0113: TRACE(T_FLOW, " BHNE\n"); SETCC_16(crs[dr*2]); BCNE; break; case 0114: TRACE(T_FLOW, " BHLT\n"); SETCC_16(crs[dr*2]); BCLT; break; case 0115: TRACE(T_FLOW, " BHGE\n"); SETCC_16(crs[dr*2]); BCGE; break; case 0120: TRACE(T_FLOW, " BFLE\n"); SETCC_32(crsl[FAC0+dr]); BCLE; break; case 0121: TRACE(T_FLOW, " BFGT\n"); SETCC_32(crsl[FAC0+dr]); BCGT; break; case 0122: TRACE(T_FLOW, " BFEQ\n"); SETCC_32(crsl[FAC0+dr]); BCEQ; break; case 0123: TRACE(T_FLOW, " BFNE\n"); SETCC_32(crsl[FAC0+dr]); BCNE; break; case 0124: TRACE(T_FLOW, " BFLT\n"); SETCC_32(crsl[FAC0+dr]); BCLT; break; case 0125: TRACE(T_FLOW, " BFGE\n"); SETCC_32(crsl[FAC0+dr]); BCGE; break; case 0130: TRACE(T_FLOW, " BRI1\n"); crsl[dr]++; BRNE(dr); break; case 0131: TRACE(T_FLOW, " BRI2\n"); crsl[dr] += 2; BRNE(dr); break; case 0132: TRACE(T_FLOW, " BRI4\n"); crsl[dr] += 4; BRNE(dr); break; case 0134: TRACE(T_FLOW, " BRD1\n"); crsl[dr]--; BRNE(dr); break; case 0135: TRACE(T_FLOW, " BRD2\n"); crsl[dr] -= 2; BRNE(dr); break; case 0136: TRACE(T_FLOW, " BRD4\n"); crsl[dr] -= 4; BRNE(dr); break; case 0140: TRACE(T_FLOW, " BHI1\n"); crs[dr*2]++; BHNE(dr); break; case 0141: TRACE(T_FLOW, " BHI2\n"); crs[dr*2] += 2; BHNE(dr); break; case 0142: TRACE(T_FLOW, " BHI4\n"); crs[dr*2] += 4; BHNE(dr); break; case 0144: TRACE(T_FLOW, " BHD1\n"); crs[dr*2]--; BHNE(dr); break; case 0145: TRACE(T_FLOW, " BHD2\n"); crs[dr*2] -= 2; BHNE(dr); break; case 0146: TRACE(T_FLOW, " BHD4\n"); crs[dr*2] -= 4; BHNE(dr); break; default: if (brop <= 037) { TRACE(T_FLOW, " BRBS\n"); if (crsl[dr] & bitmask32[brop+1]) RPL = iget16(RP); else RPL++; } else if (brop <= 077) { TRACE(T_FLOW, " BRBR\n"); if (crsl[dr] & bitmask32[brop-040+1]) RPL++; else RPL = iget16(RP); } else fault(UIIFAULT, RPL, RP); } continue; } if (opcode == 030) { /* register generic */ switch (inst & 0177) { case 0134: TRACE(T_FLOW, " ABQ\n"); ea = apea(NULL); if (abq(ea, crs[dr*2], RP)) crs[KEYS] &= ~0100; else crs[KEYS] |= 0100; break; case 0014: TRACE(T_FLOW, " ADLR\n"); adlr(dr); break; case 0161: TRACE(T_FLOW, " ARFA 0\n"); arfa(0, crsl[dr]); break; case 0171: TRACE(T_FLOW, " ARFA 1\n"); arfa(1, crsl[dr]); break; case 0135: TRACE(T_FLOW, " ATQ\n"); ea = apea(NULL); if (atq(ea, crs[dr*2], RP)) crs[KEYS] &= ~0100; else crs[KEYS] |= 0100; break; case 0026: TRACE(T_FLOW, " CGT\n"); tempa = iget16(RP); /* get number of words */ if (1 <= crs[dr*2] && crs[dr*2] < tempa) RPL = iget16(INCVA(RP,crs[dr*2])); else RPL += tempa; break; case 0040: TRACE(T_FLOW, " CHS\n"); crsl[dr] ^= 0x80000000; break; case 045: TRACE(T_FLOW, " CMH\n"); crs[dr*2] = ~crs[dr*2]; break; case 044: TRACE(T_FLOW, " CMR\n"); crsl[dr] = ~crsl[dr]; break; case 0056: TRACE(T_FLOW, " CR\n"); crsl[dr] = 0; break; case 0062: TRACE(T_FLOW, " CRBL\n"); crsl[dr] &= 0x00FFFFFF; break; case 0063: TRACE(T_FLOW, " CRBR\n"); crsl[dr] &= 0xFF00FFFF; break; case 0054: TRACE(T_FLOW, " CRHL\n"); crsl[dr] &= 0x0000FFFF; break; case 0055: TRACE(T_FLOW, " CRHR\n"); crsl[dr] &= 0xFFFF0000; break; case 0041: TRACE(T_FLOW, " CSR\n"); crs[KEYS] = (crs[KEYS] & 0x7FFF) | (crs[dr*2] & 0x8000); crsl[dr] &= 0x7FFFFFFF; break; case 0106: TRACE(T_FLOW, " DBLE\n"); crsl[FAC0+dr+1] &= 0xFFFF0000; break; case 0160: TRACE(T_FLOW, " DCP\n"); #if 0 utempl = EACP(crsl[dr]); utempl--; crsl[dr] = CPEA(crsl[dr], utempl); #else crsl[dr] ^= EXTMASK32; if (crsl[dr] & EXTMASK32) crsl[dr]--; #endif break; case 0144: TRACE(T_FLOW, " DFCM\n"); warn("IXX DFCM"); break; case 0130: TRACE(T_FLOW, " DH1\n"); add16(crs+dr*2, 0xFFFF, 0, 0); break; case 0131: TRACE(T_FLOW, " DH2\n"); add16(crs+dr*2, 0xFFFE, 0, 0); break; case 0124: TRACE(T_FLOW, " DR1\n"); add32(crsl+dr, 0xFFFFFFFF, 0, 0); break; case 0125: TRACE(T_FLOW, " DR2\n"); add32(crsl+dr, 0xFFFFFFFE, 0, 0); break; case 0100: TRACE(T_FLOW, " FCM\n"); warn("IXX FCM"); break; case 0105: TRACE(T_FLOW, " FLT 0\n"); warn("IXX FLT0"); break; case 0115: TRACE(T_FLOW, " FLT 1\n"); warn("IXX FLT1"); break; case 0102: TRACE(T_FLOW, " FLTH 0\n"); warn("IXX FLTH0"); break; case 0112: TRACE(T_FLOW, " FLTH 1\n"); warn("IXX FLTH1"); break; case 0107: TRACE(T_FLOW, " FRN\n"); warn("IXX FRN"); break; case 0146: TRACE(T_FLOW, " FRNM\n"); warn("IXX FRNM"); break; case 0145: TRACE(T_FLOW, " FRNP\n"); warn("IXX FRNP"); break; case 0147: TRACE(T_FLOW, " FRNZ\n"); warn("IXX FRNZ"); break; case 0065: TRACE(T_FLOW, " ICBL\n"); crs[dr*2] = crs[dr*2]>>8; break; case 0066: TRACE(T_FLOW, " ICBR\n"); crs[dr*2] = crs[dr*2]<<8; break; case 0060: TRACE(T_FLOW, " ICHL\n"); crsl[dr] = crsl[dr]>>16; break; case 0061: TRACE(T_FLOW, " ICHR\n"); crsl[dr] = crsl[dr]<<16; break; case 0167: TRACE(T_FLOW, " ICP\n"); #if 0 utempl = EACP(crsl[dr]); utempl++; crsl[dr] = CPEA(crsl[dr], utempl); #else crsl[dr] ^= EXTMASK32; if ((crsl[dr] & EXTMASK32) == 0) crsl[dr]++; #endif break; case 0126: TRACE(T_FLOW, " IH1\n"); add16(crs+dr*2, 1, 0, 0); break; case 0127: TRACE(T_FLOW, " IH2\n"); add16(crs+dr*2, 2, 0, 0); break; case 0070: TRACE(T_FLOW, " INK\n"); crs[dr*2] = crs[KEYS]; /* IXX: says to read S register? */ break; case 0103: TRACE(T_FLOW, " INT 0\n"); warn("IXX INT0"); break; case 0113: TRACE(T_FLOW, " INT 1\n"); warn("IXX INT1"); break; case 0101: TRACE(T_FLOW, " INTH 0\n"); warn("IXX INTH0"); break; case 0111: TRACE(T_FLOW, " INTH 1\n"); warn("IXX INTH1"); break; case 0122: TRACE(T_FLOW, " IR1\n"); add32(crsl+dr, 1, 0, 0); break; case 0123: TRACE(T_FLOW, " IR2\n"); add32(crsl+dr, 2, 0, 0); break; case 0064: TRACE(T_FLOW, " IRB\n"); crs[dr*2] = (crs[dr*2]>>8) | (crs[dr*2]<<8); break; case 0057: TRACE(T_FLOW, " IRH\n"); crsl[dr] = (crsl[dr]>>16) | (crsl[dr]<<16); break; case 0153: TRACE(T_FLOW, " LCEQ\n"); crs[dr*2] = LCEQ; break; case 0154: TRACE(T_FLOW, " LCGE\n"); crs[dr*2] = LCGE; break; case 0155: TRACE(T_FLOW, " LCGT\n"); crs[dr*2] = LCGT; break; case 0151: TRACE(T_FLOW, " LCLE\n"); crs[dr*2] = LCLE; break; case 0150: TRACE(T_FLOW, " LCLT\n"); crs[dr*2] = LCLT; break; case 0152: TRACE(T_FLOW, " LCNE\n"); crs[dr*2] = LCNE; break; case 0162: TRACE(T_FLOW, " LDC 0\n"); crs[dr*2] = ldc(0, crs[dr*2]); break; case 0172: TRACE(T_FLOW, " LDC 1\n"); crs[dr*2] = ldc(1, crs[dr*2]); break; case 0003: TRACE(T_FLOW, " LEQ\n"); SETCC_32(crsl[dr]); crs[dr*2] = LCEQ; break; case 0016: TRACE(T_FLOW, " LF\n"); crs[dr*2] = 0; break; case 0023: TRACE(T_FLOW, " LFEQ 0\n"); SETCC_32(crsl[FAC0]); crs[dr*2] = LCEQ; break; case 0033: TRACE(T_FLOW, " LFEQ 1\n"); SETCC_32(crsl[FAC1]); crs[dr*2] = LCEQ; break; case 0024: TRACE(T_FLOW, " LFGE 0\n"); SETCC_32(crsl[FAC0]); crs[dr*2] = LCGE; break; case 0034: TRACE(T_FLOW, " LFGE 1\n"); SETCC_32(crsl[FAC1]); crs[dr*2] = LCGE; break; case 0025: TRACE(T_FLOW, " LFGT 0\n"); SETCC_32(crsl[FAC0]); crs[dr*2] = LCGT; break; case 0035: TRACE(T_FLOW, " LFGT 1\n"); SETCC_32(crsl[FAC1]); crs[dr*2] = LCGT; break; case 0021: TRACE(T_FLOW, " LFLE 0\n"); SETCC_32(crsl[FAC0]); crs[dr*2] = LCLE; break; case 0031: TRACE(T_FLOW, " LFLE 1\n"); SETCC_32(crsl[FAC1]); crs[dr*2] = LCLE; break; case 0020: TRACE(T_FLOW, " LFLT 0\n"); SETCC_32(crsl[FAC0]); crs[dr*2] = LCLT; break; case 0030: TRACE(T_FLOW, " LFLT 1\n"); SETCC_32(crsl[FAC1]); crs[dr*2] = LCLT; break; case 0022: TRACE(T_FLOW, " LFNE 0\n"); SETCC_32(crsl[FAC0]); crs[dr*2] = LCNE; break; case 0032: TRACE(T_FLOW, " LFNE 1\n"); SETCC_32(crsl[FAC1]); crs[dr*2] = LCNE; break; case 0004: TRACE(T_FLOW, " LGE/LHGE\n"); SETCC_32(crsl[dr]); crs[dr*2] = LCGE; break; case 0005: TRACE(T_FLOW, " LGT\n"); SETCC_32(crsl[dr]); crs[dr*2] = LCGT; break; case 0013: TRACE(T_FLOW, " LHEQ\n"); SETCC_16(crs[dr*2]); crs[dr*2] = LCEQ; break; case 0015: TRACE(T_FLOW, " LHGT\n"); SETCC_16(crs[dr*2]); crs[dr*2] = LCGT; break; case 0011: TRACE(T_FLOW, " LHLE\n"); SETCC_16(crs[dr*2]); crs[dr*2] = LCLE; break; case 0000: TRACE(T_FLOW, " LLT/LHLT\n"); SETCC_32(crsl[dr]); crs[dr*2] = LCLT; break; case 0012: TRACE(T_FLOW, " LHNE\n"); SETCC_16(crs[dr*2]); crs[dr*2] = LCNE; break; case 0001: TRACE(T_FLOW, " LLE\n"); SETCC_32(crsl[dr]); crs[dr*2] = LCLE; break; case 0002: TRACE(T_FLOW, " LNE\n"); SETCC_32(crsl[dr]); crs[dr*2] = LCNE; break; case 0017: TRACE(T_FLOW, " LT\n"); crs[dr*2] = 1; break; case 0071: TRACE(T_FLOW, " OTK\n"); newkeys(crs[dr*2] & 0177770); inhcount = 1; break; case 0052: TRACE(T_FLOW, " PID\n"); *(long long *)(crsl+dr) = *(int *)(crsl+dr); break; case 0053: TRACE(T_FLOW, " PIDH\n"); *(int *)(crsl+dr) = *(short *)(crsl+dr); break; case 0050: TRACE(T_FLOW, " PIM\n"); dr &= 6; /* force dr to be even */ utempl = crsl[dr]; crsl[dr] = crsl[dr+1]; if (((utempl ^ crsl[dr+1]) & 0x80000000) || (utempl != 0 && ~utempl != 0)) mathexception('i', FC_INT_OFLOW, 0); else CLEARC; break; case 0051: TRACE(T_FLOW, " PIMH\n"); templ = crsl[dr]; /* NOTE: PIMH could be implemented as a left shift, but Prime DIAG tests require a swap - hence the "or" below */ crsl[dr] = (crsl[dr] << 16) | (crsl[dr] >> 16); /* check that bits 1-16 were equal to bit 17 before PIMH */ templ2 = (templ << 16) >> 16; if (templ2 != templ) mathexception('i', FC_INT_OFLOW, 0); else CLEARC; break; case 0133: TRACE(T_FLOW, " RBQ\n"); ea = apea(NULL); if (rbq(ea, crs+dr*2, RP)) crs[KEYS] &= ~0100; else crs[KEYS] |= 0100; break; case 0132: TRACE(T_FLOW, " RTQ\n"); ea = apea(NULL); if (rtq(ea,crs+dr*2,RP)) crs[KEYS] &= ~0100; else crs[KEYS] |= 0100; break; case 0076: TRACE(T_FLOW, " SHL1\n"); if (crs[dr*2] & 0x8000) SETCL; else CLEARCL; crs[dr*2] = crs[dr*2] << 1; break; case 0077: TRACE(T_FLOW, " SHL2\n"); if (crs[dr*2] & 0x4000) SETCL; else CLEARCL; crs[dr*2] = crs[dr*2] << 2; break; case 0120: TRACE(T_FLOW, " SHR1\n"); if (crs[dr*2] & 0x0001) SETCL; else CLEARCL; crs[dr*2] = crs[dr*2] >> 1; break; case 0121: TRACE(T_FLOW, " SHR2\n"); if (crs[dr*2] & 0x0002) SETCL; else CLEARCL; crs[dr*2] = crs[dr*2] >> 2; break; case 0072: TRACE(T_FLOW, " SL1\n"); if (crsl[dr] & 0x80000000) SETCL; else CLEARCL; crsl[dr] = crsl[dr] << 1; break; case 0073: TRACE(T_FLOW, " SL2\n"); if (crsl[dr] & 0x40000000) SETCL; else CLEARCL; crsl[dr] = crsl[dr] << 2; break; case 0074: TRACE(T_FLOW, " SR1\n"); if (crsl[dr] & 0x00000001) SETCL; else CLEARCL; crsl[dr] = crsl[dr] >> 1; break; case 0075: TRACE(T_FLOW, " SR2\n"); if (crsl[dr] & 0x00000002) SETCL; else CLEARCL; crsl[dr] = crsl[dr] >> 2; break; case 0042: TRACE(T_FLOW, " SSM\n"); crsl[dr] |= 0x80000000; break; case 0043: TRACE(T_FLOW, " SSP\n"); crsl[dr] &= 0x7FFFFFFF; break; case 0166: TRACE(T_FLOW, " STC 0\n"); stc(0, crs[dr*2]); break; case 0176: TRACE(T_FLOW, " STC 1\n"); stc(1, crs[dr*2]); break; case 0137: TRACE(T_FLOW, " STCD\n"); ea = apea(NULL); if (get32(ea) == crsl[dr+1]) { put32(crsl[dr], ea); crs[KEYS] |= 0100; /* set EQ */ } else crs[KEYS] &= ~0100; /* reset EQ */ break; case 0136: TRACE(T_FLOW, " STCH\n"); ea = apea(NULL); if (get16(ea) == (crs[dr*2+1])) { put16(crs[dr*2], ea); crs[KEYS] |= 0100; /* set EQ */ } else crs[KEYS] &= ~0100; /* reset EQ */ break; case 0027: TRACE(T_FLOW, " STEX\n"); *(ea_t *)(crsl+dr) = stex(crsl[dr]); break; case 0046: TRACE(T_FLOW, " TC\n"); tcr(crsl+dr); break; case 0047: TRACE(T_FLOW, " TCH\n"); tch(crs+dr*2); break; case 0170: TRACE(T_FLOW, " TCNP\n"); if ((crsl[dr] & 0x1FFFFFFF) == 0) crs[KEYS] |= 0100; else crs[KEYS] &= ~0100; break; case 0163: TRACE(T_FLOW, " TFLR 0\n"); crsl[dr] = GETFLR(0); break; case 0173: TRACE(T_FLOW, " TFLR 1\n"); crsl[dr] = GETFLR(1); break; case 0165: TRACE(T_FLOW, " TRFL 0\n"); PUTFLR(0, crsl[dr]); break; case 0175: TRACE(T_FLOW, " TRFL 1\n"); PUTFLR(1, crsl[dr]); break; case 0104: TRACE(T_FLOW, " TSTQ\n"); ea = apea(NULL); crs[dr*2] = tstq(ea); SETCC_16(crs[dr*2]); break; default: warn("IXX 030"); fault(ILLINSTFAULT, RPL, RP); } continue; } ea = ea32i(earp, inst, &immu32, &immu64); switch (opcode) { case 000: /* this should have been handled already! */ fatal("I-mode generic class 0?"); case 001: TRACE(T_FLOW, " L\n"); if (*(int *)&ea < 0) crsl[dr] = immu32; else crsl[dr] = get32(ea); continue; case 002: TRACE(T_FLOW, " A\n"); if (*(int *)&ea < 0) utempl = immu32; else utempl = get32(ea); add32(crsl+dr, utempl, 0, ea); continue; case 003: TRACE(T_FLOW, " N\n"); if (*(int *)&ea < 0) crsl[dr] &= immu32; else crsl[dr] &= get32(ea); continue; case 004: TRACE(T_FLOW, " LHL1\n"); if (*(int *)&ea < 0) crs[dr*2] = (immu32 >> 16) << 1; else crs[dr*2] = get16(ea) << 1; continue; case 005: TRACE(T_FLOW, " SHL\n"); scount = -ea & 077; if (scount == 0) scount = 0100; switch ((ea >> 14) & 3) { case 0: crsl[dr] = lll(crsl[dr], scount); break; case 1: crs[dr*2] = all(crs[dr*2], scount); break; case 2: crsl[dr] = lrl(crsl[dr], scount); break; case 3: crs[dr*2] = arl(crs[dr*2], scount); break; default: fatal("I-mode SHL switch?"); } continue; case 006: /* Special MR FP format */ /* DFC, DFL, FC, FL */ switch (dr) { case 0: case 2: dr &= 2; TRACE(T_INST, " FL\n"); warn("IXX 006 FL"); break; case 1: case 3: dr &= 2; TRACE(T_INST, " DFL\n"); if (*(int *)&ea < 0) *(double *)(crsl+FAC0+dr) = *(double *)&immu64; else *(double *)(crsl+FAC0+dr) = get64(ea); break; case 4: case 6: dr &= 2; TRACE(T_INST, " FC\n"); warn("IXX 006 FC"); break; case 5: case 7: dr &= 2; TRACE(T_INST, " DFC\n"); warn("IXX 006 DFC"); break; default: fatal("I-mode 006 switch?"); } continue; case 007: warn("I-mode opcode 007?"); fault(ILLINSTFAULT, RPL, RP); case 010: /* register generic branch */ /* this should have been handled already! */ fatal("I-mode RGBR?"); case 011: TRACE(T_FLOW, " LH\n"); if (*(int *)&ea < 0) { TRACE(T_INST, " ea=%x, immu32=%x, crsl[%d]=%x\n", ea, immu32, dr, crsl[dr]); crs[dr*2] = immu32 >> 16; } else crs[dr*2] = get16(ea); continue; case 012: TRACE(T_FLOW, " AH\n"); if (*(int *)&ea < 0) utempa = (immu32 >> 16); else utempa = get16(ea); add16(crs+dr*2, utempa, 0, ea); continue; case 013: TRACE(T_FLOW, " NH\n"); if (*(int *)&ea < 0) crs[dr*2] &= (immu32 >> 16); else crs[dr*2] &= get16(ea); continue; case 014: TRACE(T_FLOW, " LHL2\n"); if (*(int *)&ea < 0) crs[dr*2] = (immu32 >> 16) << 2; else crs[dr*2] = get16(ea) << 2; continue; case 015: TRACE(T_FLOW, " SHA\n"); scount = -ea & 077; if (scount == 0) scount = 0100; switch ((ea >> 14) & 3) { case 0: crsl[dr] = lls(crsl[dr], scount); if ((crs[KEYS] & 0100400) == 0100400) mathexception('i', FC_INT_OFLOW, 0); break; case 1: crs[dr*2] = als(crs[dr*2], scount); if ((crs[KEYS] & 0100400) == 0100400) mathexception('i', FC_INT_OFLOW, 0); break; case 2: crsl[dr] = lrs(crsl[dr], scount); break; case 3: crs[dr*2] = ars(crs[dr*2], scount); break; default: fatal("SHA?"); } continue; case 016: /* Special MR FP format */ /* FST, DFST, FA, DFA */ switch (dr) { case 0: case 2: dr &= 2; TRACE(T_INST, " FST\n"); warn("IXX 016 FST"); break; case 1: case 3: dr &= 2; TRACE(T_INST, " DFST\n"); if (*(int *)&ea >= 0) put64(*(double *)(crsl+FAC0+dr), ea); else { warn("I-mode immediate DFST?"); fault(ILLINSTFAULT, RPL, RP); } break; case 4: case 6: dr &= 2; TRACE(T_INST, " FA\n"); warn("IXX 016 FA"); break; case 5: case 7: dr &= 2; TRACE(T_INST, " DFA\n"); warn("IXX 016 DFA"); break; default: fatal("I-mode 016 switch?"); } continue; case 017: warn("I-mode opcode 017?"); fault(ILLINSTFAULT, RPL, RP); case 020: /* this should have been handled already! */ fatal("I-mode generic class 1?"); case 021: TRACE(T_FLOW, " ST\n"); if (*(int *)&ea < 0) crsl[(inst >> 2) & 7] = crsl[dr]; else put32(crsl[dr],ea); continue; case 022: TRACE(T_FLOW, " S\n"); if (*(int *)&ea < 0) utempl = immu32; else utempl = get32(ea); add32(crsl+dr, ~utempl, 1, ea); continue; case 023: TRACE(T_FLOW, " O\n"); if (*(int *)&ea < 0) crsl[dr] |= immu32; else crsl[dr] |= get32(ea); continue; case 024: TRACE(T_FLOW, " ROT\n"); scount = -ea & 077; if (scount == 0) scount = 0100; switch ((ea >> 14) & 3) { case 0: crsl[dr] = llr(crsl[dr], scount); break; case 1: crs[dr*2] = alr(crs[dr*2], scount); break; case 2: crsl[dr] = lrr(crsl[dr], scount); break; case 3: crs[dr*2] = arr(crs[dr*2], scount); break; default: fatal("I-mode ROT switch?"); } continue; case 025: warn("I-mode opcode 025?"); fault(ILLINSTFAULT, RPL, RP); case 026: /* Special MR FP format */ /* DFM, DFS, FM, FS */ warn("IXX 026"); continue; case 027: warn("I-mode opcode 027?"); fault(ILLINSTFAULT, RPL, RP); case 030: /* register generic */ /* this should have been handled already! */ fatal("I-mode RGEN?"); case 031: TRACE(T_FLOW, " STH\n"); if (*(int *)&ea < 0) crs[((inst >> 2) & 7)*2] = crs[dr*2]; else put16(crs[dr*2], ea); continue; case 032: TRACE(T_FLOW, " SH\n"); if (*(int *)&ea < 0) utempa = (immu32 >> 16); else utempa = get16(ea); add16(crs+dr*2, ~utempa, 1, ea); continue; case 033: TRACE(T_FLOW, " OH\n"); if (*(int *)&ea < 0) crs[dr*2] |= (immu32 >> 16); else crs[dr*2] |= get16(ea); continue; case 034: TRACE(T_FLOW, " EIO\n"); pio(ea & 0xFFFF); continue; case 035: TRACE(T_FLOW, " LHL3\n"); if (*(int *)&ea < 0) crs[dr*2] = (immu32 >> 16) << 3; else crs[dr*2] = get16(ea) << 3; continue; case 036: /* Special MR FP format */ /* DFD, FD, QFAD, QFLD, QFSB, QFST */ warn("IXX 036"); continue; case 037: warn("I-mode opcode 037?"); fault(ILLINSTFAULT, RPL, RP); case 040: /* generic class 2, overlays skip group */ /* this should have been handled already! */ fatal("I-mode generic class 2?"); case 041: TRACE(T_FLOW, " I\n"); utempl = crsl[dr]; if (*(int *)&ea < 0) { /* register-to-register form */ crsl[dr] = immu32; crsl[(inst >> 2) & 7] = utempl; } else { crsl[dr] = get32(ea); put32(utempl, ea); } continue; case 042: TRACE(T_FLOW, " M\n"); dr &= 6; /* force dr even */ if (*(int *)&ea < 0) templ = immu32; else templ = get32(ea); *(long long *)(crsl+dr) = (long long)templ * (long long)(*(int *)(crsl+dr)); CLEARC; continue; case 043: TRACE(T_FLOW, " X\n"); if (*(int *)&ea < 0) crsl[dr] ^= immu32; else crsl[dr] ^= get32(ea); continue; case 044: TRACE(T_FLOW, " LDAR\n"); crsl[dr] = ldar(ea); continue; case 045: if (*(int *)&ea < 0) { TRACE(T_FLOW, " CCP\n"); utempl1 = EACP(crsl[dr]); utempl2 = EACP(immu32); if (utempl1 < utempl2) crs[KEYS] = crs[KEYS] & ~0300 | 0200; else if (utempl1 == utempl2) crs[KEYS] = crs[KEYS] & ~0300 | 0100; else crs[KEYS] = crs[KEYS] & ~0300; } else { TRACE(T_FLOW, " LCC\n"); utempa = get16(ea); TRACE(T_INST, " before load, keys=%o, ea=%o/%o, [ea]=0x%x, dr=%d, [dr]=0x%x\n", crs[KEYS], ea>>16, ea&0xFFFF, utempa, dr, crsl[dr]); if (ea & EXTMASK32) utempa &= 0xFF; else utempa >>= 8; crs[dr*2] = utempa; if (utempa == 0) crs[KEYS] |= 0100; else crs[KEYS] &= ~0100; TRACE(T_INST, " after load, keys=%o, ea=%o/%o, utempa=0x%x, dr=%d, [dr]=0x%x\n", crs[KEYS], ea>>16, ea&0xFFFF, utempa, dr, crsl[dr]); } continue; case 046: /* I special MR, GR format: IM, PCL, EALB, ZM, TM, QFMP, QFDV, QFC */ switch (dr) { case 0: TRACE(T_FLOW, " IM\n"); templ = get32(ea); put32(templ+1, ea); crs[KEYS] &= ~0300; /* NOTE: test pre-incremented values to get true LT (overflow) */ if (templ == -1) crs[KEYS] |= 0100; else if (templ < 0) crs[KEYS] |= 0200; break; /* NOTE: V-mode PCL may jump here! */ case 1: imodepcl: TRACE(T_FLOW|T_PCL, " PCL %s\n", searchloadmap(ea, 'e')); //TRACE(T_FLOW|T_PCL, "#%d %o/%o: PCL %o/%o\n", instcount, RPH, RPL-2, ea>>16, ea&0xFFFF); if (numtraceprocs > 0 && TRACEUSER) for (i=0; i> 16; crs[((inst >> 2) & 7)*2] = utempa; } else { crs[dr*2] = get16(ea); put16(utempa, ea); } continue; case 052: TRACE(T_FLOW, " MH\n"); if (*(int *)&ea < 0) tempa = (immu32 >> 16); else tempa = get16(ea); crsl[dr] = *(short *)(crs+dr*2) * tempa; CLEARC; continue; case 053: TRACE(T_FLOW, " XH\n"); if (*(int *)&ea < 0) crs[dr*2] ^= (immu32 >> 16); else crs[dr*2] ^= get16(ea); continue; case 054: TRACE(T_FLOW, " STAR\n"); star(crsl[dr], ea); continue; case 055: if (*(int *)&ea < 0) { TRACE(T_FLOW, " ACP\n"); TRACE(T_INST, " before acp, crsl[%d]=%o/%o, immu32=%d, CP(dr)=%d\n", dr, crsl[dr]>>16, crsl[dr]&0xFFFF, immu32, EACP(crsl[dr])); utempl = EACP(crsl[dr]); utempl += *(int *)&immu32; crsl[dr] = CPEA(crsl[dr], utempl); TRACE(T_INST, " after acp, utempl=%d, crsl[dr]=%o/%o\n", utempl, crsl[dr]>>16, crsl[dr]&0xFFFF); } else { TRACE(T_FLOW, " SCC\n"); utempa = get16(ea); if (ea & EXTMASK32) utempa = (utempa & 0xFF00) | (crs[dr*2] & 0xFF); else utempa = (crs[dr*2] << 8) | (utempa & 0xFF); put16(utempa, ea); } continue; case 056: /* I special MR, GR format: IMH, JMP, EAXB, ZMH, TMH */ switch (dr) { case 0: TRACE(T_FLOW, " IMH\n"); tempa = get16(ea); put16(tempa+1, ea); crs[KEYS] &= ~0300; if (tempa == -1) crs[KEYS] |= 0100; else if (tempa < 0) crs[KEYS] |= 0200; break; case 1: TRACE(T_FLOW, " JMP\n"); RP = ea; break; case 2: TRACE(T_FLOW, " EAXB\n"); *(ea_t *)(crs+XB) = ea; break; case 3: TRACE(T_FLOW, " ZMH\n"); put16(0, ea); break; case 4: TRACE(T_FLOW, " TMH\n"); utempa = get16(ea); SETCC_16(utempa); break; default: fault(ILLINSTFAULT, RPL, RP); } continue; case 057: warn("I-mode opcode 057?"); fault(ILLINSTFAULT, RPL, RP); case 060: /* this should have been handled already! */ fatal("I-mode generic class 3?"); case 061: TRACE(T_FLOW, " C\n"); if (*(int *)&ea < 0) utempl = immu32; else utempl = get32(ea); crs[KEYS] &= ~020300; utempll = crsl[dr]; if ((utempll + (~utempl & 0xFFFFFFFF) + 1) & 0x100000000LL) crs[KEYS] |= 020000; if (crsl[dr] == utempl) crs[KEYS] |= 0100; else if (*(int *)(crsl+dr) < *(int *)&utempl) crs[KEYS] |= 0200; continue; case 062: TRACE(T_FLOW, " D\n"); if (*(int *)&ea < 0) templ = immu32; else templ = get32(ea); dr &= 6; /* force dr even */ if (templ != 0) { templl1 = *(long long *)(crsl+dr); templl2 = templl1 / templ; crsl[dr] = templl2; crsl[dr+1] = templl1 % templ; if (-2147483648LL <= templl2 && templl2 <= 2147483647LL) CLEARC; else mathexception('i', FC_INT_OFLOW, 0); } else mathexception('i', FC_INT_ZDIV, 0); continue; case 063: TRACE(T_FLOW, " EAR\n"); if (*(int *)&ea >= 0) crsl[dr] = ea; else { warn("Immediate mode EAR?"); fault(ILLINSTFAULT, RPL, RP); } continue; case 064: TRACE(T_FLOW, " MIA\n"); fault(UIIFAULT, RPL, RP); continue; case 065: TRACE(T_FLOW, " LIP\n"); utempl = get32(ea); if (utempl & 0x80000000) fault(POINTERFAULT, utempl>>16, ea); crsl[dr] = utempl; continue; case 066: /* I-mode special MR: DM, JSXB */ switch (dr) { case 0: TRACE(T_FLOW, " DM\n"); templ = get32(ea); put32(templ-1, ea); /* NOTE: test pre-decremented values to get true LT (overflow) */ crs[KEYS] &= ~0300; if (templ == 1) crs[KEYS] |= 0100; else if (templ <= 0) crs[KEYS] |= 0200; break; case 1: TRACE(T_FLOW, " JSXB\n"); *(unsigned int *)(crs+XB) = RP; RP = ea; break; default: fault(ILLINSTFAULT, RPL, RP); } continue; case 067: warn("I-mode opcode 067?"); fault(ILLINSTFAULT, RPL, RP); case 070: warn("I-mode opcode 070?"); fault(ILLINSTFAULT, RPL, RP); case 071: TRACE(T_FLOW, " CH\n"); if (*(int *)&ea < 0) utempa = (immu32 >> 16); else utempa = get16(ea); crs[KEYS] &= ~020300; utempl = crs[dr*2]; if ((utempl + (~utempa & 0xFFFF) + 1) & 0x10000) crs[KEYS] |= 020000; if (crs[dr*2] == utempa) crs[KEYS] |= 0100; else if (*(short *)(crs+dr*2) < *(short *)&utempa) crs[KEYS] |= 0200; continue; case 072: TRACE(T_FLOW, " DH\n"); if (*(int *)&ea < 0) tempa = (immu32 >> 16); else tempa = get16(ea); if (tempa != 0) { templ1 = *(int *)(crsl+dr); templ2 = templ1 / tempa; crsl[dr] = (templ2 << 16) | (templ1 % tempa); if (-32768 <= templ2 && templ2 <= 32767) CLEARC; else mathexception('i', FC_INT_OFLOW, 0); } else mathexception('i', FC_INT_ZDIV, 0); continue; case 073: TRACE(T_FLOW, " JSR\n"); crs[dr*2] = RPL; RP = ea; continue; case 074: TRACE(T_FLOW, " MIB\n"); fault(UIIFAULT, RPL, RP); continue; case 075: TRACE(T_FLOW, " AIP\n"); if (*(int *)&ea < 0) utempl = immu32; else utempl = get32(ea); utempl += crsl[dr]; if (utempl & 0x80000000) fault(POINTERFAULT, utempl>>16, ea); /* IXX: ISG says C & L are set, ring needs to be weakened */ crsl[dr] = utempl; continue; case 076: /* I-mode special MR: DMH, TCNP */ switch (dr) { case 0: TRACE(T_FLOW, " DMH\n"); tempa = get16(ea); put16(tempa-1, ea); crs[KEYS] &= ~0300; /* NOTE: test pre-decremented values to get true LT (overflow) */ if (tempa == 1) crs[KEYS] |= 0100; else if (tempa <= 0) crs[KEYS] |= 0200; break; case 6: TRACE(T_FLOW, " TCNP\n"); if (*(int *)&ea > 0) if ((get32(ea) & 0x1FFFFFFF) == 0) crs[KEYS] |= 0100; else crs[KEYS] &= ~0100; else fault(UIIFAULT, RPL, RP); break; default: fault(ILLINSTFAULT, RPL, RP); } continue; case 077: warn("I-mode opcode 077"); fault(ILLINSTFAULT, RPL, RP); } fatal("I-mode fall-through?"); nonimode: /* here for non-generic instructions: memory references or pio */ /* pio can only occur in S/R modes */ if (!(crs[KEYS] & 010000) && (inst & 036000) == 030000) { pio(inst); continue; } /* get x bit and adjust opcode so that PMA manual opcode references can be used directly, ie, if the PMA manual says the opcode is '15 02, then 01502 can be used here. If the PMA manual says the opcode is '11, then use 01100 (the XX extended opcode bits are zero) */ i = inst & 0100000; /* (for trace) indirect is bit 1 */ x = inst & 040000; /* indexed is bit 2 */ opcode = (inst & 036000) >> 4; /* isolate opcode bits */ /* fix ldx/stx (opcode '15): these instructions cannot be indexed so if an instruction specifies indexing by X, it acts like an opcode extension. Opcodes listed as '35 02 for example (sty in V-mode, jdx in R-mode) have X=1 with the 4 opcode bits 1101 ('15) x=0, opcode='15 -> stx (SRV) x=1, opcode='15 -> ldx (SRV) (aka '35) x=0, opcode='15 01 -> flx (RV) x=1, opcode='15 01 -> ldy (V) (aka '35 01) x=0, opcode='15 02 -> dflx (V) x=0, opcode='15 02 -> jdx (R) x=1, opcode='15 02 -> sty (V) (aka '35 02) x=0, opcode='15 03 -> jix (R) x=1, opcode='15 03 -> jsx (RV) (aka '35 03) */ if (opcode == 01500) { opcode = opcode | ((inst & 040000)>>4); /* if X set, expand opcode */ x = 0; /* clear X bit (these can't be indexed) */ TRACE(T_INST, " ldx/stx opcode adjusted\n"); } TRACE(T_INST, " opcode=%5#0o, i=%o, x=%o\n", opcode, i != 0, x != 0); switch (crs[KEYS] & 016000) { case 0: /* 16S */ ea = ea16s(inst, x); break; case 1<<10: /* 32S */ ea = ea32s(inst, x); break; case 2<<10: /* 64R */ case 3<<10: /* 32R */ ea = ea32r64r(earp, inst, x, &opcode); break; case 4<<10: /* 32I */ fatal("32I mode invalid here"); case 6<<10: /* 64V */ ea = ea64v(earp, inst, x, &opcode); break; default: printf("Bad CPU mode in EA calculation, keys = %o\n", crs[KEYS]); fatal(NULL); } TRACE(T_INST, " EA: %o/%o %s\n",ea>>16, ea & 0xFFFF, searchloadmap(ea,' ')); /* NOTE: basic and dbasic execute instructions from the register file with TRACE ON */ switch (opcode) { case 00100: TRACE(T_FLOW, " JMP\n"); RP = ea; continue; /* NOTE: don't use get32 for DLD/DST, because it doesn't handle register address traps */ case 00200: crs[A] = get16(ea); if ((crs[KEYS] & 050000) == 040000) { /* R-mode and DP */ TRACE(T_FLOW, " DLD\n"); crs[B] = get16(INCVA(ea,1)); } else { TRACE(T_FLOW, " LDA ='%o/%d\n", crs[A], *(short *)(crs+A)); } continue; case 00400: put16(crs[A],ea); if ((crs[KEYS] & 050000) == 040000) { TRACE(T_FLOW, " DST\n"); put16(crs[B],INCVA(ea,1)); } else { TRACE(T_FLOW, " STA\n"); } continue; /* NOTE: EQ and LT can be set in the same instruction if overflow occurs, for example, '100000+'100000 */ case 00600: crs[KEYS] &= ~0120300; /* clear C, L, LT, EQ */ utempa = crs[A]; m = get16(ea); if ((crs[KEYS] & 050000) != 040000) { /* V/I mode or SP */ TRACE(T_FLOW, " ADD ='%o/%d\n", m, *(short *)&m); add16(crs+A, m, 0, ea); } else { /* R-mode and DP */ TRACE(T_FLOW, " DAD\n"); crs[B] += get16(INCVA(ea,1)); utempl = crs[A]; if (crs[B] & 0x8000) { utempl++; crs[B] &= 0x7fff; } utempl += m; crs[A] = utempl; if (utempl & 0x10000) /* set L-bit if carry */ crs[KEYS] |= 020000; /* NOTE: this EQ test prevents reusing the ADD code :( */ if (*(int *)(crs+L) == 0) /* set EQ? */ crs[KEYS] |= 0100; if (((~utempa ^ m) & (utempa ^ crs[A])) & 0x8000) { if (*(int *)(crs+L) >= 0) crs[KEYS] |= 0200; mathexception('i', FC_INT_OFLOW, 0); } else if (*(int *)(crs+L) < 0) crs[KEYS] |= 0200; } continue; case 00700: crs[KEYS] &= ~0120300; /* clear C, L, and CC */ utempa = crs[A]; m = get16(ea); if ((crs[KEYS] & 050000) != 040000) { TRACE(T_FLOW, " SUB ='%o/%d\n", m, *(short *)&m); add16(crs+A, ~m, 1, ea); } else { TRACE(T_FLOW, " DSB\n"); crs[B] -= get16(INCVA(ea,1)); utempl = crs[A]; if (crs[B] & 0x8000) { utempl += 0xFFFF; crs[B] &= 0x7fff; } utempl += (unsigned short) ~m; utempl += 1; crs[A] = utempl; /* truncate results */ if (utempl & 0x10000) /* set L-bit if carry */ crs[KEYS] |= 020000; if (*(int *)(crs+L) == 0) /* set EQ? */ crs[KEYS] |= 0100; if (((utempa ^ m) & (utempa ^ crs[A])) & 0x8000) { if (*(int *)(crs+L) >= 0) crs[KEYS] |= 0200; mathexception('i', FC_INT_OFLOW, 0); } else if (*(int *)(crs+L) < 0) crs[KEYS] |= 0200; } continue; case 00300: m = get16(ea); TRACE(T_FLOW, " ANA ='%o\n",m); crs[A] &= m; continue; case 00500: m = get16(ea); TRACE(T_FLOW, " ERA ='%o\n", m); crs[A] ^= m; continue; case 00302: m = get16(ea); TRACE(T_FLOW, " ORA ='%o\n", m); crs[A] |= m; continue; case 01000: TRACE(T_FLOW, " JST\n"); /* NOTE: amask should be recomputed here if in R/S mode, so it can be removed as a global variable. Flaky errors occur if keys are changed w/o calling newkeys(), because amask would be wrong (see dispatcher comment) */ if (amask == 0177777) m = RPL; else m = (get16(ea) & ~amask) | RPL; put16(m, ea); RP = INCVA(ea,1); if ((RP & RINGMASK32) == 0) inhcount = 1; continue; case 01100: m = get16(ea); TRACE(T_FLOW, " CAS ='%o/%d\n", m, *(short *)&m); #if 1 crs[KEYS] &= ~020300; /* clear L, and CC */ utempa = crs[A]; utempl = crs[A]; utempl += (unsigned short) ~m; utempl += 1; crs[A] = utempl; /* truncate results */ if (utempl & 0x10000) /* set L-bit if carry */ crs[KEYS] |= 020000; if (crs[A] == 0) /* set EQ? */ crs[KEYS] |= 0100; if (((utempa ^ m) & (utempa ^ crs[A])) & 0x8000) { if (*(short *)(crs+A) >= 0) crs[KEYS] |= 0200; } else if (*(short *)(crs+A) < 0) crs[KEYS] |= 0200; crs[A] = utempa; /* restore A reg */ if (crs[A] == m) RPL++; else if (*(short *)(crs+A) < *(short *)&m) RPL += 2; #else crs[KEYS] &= ~0300; if (crs[A] == m) { RPL++; crs[KEYS] |= 0100; } else if (*(short *)(crs+A) < *(short *)&m) { RPL += 2; crs[KEYS] |= 0200; } XSETL(0); #endif continue; case 01200: TRACE(T_FLOW, " IRS\n"); m = get16(ea) + 1; put16(m,ea); if (m == 0) RPL++; continue; case 01300: TRACE(T_FLOW, " IMA\n"); m = get16(ea); put16(crs[A],ea); crs[A] = m; continue; case 01400: TRACE(T_FLOW, " JSY\n"); crs[Y] = RPL; RP = ea; continue; case 01402: TRACE(T_FLOW, " JSXB\n"); *(unsigned int *)(crs+XB) = RP; RP = ea; continue; case 01500: TRACE(T_FLOW, " STX\n"); put16(crs[X],ea); continue; /* MPY can't overflow in V-mode, but in R-mode (31 bits), -32768*-32768 can overflow and yields 0x8000/0x0000 */ case 01600: m = get16(ea); TRACE(T_FLOW, " MPY ='%o/%d\n", m, *(short *)&m); templ = *(short *)(crs+A) * *(short *)&m; CLEARC; if (crs[KEYS] & 010000) { /* V/I mode */ *(int *)(crs+L) = templ; } else { /* R/S mode */ utempa = crs[A]; crs[A] = (templ >> 15); crs[B] = templ & 077777; if (utempa == 0x8000 && m == 0x8000) mathexception('i', FC_INT_OFLOW, 0); } continue; case 01603: /* DIAG CPU.FAULT uses this instruction in R-mode to triggger a UII fault, so this instruction (unlike most) checks the keys. This is a general problem with all instructions: they don't ensure the instruction is legal in the current mode */ if (!(crs[KEYS] & 010000)) /* V/I mode */ fault(UIIFAULT, RPL, RP); templ = get32(ea); TRACE(T_FLOW, " MPL ='%o/%d\n", templ, *(int *)&templ); *(long long *)(crs+L) = (long long)(*(int *)(crs+L)) * (long long)templ; CLEARC; continue; case 01700: tempa = get16(ea); TRACE(T_FLOW, " DIV ='%o/%d\n", *(unsigned short *)&tempa, tempa); if (crs[KEYS] & 010000) { /* V/I mode */ templ = *(int *)(crs+A); } else { /* R/S mode */ templ = *(short *)(crs+A); /* convert to 32-bit signed */ templ = (templ<<15) | (crs[B] & 0x7FFF); } if (tempa != 0) { templ2 = templ / tempa; crs[A] = templ2; crs[B] = templ % tempa; if (-32768 <= templ2 && templ2 <= 32767) CLEARC; else mathexception('i', FC_INT_OFLOW, 0); } else mathexception('i', FC_INT_ZDIV, 0); continue; /* NOTE: RESET QVFY, DVL runs okay with cpuid=5 (P750), but fails with default cpuid (P4450) */ case 01703: templ = get32(ea); TRACE(T_FLOW, " DVL ='%o/%d\n", templ, templ); if (templ != 0) { templl1 = *(long long *)(crs+L); templl2 = templl1 / templ; *(int *)(crs+L) = templl2; *(int *)(crs+E) = templl1 % templ; if (-2147483648LL <= templl2 && templl2 <= 2147483647LL) CLEARC; else mathexception('i', FC_INT_OFLOW, 0); } else mathexception('i', FC_INT_ZDIV, 0); continue; case 03500: TRACE(T_FLOW, " LDX\n"); crs[X] = get16(ea); continue; case 00101: if (crs[KEYS] & 010000) { /* V/I mode */ TRACE(T_FLOW, " EAL\n"); *(ea_t *)(crs+L) = ea; } else { TRACE(T_FLOW, " EAA\n"); crs[A] = ea; } continue; case 00203: if (crs[KEYS] & 010000) { /* V/I mode */ *(unsigned int *)(crs+L) = get32(ea); TRACE(T_FLOW, " LDL ='%o/%d\n", *(unsigned int *)(crs+A), *(int *)(crs+A)); } else { TRACE(T_FLOW, " JEQ\n"); if (*(short *)(crs+A) == 0) RPL = ea; } continue; case 00703: if (crs[KEYS] & 010000) { /* V/I mode */ utempl = get32(ea); TRACE(T_FLOW, " SBL ='%o/%d\n", utempl2, *(int *)&utempl2); add32(crsl+GR2, ~utempl, 1, ea); } else { TRACE(T_FLOW, " JGE\n"); if (*(short *)(crs+A) >= 0) RPL = ea; } continue; case 01002: /* NOTE: real PCL code is in I-mode section! */ if (crs[KEYS] & 010000) /* V/I mode */ goto imodepcl; TRACE(T_FLOW, " CREP\n"); put16(RPL,crs[S]++); RPL = ea; continue; case 00503: if (crs[KEYS] & 010000) { /* V/I mode */ utempl = get32(ea); TRACE(T_FLOW, " ERL ='%o/%d '%o/'%o %d/%d\n", utempl, *(int *)&utempl, utempl>>16, utempl&0xFFFF, utempl>>16, utempl&0xFFFF); *(unsigned int *)(crs+L) ^= utempl; } else { TRACE(T_FLOW, " JGT\n"); if (*(short *)(crs+A) > 0) RPL = ea; } continue; case 00403: if (crs[KEYS] & 010000) { /* V/I mode */ TRACE(T_FLOW, " STL\n"); put32(*(unsigned int *)(crs+L),ea); } else { TRACE(T_FLOW, " JLE\n"); if (*(short *)(crs+A) <= 0) RPL = ea; } continue; case 00603: if (crs[KEYS] & 010000) { /* V/I mode */ utempl = get32(ea); TRACE(T_FLOW, " ADL ='%o/%d\n", utempl, *(int *)&utempl); add32(crsl+GR2, utempl, 0, ea); } else { TRACE(T_FLOW, " JLT\n"); if (*(short *)(crs+A) < 0) RPL = ea; } continue; case 00303: if (crs[KEYS] & 010000) { /* V/I mode */ utempl = get32(ea); TRACE(T_FLOW, " ANL ='%o\n", utempl); *(unsigned int *)(crs+L) &= utempl; } else { TRACE(T_FLOW, " JNE\n"); if (*(short *)(crs+A) != 0) RPL = ea; } continue; case 01202: TRACE(T_FLOW, " EAXB\n"); *(ea_t *)(crs+XB) = ea; continue; case 01502: if (crs[KEYS] & 010000) { /* V/I mode */ TRACE(T_FLOW, " DFLX\n"); crs[X] = get16(ea) * 4; } else { TRACE(T_FLOW, " JDX\n"); crs[X]--; if (crs[X] != 0) RPL = ea; } continue; case 03502: TRACE(T_FLOW, " STY\n"); put16(crs[Y],ea); continue; case 01503: if (crs[KEYS] & 010000) { /* V/I mode */ TRACE(T_FLOW, " QFLX\n"); crs[X] = get16(ea) * 8; } else { TRACE(T_FLOW, " JIX\n"); crs[X]++; if (crs[X] != 0) RPL = ea; } continue; case 01501: TRACE(T_FLOW, " FLX\n"); crs[X] = get16(ea) * 2; continue; case 03501: TRACE(T_FLOW, " LDY\n"); crs[Y] = get16(ea); continue; case 03503: TRACE(T_FLOW, " JSX\n"); crs[X] = RPL; RP = ea; continue; /* XXX: this should set the L bit like subtract */ case 01103: TRACE(T_FLOW, " CLS\n"); templ = get32(ea); crs[KEYS] &= ~0300; if (*(int *)(crs+L) == templ) { RPL++; crs[KEYS] |= 0100; } else if (*(int *)(crs+L) < templ) { RPL += 2; crs[KEYS] |= 0200; } XSETL(0); continue; case 00601: TRACE(T_FLOW, " FAD\n"); *(int *)&tempf = (crs[FLTH]<<16) | (crs[FLTL] & 0xFF00) | (crs[FEXP] & 0xFF); prieee4(&tempf); TRACE(T_INST, " FAC value=%f, FEXP=%d (dec), FLTH='%o, FLTL='%o\n", tempf, crs[FEXP], crs[FLTH], crs[FLTL]); *(int *)&tempf1 = get32(ea); prieee4(&tempf1); TRACE(T_INST, " ea value=%f, EXP=%d (dec), ea H='%o, ea L='%o\n", tempf1, get16(ea+1) & 0xFF, get16(ea), get16(ea+1) & 0xFF00); tempf += tempf1; tempf1 = tempf; ieeepr4(&tempf); crs[FLTH] = (*(unsigned int *)&tempf) >> 16; crs[FLTL] = (*(unsigned int *)&tempf) & 0xFF00; crs[FEXP] = (*(unsigned int *)&tempf) & 0xFF; TRACE(T_INST, " FAC value=%f, FEXP=%d (dec), FLTH='%o, FLTL='%o\n", tempf1, crs[FEXP], crs[FLTH], crs[FLTL]); XEXPC(0); continue; /* this is implemented as a subtract on some models */ case 01101: TRACE(T_FLOW, " FCS\n"); *(int *)&tempf = (crs[FLTH]<<16) | (crs[FLTL] & 0xFF00) | (crs[FEXP] & 0xFF); prieee4(&tempf); TRACE(T_INST, " FAC value=%f, FEXP=%d (dec), FLTH='%o, FLTL='%o\n", tempf, crs[FEXP], crs[FLTH], crs[FLTL]); *(int *)&tempf1 = get32(ea); prieee4(&tempf1); TRACE(T_INST, " ea value=%f, EXP=%d (dec), ea H='%o, ea L='%o\n", tempf1, get16(ea+1) & 0xFF, get16(ea), get16(ea+1) & 0xFF00); crs[KEYS] &= ~0300; if (tempf == tempf1) { RPL++; crs[KEYS] |= 0100; } else if (tempf < tempf1) { RPL += 2; crs[KEYS] |= 0200; } continue; case 01701: TRACE(T_FLOW, " FDV\n"); TRACE(T_INST, " FEXP=%d (dec), FLTH='%o, FLTL='%o\n", crs[FEXP], crs[FLTH], crs[FLTL]); //TRACE(T_INST, " ea EXP=%d (dec), ea H='%o, ea L='%o\n", (mem[ea+1] & 0xFF), mem[ea], (mem[ea+1] & 0xFF00)); *(int *)&tempf = (crs[FLTH]<<16) | (crs[FLTL] & 0xFF00) | (crs[FEXP] & 0xFF); prieee4(&tempf); *(int *)&tempf1 = get32(ea); prieee4(&tempf1); tempf /= tempf1; ieeepr4(&tempf); crs[FLTH] = (*(unsigned int *)&tempf) >> 16; crs[FLTL] = (*(unsigned int *)&tempf) & 0xFF00; crs[FEXP] = (*(unsigned int *)&tempf) & 0xFF; XEXPC(0); continue; case 0201: TRACE(T_FLOW, " FLD\n"); utempl = get32(ea); #if 1 crs[FLTH] = utempl >> 16; crs[FLTL] = utempl & 0xFF00; crs[FEXP] = utempl & 0xFF; crs[FLTD] = 0; #else crsl[FAC1] = utempl & 0xFFFFFF00; crsl[FAC1+1] = (utempl & 0xFF) << 16; #endif TRACE(T_INST, " FEXP=%d (dec), FLTH='%o, FLTL='%o\n", crs[FEXP], crs[FLTH], crs[FLTL]); continue; case 01601: TRACE(T_FLOW, " FMP\n"); TRACE(T_INST, " FEXP=%d (dec), FLTH='%o, FLTL='%o\n", crs[FEXP], crs[FLTH], crs[FLTL]); //TRACE(T_INST, " ea EXP=%d (dec), ea H='%o, ea L='%o\n", (mem[ea+1] & 0xFF), mem[ea], (mem[ea+1] & 0xFF00)); *(int *)&tempf = (crs[FLTH]<<16) | (crs[FLTL] & 0xFF00) | (crs[FEXP] & 0xFF); prieee4(&tempf); *(int *)&tempf1 = get32(ea); prieee4(&tempf1); tempf *= tempf1; ieeepr4(&tempf); crs[FLTH] = (*(unsigned int *)&tempf) >> 16; crs[FLTL] = (*(unsigned int *)&tempf) & 0xFF00; crs[FEXP] = (*(unsigned int *)&tempf) & 0xFF; XEXPC(0); continue; case 00701: TRACE(T_FLOW, " FSB\n"); TRACE(T_INST, " FEXP=%d (dec), FLTH='%o, FLTL='%o\n", crs[FEXP], crs[FLTH], crs[FLTL]); //TRACE(T_INST, " ea EXP=%d (dec), ea H='%o, ea L='%o\n", (mem[ea+1] & 0xFF), mem[ea], (mem[ea+1] & 0xFF00)); *(int *)&tempf = (crs[FLTH]<<16) | (crs[FLTL] & 0xFF00) | (crs[FEXP] & 0xFF); prieee4(&tempf); *(int *)&tempf1 = get32(ea); prieee4(&tempf1); tempf -= tempf1; ieeepr4(&tempf); crs[FLTH] = (*(unsigned int *)&tempf) >> 16; crs[FLTL] = (*(unsigned int *)&tempf) & 0xFF00; crs[FEXP] = (*(unsigned int *)&tempf) & 0xFF; XEXPC(0); continue; case 0401: TRACE(T_FLOW, " FST\n"); TRACE(T_INST, " FEXP=%d (dec), FLTH='%o, FLTL='%o\n", crs[FEXP], crs[FLTH], crs[FLTL]); if (crs[FEXP] & 0xFF00) mathexception('f', FC_SFP_STORE, ea); put16(crs[FLTH],ea); put16((crs[FLTL] & 0xFF00) | crs[FEXP],ea+1); CLEARC; continue; case 0602: TRACE(T_FLOW, " DFAD\n"); TRACE(T_INST, " FEXP=%d (dec), FLTH='%o, FLTL='%o\n", crs[FEXP], crs[FLTH], crs[FLTL]); //TRACE(T_INST, " ea EXP=%d (dec), ea H='%o, ea L='%o\n", (mem[ea+1] & 0xFF), mem[ea], (mem[ea+1] & 0xFF00)); tempda[0] = crs[FLTH]; tempda[1] = crs[FLTL]; tempda[2] = crs[FLTD]; tempda[3] = crs[FEXP]; prieee8(tempda); tempd = get64(ea); prieee8(&tempd); *(double *)tempda += tempd; ieeepr8(tempda); crs[FLTH] = tempda[0]; crs[FLTL] = tempda[1]; crs[FLTD] = tempda[2]; crs[FEXP] = tempda[3]; XEXPC(0); continue; case 01102: TRACE(T_FLOW, " DFCS\n"); m = get16(ea); if ((crs[FLTH] & 0x8000) == (m & 0x8000)) { m1 = get16(INCVA(ea,3)); if (m1 == crs[FEXP]) { if (m == crs[FLTH]) { utempl = get32(INCVA(ea,1)); if ((unsigned int)((crs[FLTL]<<16) | crs[FLTD]) == utempl) RPL += 1; else if ((unsigned int)((crs[FLTL]<<16) | crs[FLTD]) < utempl) RPL += 2; } else if (crs[FLTH] < m) RPL += 2; } else if (crs[FEXP] < m1) /* this line breaks CPU.FLOAT.V */ RPL += 2; } else if (crs[FLTH] & 0x8000) /* DAC < mem */ RPL += 2; #if 0 tempda[0] = crs[FLTH]; tempda[1] = crs[FLTL]; tempda[2] = crs[FLTD]; tempda[3] = crs[FEXP]; prieee8(tempda); printf(" FLTH=%x FLTL=%x FLTD=%x FEXP=%x, value=%e\n", crs[FLTH], crs[FLTL], crs[FLTD], crs[FEXP], *(double *)tempda); tempd = get64(ea); prieee8(&tempd); printf(" ea H=%x ea L=%x ea D=%x ea X=%x, value=%e\n", get16(ea), get16(ea+1), get16(ea+2), get16(ea+3), tempd); crs[KEYS] &= ~0300; if (*(double *)tempda == tempd) { RPL++; crs[KEYS] |= 0100; } else if (*(double *)tempda < tempd) { RPL += 2; crs[KEYS] |= 0200; } #endif continue; case 01702: TRACE(T_FLOW, " DFDV\n"); TRACE(T_INST, " FEXP=%d (dec), FLTH='%o, FLTL='%o\n", crs[FEXP], crs[FLTH], crs[FLTL]); //TRACE(T_INST, " ea EXP=%d (dec), ea H='%o, ea L='%o\n", (mem[ea+1] & 0xFF), mem[ea], (mem[ea+1] & 0xFF00)); tempda[0] = crs[FLTH]; tempda[1] = crs[FLTL]; tempda[2] = crs[FLTD]; tempda[3] = crs[FEXP]; prieee8(tempda); tempd = get64(ea); prieee8(&tempd); *(double *)tempda /= tempd; ieeepr8(tempda); crs[FLTH] = tempda[0]; crs[FLTL] = tempda[1]; crs[FLTD] = tempda[2]; crs[FEXP] = tempda[3]; XEXPC(0); continue; case 0202: TRACE(T_FLOW, " DFLD\n"); *(double *)tempda = get64(ea); crs[FLTH] = tempda[0]; crs[FLTL] = tempda[1]; crs[FLTD] = tempda[2]; crs[FEXP] = tempda[3]; continue; case 01602: TRACE(T_FLOW, " DFMP\n"); TRACE(T_INST, " FEXP=%d (dec), FLTH='%o, FLTL='%o\n", crs[FEXP], crs[FLTH], crs[FLTL]); //TRACE(T_INST, " ea EXP=%d (dec), ea H='%o, ea L='%o\n", (mem[ea+1] & 0xFF), mem[ea], (mem[ea+1] & 0xFF00)); tempda[0] = crs[FLTH]; tempda[1] = crs[FLTL]; tempda[2] = crs[FLTD]; tempda[3] = crs[FEXP]; prieee8(tempda); tempd = get64(ea); prieee8(&tempd); *(double *)tempda *= tempd; ieeepr8(tempda); crs[FLTH] = tempda[0]; crs[FLTL] = tempda[1]; crs[FLTD] = tempda[2]; crs[FEXP] = tempda[3]; XEXPC(0); continue; case 0702: TRACE(T_FLOW, " DFSB\n"); TRACE(T_INST, " FEXP=%d (dec), FLTH='%o, FLTL='%o\n", crs[FEXP], crs[FLTH], crs[FLTL]); //TRACE(T_INST, " ea EXP=%d (dec), ea H='%o, ea L='%o\n", (mem[ea+1] & 0xFF), mem[ea], (mem[ea+1] & 0xFF00)); tempda[0] = crs[FLTH]; tempda[1] = crs[FLTL]; tempda[2] = crs[FLTD]; tempda[3] = crs[FEXP]; prieee8(tempda); tempd = get64(ea); prieee8(&tempd); *(double *)tempda -= tempd; ieeepr8(tempda); crs[FLTH] = tempda[0]; crs[FLTL] = tempda[1]; crs[FLTD] = tempda[2]; crs[FEXP] = tempda[3]; XEXPC(0); continue; case 0402: TRACE(T_FLOW, " DFST\n"); tempda[0] = crs[FLTH]; tempda[1] = crs[FLTL]; tempda[2] = crs[FLTD]; tempda[3] = crs[FEXP]; put64(*(double *)tempda, ea); continue; case 01302: TRACE(T_FLOW, " EALB\n"); *(ea_t *)(crs+LB) = ea; continue; case 0301: TRACE(T_FLOW, " STLR '%06o\n", ea & 0xFFFF); star(*(int *)(crs+L), ea); continue; case 0501: TRACE(T_FLOW, " LDLR '%06o\n", ea & 0xFFFF); *(int *)(crs+L) = ldar(ea); continue; case 0502: TRACE(T_FLOW, " QFxx '%06o\n", ea & 0xFFFF); fault(UIIFAULT, RPL, RP); case 01401: TRACE(T_FLOW, " EIO\n"); crs[KEYS] &= ~0100; /* reset EQ */ pio(ea & 0xFFFF); continue; case 00102: TRACE(T_FLOW, " XEC\n"); utempa = get16(ea); //utempl = RP-2; //printf("RPL %o/%o: XEC instruction %o|%o, ea is %o/%o, new inst = %o \n", utempl>>16, utempl&0xFFFF, inst, get16(utempl+1), ea>>16, ea&0xFFFF, utempa); inst = utempa; earp = INCVA(ea,1); goto xec; case 00103: TRACE(T_FLOW, " ENTR\n"); utempa = crs[S]; crs[S] -= ea; put16(utempa,crs[S]); continue; default: printf("Unknown memory reference opcode: %o\n", opcode); fatal(NULL); } } } /* here for PIO instructions: OCP, SKS, INA, OTA. The instruction word is passed in as an argument to handle EIO (Execute I/O) in V/I modes. */ pio(unsigned int inst) { int class; int func; int device; RESTRICT(); class = inst >> 14; func = (inst >> 6) & 017; device = inst & 077; TRACE(T_INST, " pio, class=%d, func='%o, device='%o\n", class, func, device); devmap[device](class, func, device); }