1
0
mirror of https://github.com/simh/simh.git synced 2026-01-25 19:56:25 +00:00

DISPLAY: Latest version of display code from Phil Budne and Doug Gwyn including initial pdp1_dpy and pdp11_vt

This commit is contained in:
Mark Pizzolato
2013-10-16 01:02:12 -07:00
parent 026dd98d83
commit 1e3586ec91
42 changed files with 21636 additions and 8327 deletions

52
PDP11/lunar11/README.txt Normal file
View File

@@ -0,0 +1,52 @@
VT11/GT40 Lunar Lander files
preliminary README phil
Phil Budne
February 9, 2004
Lunar lander startup can take forever (lander uses spin loop to count
down time for display of starting screen. This may be due to the fact
that SIMH only tracks cycles in terms of instructions, not execution
time). To speed up display of the startup screen, deposit a 1 in
location 32530 after loading the lander program, and before starting
it;
sim> ! Set CPU to a Unibus system type
sim> set cpu 11/70
sim> ! Enable DLI device so VT device autoconfigures
sim> ! with a starting vector of 320
sim> set dli enable
sim> set dli line=2
sim> ! Enable VT device
sim> set vt enable
sim> load lunar.lda
sim> dep 32530 1
sim> run
Lunar lander only needs a small screen area, and can run using a
simulated "VR14" display, which can fit on many computer screens
without scaling:
sim> set vt crt=vr14
sim> set vt scale=1
For more information on the VT11/GT40 see
http://www.brouhaha.com/~eric/retrocomputing/dec/gt40/
lunar.txt
Lunar lander instructions
(from ???)
lunar.lda
PDP-11 Paper Tape (LDA) format
http://www.brouhaha.com/~eric/retrocomputing/dec/gt40/software/moonlander/lunar.lda
lunar.dag
PDP-11 Paper Tape (LDA) format
above(?) as patched by Doug Gwyn to fix a spelling error?
load fails with bad checksum under 3.2-preview2?
gtlem.mac
Does not match above binaries??
http://www.brouhaha.com/~eric/retrocomputing/dec/gt40/software/moonlander/gtlem.mac

5102
PDP11/lunar11/gtlem.mac Normal file

File diff suppressed because it is too large Load Diff

BIN
PDP11/lunar11/lunar.dag Normal file

Binary file not shown.

BIN
PDP11/lunar11/lunar.lda Normal file

Binary file not shown.

114
PDP11/lunar11/lunar.txt Normal file
View File

@@ -0,0 +1,114 @@
PLAYING MOONLANDER (LEM)
The object of moonlander is to land a lunar module on the
surface of the moon. The program will run on any 8K GT40
with a light pen and a clock. If you are attached to a PDP-10
you may use the ROM bootstrap to bring over the assembled
binary. If you are not "talking" to a PDP-10, you may load
in the binary loader (absolute loader) and load in the paper
tape version of the program. Note: the program will destroy
the binary loader when it starts running.
When the program is loaded, it will automatically start and
display an "introductory message" on the screen. Future
restart of the program will not cause this message to be
displayed. Should any problems occur, the program may be
restarted at any time at location zero (000000). Power fail
protection is also provided. After starting (or restarting),
you then start playing the actual game. All numbers, speeds,
weights, etc., are actual numbers. They are for real. To
make the game more possible for an average person to play, I
have given him about 25 to 50% more fuel in the final stages
of landing than he would actually have.
What the user sees on the screen is a broad and extremely
mountainous view of the moon. On the right is a list of data
parameters which the user may examine. They are height,
altitude, angle, fuel left, thrust, weight, horizontal velocity,
vertical velocity, horizontal acceleration, vertical accelera-
tion, distance and seconds. At the top of the screen, any
four of the values may be displayed. To display an item, the
user points the light pen at the item he wishes to display.
The item will then start blinking, to indicate that this is the
item to be displayed. The user then points the light pen at
one of the previously displayed items at the top of the screen.
The old item disappears and is replaced by the new item.
Note that it is possible to display any item anywhere, and even
possible to display one item four times at the top. Anyway,
the parameters mean the following. Height is the height in
feet above the surface (terrain) of the moon. It is the "radar"
height. Altitude is the height above the "mean" height of the
moon ( I guess you would call it "mare" level). Thus altitude
is not affected by terrain. Angle is the angle of the ship in
relationship to the vertical. 10 degrees, -70 degrees, etc.
Fuel left is the amount of fuel left in pounds. Thrust is the
amount of thrust (pounds) currently being produced by the engine.
Weight is the current earth weight of the ship. As fuel is
burned off, the acceleration will increase due to a lessening of
weight. The horizontal velocity is the current horizontal speed
of the ship, in feet per second. It is necessary to land at
under 10 fps horizontal, or else the ship will tip over.
Vertical velocity is the downward speed of the ship. Try to
keep it under 30 for the first few landings, until you get
better. A perfect landing is under 8 fps. The horizontal
and vertical accelerations are just those, in f/sec/sec.
With no power, the vertical acceleration is about 5 fp/s/s
down (-5). Distance is the horizontal distance (X direction)
you are from the projected landing site. Try to stay within
500 feet of this distance, because there are not too many
spots suitable for landing on the moon. Seconds is just the
time since you started trying to land. Thus you now know how
to display information and what they mean.
To control the ship, two controls are provided. The first
controls the rolling or turning of the ship. This is accom-
plished by four arrows just above the display menu. Two point
left and two point right. The two pointing left mean rotate
left and the two pointing right mean rotate right. There is
a big and a little one in each direction. The big one means
to rotate "fast" and the small one means to rotate "slow".
Thus to rotate fast left, you point the light pen at
left arrow. To rotate slow right, you point the light pen at
the small arrow pointing to the right. The arrow will get
slightly brighter to indicate you have chosen it. Above the
arrow there is a bright, solid bar. This bar is your throttle
bar. To its left there is a number in percent (say 50%). This
number indicates the percentage of full thrust your rocket
engine is developing. The engine can develop anywhere from
10% to 100% thrust - full thrust is 10,500 pounds. The
engine thrust cannot fall below 10%. That is the way Grumman
built it (actually the subcontractor). To increase or decrease
your thrust, you merely slide the light pen up and down the bar.
The indicated percentage thrust will change accordingly.
Now we come to actually flying the beast. The module appears
in the upper left hand corner of the screen and is traveling
down and to the right. Your job is to land at the correct
spot (for the time being, we will say this is when the
distance and height both reach zero). The first picture you
see, with the module in the upper left hand corner, is not
drawn to scale (the module appears too big in relationship
to the mountains). Should you successfully get below around
400 feet altitude, the view will now change to a closeup
view of the landing site, and everything will be in scale.
Remember, it is not easy to land the first few times, but
don't be disappointed, you'll do it. Be careful, the game
is extremely addictive. It is also quite dynamic.
Incorporated in the game are just about everything the GT40
can do. Letters, italics, light pen letters, a light bar,
dynamic motion, various line types and intensities (the moon
is not all the same brightness you know). It also shows that
the GT40 can do a lot of calculations while maintaining a
reasonable display.
There are three possible landing sites on the Moon:
1. On the extreme left of the landscape
2. A small flat area to the right of the mountains
3. In the large "flat" area on the right
Good Luck!

View File

@@ -620,6 +620,14 @@ typedef struct pdp_dib DIB;
#define INT_V_DLO 10
#define INT_V_DCI 11
#define INT_V_DCO 12
/* VT simulation is sequential, so only
one interrupt is posted at a time. */
#define INT_V_VTLP 13 /* XXX - Manual says VTLP, VTST have opposite */
#define INT_V_VTST 14 /* XXX precedence, but that breaks LUNAR! */
/* XXX How this happens is an utter mystery. */
#define INT_V_VTCH 15
#define INT_V_VTNM 16
#define INT_V_LK 17
#define INT_V_PIR3 0 /* BR3 */
#define INT_V_PIR2 0 /* BR2 */
@@ -667,6 +675,11 @@ typedef struct pdp_dib DIB;
#define INT_DLO (1u << INT_V_DLO)
#define INT_DCI (1u << INT_V_DCI)
#define INT_DCO (1u << INT_V_DCO)
#define INT_VTLP (1u << INT_V_VTLP)
#define INT_VTST (1u << INT_V_VTST)
#define INT_VTCH (1u << INT_V_VTCH)
#define INT_VTNM (1u << INT_V_VTNM)
#define INT_LK (1u << INT_V_LK)
#define INT_PIR3 (1u << INT_V_PIR3)
#define INT_PIR2 (1u << INT_V_PIR2)
#define INT_PIR1 (1u << INT_V_PIR1)
@@ -717,6 +730,11 @@ typedef struct pdp_dib DIB;
#define IPL_DLO 4
#define IPL_DCI 4
#define IPL_DCO 4
#define IPL_VTLP 4
#define IPL_VTST 4
#define IPL_VTCH 4
#define IPL_VTNM 4
#define IPL_LK 4 /* XXX just a guess */
#define IPL_PIR7 7
#define IPL_PIR6 6

View File

@@ -528,8 +528,8 @@ AUTO_CON auto_tab[] = {/*c #v am vm fxa fxv */
{ { NULL }, 1, 2, 0, 8, { 0 } }, /* DLV11J - fx CSRs */
{ { NULL }, 1, 2, 8, 8 }, /* DJ11 */
{ { NULL }, 1, 2, 16, 8 }, /* DH11 */
{ { NULL }, 1, 4, 0, 8,
{012000, 012010, 012020, 012030} }, /* GT40 */
{ { "VT" }, 1, 4, 0, 8,
{012000, 012010, 012020, 012030} }, /* VT11/GT40 - fx CSRs */
{ { NULL }, 1, 2, 0, 8,
{010400} }, /* LPS11 */
{ { NULL }, 1, 2, 8, 8 }, /* DQ11 */

View File

@@ -41,6 +41,7 @@
22-Jul-05 RMS Fixed missing , in initializer (Doug Gwyn)
22-Dec-03 RMS Added second DEUNA/DELUA support
18-Oct-03 RMS Added DECtape off reel message
14-Sep-03 PLB Added VT11 support
06-May-03 RMS Added support for second DEQNA/DELQA
09-Jan-03 RMS Added DELUA/DEUNA support
17-Oct-02 RMS Fixed bugs in branch, SOB address parsing
@@ -100,6 +101,9 @@ extern DEVICE tq_dev;
extern DEVICE ts_dev;
extern DEVICE tu_dev;
extern DEVICE ta_dev;
#ifdef USE_DISPLAY
extern DEVICE vt_dev;
#endif
extern DEVICE xq_dev, xqb_dev;
extern DEVICE xu_dev, xub_dev;
extern DEVICE ke_dev;
@@ -167,6 +171,9 @@ DEVICE *sim_devices[] = {
&tq_dev,
&tu_dev,
&ta_dev,
#ifdef USE_DISPLAY
&vt_dev,
#endif
&xq_dev,
&xqb_dev,
&xu_dev,

433
PDP11/pdp11_vt.c Normal file
View File

@@ -0,0 +1,433 @@
#ifdef USE_DISPLAY
/* pdp11_vt.c: PDP-11 VT11/VS60 Display Processor Simulation
Copyright (c) 2003-2004, Philip L. Budne, Douglas A. Gwyn
Copyright (c) 1993-2003, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the names of the authors shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from the authors.
vt VT11/VS60 Display Processor
05-Feb-04 DAG Improved VT11 emulation
Added VS60 support
14-Sep-03 PLB Start from pdp11_lp.c
*/
/*
* this file is just a thin layer of glue to the simulator-
* independent XY Display simulation
*/
#if defined (VM_VAX) /* VAX version */
#include "vax_defs.h"
#elif defined(VM_PDP11) /* PDP-11 version */
#include "pdp11_defs.h"
#else
#error "VT11/VS60 is supported only on the PDP-11 and VAX"
#endif
#include "display/display.h"
#include "display/vt11.h"
/*
* Timing parameters. Should allow some runtime adjustment,
* since several different configurations were shipped, including:
*
* GT40: PDP-11/05 with VT11 display processor
* GT44: PDP-11/40 with VT11 display processor
* GT46: PDP-11/34 with VT11 display processor
* GT62: PDP-11/34a with VS60 display system
*/
/*
* run a VT11/VS60 cycle every this many PDP-11 "cycle" times;
*
* Under the X Window System (X11), this includes polling
* for events (mouse movement)!
*/
#define VT11_DELAY 1
/*
* memory cycle time
*/
#define MEMORY_CYCLE 1 /* either .98 or 1.2 us? */
/*
* delay in microseconds between VT11/VS60 cycles:
* VT11/VS60 and PDP-11 CPU's share the same memory bus,
* and each VT11/VS60 instruction requires a memory reference;
* figure each PDP11 instruction requires two memory references
*/
#define CYCLE_US (MEMORY_CYCLE*(VT11_DELAY*2+1))
extern int32 int_req[IPL_HLVL];
extern int32 int_vec[IPL_HLVL][32];
DEVICE vt_dev;
t_stat vt_rd(int32 *data, int32 PA, int32 access);
t_stat vt_wr(int32 data, int32 PA, int32 access);
t_stat vt_svc(UNIT *uptr);
t_stat vt_reset(DEVICE *dptr);
t_stat vt_boot(int32 unit, DEVICE *dptr);
t_stat vt_set_crt(UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat vt_show_crt(FILE *st, UNIT *uptr, int32 val, void *desc);
t_stat vt_set_scale(UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat vt_show_scale(FILE *st, UNIT *uptr, int32 val, void *desc);
t_stat vt_set_hspace(UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat vt_show_hspace(FILE *st, UNIT *uptr, int32 val, void *desc);
t_stat vt_set_vspace(UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat vt_show_vspace(FILE *st, UNIT *uptr, int32 val, void *desc);
t_stat vt_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, char *cptr);
char *vt_description (DEVICE *dptr);
/* VT11/VS60 data structures
vt_dev VT11 device descriptor
vt_unit VT11 unit descriptor
vt_reg VT11 register list
vt_mod VT11 modifier list
*/
#define IOLN_VT11 010 /* VT11 */
#define IOLN_VS60 040 /* VS60 */
DIB vt_dib = { IOBA_AUTO, IOLN_VT11, &vt_rd, &vt_wr,
4, IVCL(VTST), VEC_AUTO, {NULL} };
/* (VT11 uses only the first 3 interrupt vectors) */
UNIT vt_unit = {
UDATA (&vt_svc, UNIT_SEQ, 0), VT11_DELAY};
REG vt_reg[] = {
{ GRDATA (DEVADDR, vt_dib.ba, DEV_RDX, 32, 0), REG_HRO },
{ GRDATA (DEVVEC, vt_dib.vec, DEV_RDX, 16, 0), REG_HRO },
{ NULL } };
MTAB vt_mod[] = {
{ MTAB_XTD|MTAB_VDV|MTAB_VALR, 0, "CRT", "CRT={VR14|VR17|VR48}",
&vt_set_crt, &vt_show_crt, NULL, "CRT Type" },
{ MTAB_XTD|MTAB_VDV|MTAB_VALR, 0, "SCALE", "SCALE={1|2|4|8}",
&vt_set_scale, &vt_show_scale, NULL, "Pixel Scale Factor" },
{ MTAB_XTD|MTAB_VDV|MTAB_VALR, 0, "HSPACE", "HSPACE={NARROW|NORMAL}",
&vt_set_hspace, &vt_show_hspace, NULL, "Horizontal Spacing" },
{ MTAB_XTD|MTAB_VDV|MTAB_VALR, 0, "VSPACE", "VSPACE={TALL|NORMAL}",
&vt_set_vspace, &vt_show_vspace, NULL, "Vertical Spacing" },
{ MTAB_XTD|MTAB_VDV|MTAB_VALR, 020, "ADDRESS", "ADDRESS",
&set_addr, &show_addr, NULL, "Bus address" },
{ MTAB_XTD|MTAB_VDV|MTAB_VALR, 0, "VECTOR", "VECTOR",
&set_vec, &show_vec, NULL, "Interrupt vector" },
{ MTAB_XTD|MTAB_VDV, 0, NULL, "AUTOCONFIGURE",
&set_addr_flt, NULL, NULL, "Enable autoconfiguration of address & vector" },
{ 0 } };
DEVICE vt_dev = {
"VT", &vt_unit, vt_reg, vt_mod,
1, 8, 31, 1, DEV_RDX, 16,
NULL, NULL, &vt_reset,
&vt_boot, NULL, NULL,
&vt_dib, DEV_DIS | DEV_DISABLE | DEV_UBUS | DEV_Q18,
0, 0, NULL, NULL, NULL, NULL, NULL,
&vt_description
};
/* VT11/VS60 routines
vt_rd I/O page read
vt_wr I/O page write
vt_svc process event
vt_reset process reset
vt_boot bootstrap device
*/
t_stat
vt_rd(int32 *data, int32 PA, int32 access)
{
switch (PA & 036) {
case 000: *data = vt11_get_dpc(); return SCPE_OK;
case 002: *data = vt11_get_mpr(); return SCPE_OK;
case 004: *data = vt11_get_xpr(); return SCPE_OK;
case 006: *data = vt11_get_ypr(); return SCPE_OK;
case 010: if (!VS60) break; *data = vt11_get_rr(); return SCPE_OK;
case 012: if (!VS60) break; *data = vt11_get_spr(); return SCPE_OK;
case 014: if (!VS60) break; *data = vt11_get_xor(); return SCPE_OK;
case 016: if (!VS60) break; *data = vt11_get_yor(); return SCPE_OK;
case 020: if (!VS60) break; *data = vt11_get_anr(); return SCPE_OK;
case 022: if (!VS60) break; *data = vt11_get_scr(); return SCPE_OK;
case 024: if (!VS60) break; *data = vt11_get_nr(); return SCPE_OK;
case 026: if (!VS60) break; *data = vt11_get_sdr(); return SCPE_OK;
case 030: if (!VS60) break; *data = vt11_get_str(); return SCPE_OK;
case 032: if (!VS60) break; *data = vt11_get_sar(); return SCPE_OK;
case 034: if (!VS60) break; *data = vt11_get_zpr(); return SCPE_OK;
case 036: if (!VS60) break; *data = vt11_get_zor(); return SCPE_OK;
}
return SCPE_NXM;
}
t_stat
vt_wr(int32 data, int32 PA, int32 access)
{
uint16 d = data & 0177777; /* mask just in case */
switch (PA & 037) {
case 000: /* DPC */
/* set the simulator PC */
vt11_set_dpc(d);
/* clear interrupt request (only one will be simulated at a time) */
CLR_INT (VTST);
CLR_INT (VTLP);
CLR_INT (VTCH);
CLR_INT (VTNM);
/* start the display processor by running a cycle */
return vt_svc(&vt_unit);
case 002: vt11_set_mpr(d); return SCPE_OK;
case 004: vt11_set_xpr(d); return SCPE_OK;
case 006: vt11_set_ypr(d); return SCPE_OK;
case 010: if (!VS60) break; vt11_set_rr(d); return SCPE_OK;
case 012: if (!VS60) break; vt11_set_spr(d); return SCPE_OK;
case 014: if (!VS60) break; vt11_set_xor(d); return SCPE_OK;
case 016: if (!VS60) break; vt11_set_yor(d); return SCPE_OK;
case 020: if (!VS60) break; vt11_set_anr(d); return SCPE_OK;
case 022: if (!VS60) break; vt11_set_scr(d); return SCPE_OK;
case 024: if (!VS60) break; vt11_set_nr(d); return SCPE_OK;
case 026: if (!VS60) break; vt11_set_sdr(d); return SCPE_OK;
case 030: if (!VS60) break; vt11_set_str(d); return SCPE_OK;
case 032: if (!VS60) break; vt11_set_sar(d); return SCPE_OK;
case 034: if (!VS60) break; vt11_set_zpr(d); return SCPE_OK;
case 036: if (!VS60) break; vt11_set_zor(d); return SCPE_OK;
}
return SCPE_NXM;
}
/*
* here to run a display processor cycle, called as a SIMH
* "device service routine".
*
* Under X11 this includes polling for events, so it can't be
* call TOO infrequently...
*/
t_stat
vt_svc(UNIT *uptr)
{
if (vt11_cycle(CYCLE_US, 1))
sim_activate (&vt_unit, vt_unit.wait); /* running; reschedule */
return SCPE_OK;
}
t_stat
vt_reset(DEVICE *dptr)
{
if (!(dptr->flags & DEV_DIS))
vt11_reset();
CLR_INT (VTST);
CLR_INT (VTLP);
CLR_INT (VTCH);
CLR_INT (VTNM);
sim_cancel (&vt_unit); /* deactivate unit */
return auto_config ("VT", (dptr->flags & DEV_DIS) ? 0 : 1);
}
/*
* GT4x/GT62 bootstrap (acts as remote terminal)
*/
t_stat
vt_boot(int32 unit, DEVICE *dptr)
{
/* XXX should do something like vt11_set_dpc(&appropriate_ROM_image) */
return SCPE_NOFNC; /* not yet implemented */
}
/* SET/SHOW VT options: */
t_stat
vt_set_crt(UNIT *uptr, int32 val, char *cptr, void *desc)
{
char gbuf[CBUFSIZE];
if (vt11_init)
return SCPE_ALATT; /* should be "changes locked out" */
if (cptr == NULL)
return SCPE_ARG;
get_glyph(cptr, gbuf, 0);
if (strcmp(gbuf, "VR14") == 0)
vt11_display = DIS_VR14;
else if (strcmp(gbuf, "VR17") == 0)
vt11_display = DIS_VR17;
else if (strcmp(gbuf, "VR48") == 0)
vt11_display = DIS_VR48;
else
return SCPE_ARG;
vt_dib.lnt = (VS60) ? IOLN_VS60 : IOLN_VT11;
return SCPE_OK;
}
t_stat
vt_show_crt(FILE *st, UNIT *uptr, int32 val, void *desc)
{
fprintf(st, "crt=VR%d", (int)vt11_display);
return SCPE_OK;
}
t_stat
vt_set_scale(UNIT *uptr, int32 val, char *cptr, void *desc)
{
t_stat r;
t_value v;
if (vt11_init)
return SCPE_ALATT; /* should be "changes locked out" */
if (cptr == NULL)
return SCPE_ARG;
v = get_uint(cptr, 10, 8, &r);
if (r != SCPE_OK)
return r;
if (v != 1 && v != 2 && v != 4 && v != 8)
return SCPE_ARG;
vt11_scale = v;
return SCPE_OK;
}
t_stat
vt_show_scale(FILE *st, UNIT *uptr, int32 val, void *desc)
{
fprintf(st, "scale=%d", (int)vt11_scale);
return SCPE_OK;
}
t_stat
vt_set_hspace(UNIT *uptr, int32 val, char *cptr, void *desc)
{
char gbuf[CBUFSIZE];
if (vt11_init)
return SCPE_ALATT; /* should be "changes locked out" */
if (cptr == NULL)
return SCPE_ARG;
get_glyph(cptr, gbuf, 0);
if (strcmp(gbuf, "NARROW") == 0)
vt11_csp_w = 12;
else if (strcmp(gbuf, "NORMAL") == 0)
vt11_csp_w = 14;
else
return SCPE_ARG;
return SCPE_OK;
}
t_stat
vt_show_hspace(FILE *st, UNIT *uptr, int32 val, void *desc)
{
fprintf(st, "hspace=%s", vt11_csp_w==12 ? "narrow" : "normal");
return SCPE_OK;
}
t_stat
vt_set_vspace(UNIT *uptr, int32 val, char *cptr, void *desc)
{
char gbuf[CBUFSIZE];
if (vt11_init)
return SCPE_ALATT; /* should be "changes locked out" */
if (cptr == NULL)
return SCPE_ARG;
get_glyph(cptr, gbuf, 0);
if (strcmp(gbuf, "TALL") == 0)
vt11_csp_h = 26;
else if (strcmp(gbuf, "NORMAL") == 0)
vt11_csp_h = 24;
else
return SCPE_ARG;
return SCPE_OK;
}
t_stat
vt_show_vspace(FILE *st, UNIT *uptr, int32 val, void *desc)
{
fprintf(st, "vspace=%s", vt11_csp_h==26 ? "tall" : "normal");
return SCPE_OK;
}
/* interface routines (called from display simulator) */
void
vt_stop_intr(void)
{
SET_INT (VTST);
}
void
vt_lpen_intr(void)
{
SET_INT (VTLP);
}
void
vt_char_intr(void)
{
SET_INT (VTCH);
}
void
vt_name_intr(void)
{
SET_INT (VTNM);
}
/* fetch memory */
int
vt_fetch(uint32 addr, vt11word *wp)
{
/* On PDP-11 Unibus 22-bit systems, the VT11/VS60 behaves as
an 18-bit Unibus peripheral and must go through the I/O map. */
/* apply Unibus map, when appropriate */
if (Map_ReadW(addr, 2, wp) == 0)
return 0; /* no problem */
/* else mapped address lies outside configured memory range */
*wp = 0164000; /* DNOP; just updates DPC if used */
/* which shouldn't happen */
return 1; /* used to set "time_out" flag */
}
char *vt_description (DEVICE *dptr)
{
return (VS60) ? "VS60 Display processor"
: "VT11 Display processor";
}
#ifdef VM_PDP11
/* PDP-11 simulation provides this */
extern int32 SR; /* switch register */
#else
int32 SR; /* switch register */
#endif
void
cpu_set_switches(unsigned long val)
{
SR = val;
}
unsigned long
cpu_get_switches(void)
{
return SR;
}
#else /* USE_DISPLAY not defined */
char pdp11_vt_unused; /* sometimes empty object modules cause problems */
#endif /* USE_DISPLAY not defined */