1
0
mirror of https://github.com/simh/simh.git synced 2026-01-25 11:46:37 +00:00

IBMPC, IBMPCXT, isys80xx: Restructure directories to eliminate redundant files

This commit is contained in:
Bill Beech
2017-04-10 10:32:43 -07:00
parent 7317645dd7
commit 2b30084a53
26 changed files with 937 additions and 2312 deletions

4875
Intel-Systems/common/i8088.c Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -41,10 +41,6 @@
Read Read DMAC Channel 0 Current Address Register
01 Write Load DMAC Channel 0 Base and Current Word Count Registers
Read Read DMAC Channel 0 Current Word Count Register
02 Write Load DMAC Channel 1 Base and Current Address Regsiters
Read Read DMAC Channel 1 Current Address Register
03 Write Load DMAC Channel 1 Base and Current Word Count Registers
Read Read DMAC Channel 1 Current Word Count Register
04 Write Load DMAC Channel 2 Base and Current Address Regsiters
Read Read DMAC Channel 2 Current Address Register
05 Write Load DMAC Channel 2 Base and Current Word Count Registers
@@ -248,11 +244,11 @@ extern uint16 port; //port called in dev_table[port]
int32 i8237_devnum = 0; //actual number of 8253 instances + 1
uint16 i8237_port[4]; //base port registered to each instance
/* function prototypes */
/* internal function prototypes */
t_stat i8237_svc(UNIT *uptr);
t_stat i8237_reset(DEVICE *dptr, uint16 base);
void i8237_reset1(int32 devnum);
t_stat i8237_svc (UNIT *uptr);
t_stat i8237_reset (DEVICE *dptr, uint16 base);
void i8237_reset1 (void);
t_stat i8237_set_mode (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
uint8 i8237_r0x(t_bool io, uint8 data);
uint8 i8237_r1x(t_bool io, uint8 data);
@@ -277,28 +273,28 @@ extern uint16 reg_dev(uint8 (*routine)(t_bool, uint8), uint16);
/* 8237 physical register definitions */
uint16 i8237_r0[4]; // 8237 ch 0 address register
uint16 i8237_r1[4]; // 8237 ch 0 count register
uint16 i8237_r2[4]; // 8237 ch 1 address register
uint16 i8237_r3[4]; // 8237 ch 1 count register
uint16 i8237_r4[4]; // 8237 ch 2 address register
uint16 i8237_r5[4]; // 8237 ch 2 count register
uint16 i8237_r6[4]; // 8237 ch 3 address register
uint16 i8237_r7[4]; // 8237 ch 3 count register
uint8 i8237_r8[4]; // 8237 status register
uint8 i8237_r9[4]; // 8237 command register
uint8 i8237_rA[4]; // 8237 mode register
uint8 i8237_rB[4]; // 8237 mask register
uint8 i8237_rC[4]; // 8237 request register
uint8 i8237_rD[4]; // 8237 first/last ff
uint8 i8237_rE[4]; // 8237
uint8 i8237_rF[4]; // 8237
uint16 i8237_r0; // 8237 ch 0 address register
uint16 i8237_r1; // 8237 ch 0 count register
uint16 i8237_r2; // 8237 ch 1 address register
uint16 i8237_r3; // 8237 ch 1 count register
uint16 i8237_r4; // 8237 ch 2 address register
uint16 i8237_r5; // 8237 ch 2 count register
uint16 i8237_r6; // 8237 ch 3 address register
uint16 i8237_r7; // 8237 ch 3 count register
uint8 i8237_r8; // 8237 status register
uint8 i8237_r9; // 8237 command register
uint8 i8237_rA; // 8237 mode register
uint8 i8237_rB; // 8237 mask register
uint8 i8237_rC; // 8237 request register
uint8 i8237_rD; // 8237 first/last ff
uint8 i8237_rE; // 8237
uint8 i8237_rF; // 8237
/* i8237 physical register definitions */
uint16 i8237_sr[4]; // isbc-208 segment register
uint8 i8237_i[4]; // iSBC-208 interrupt register
uint8 i8237_a[4]; // iSBC-208 auxillary port register
uint16 i8237_sr; // isbc-208 segment register
uint8 i8237_i; // iSBC-208 interrupt register
uint8 i8237_a; // iSBC-208 auxillary port register
/* i8237 Standard SIMH Device Data Structures - 1 unit */
@@ -311,9 +307,9 @@ UNIT i8237_unit[] = {
REG i8237_reg[] = {
{ HRDATA (CH0ADR, i8237_r0[devnum], 16) },
{ HRDATA (CH0CNT, i8237_r1[devnum], 16) },
{ HRDATA (CH1ADR, i8237_r2[devnum], 16) },
{ HRDATA (CH0ADR, i8237_r0, 16) },
{ HRDATA (CH0CNT, i8237_r1, 16) },
{ HRDATA (CH1ADR, i8237_r2, 16) },
{ HRDATA (CH1CNT, i8237_r3, 16) },
{ HRDATA (CH2ADR, i8237_r4, 16) },
{ HRDATA (CH2CNT, i8237_r5, 16) },
@@ -347,7 +343,7 @@ DEBTAB i8237_debug[] = {
};
DEVICE i8237_dev = {
"I8237", //name
"8237", //name
i8237_unit, //units
i8237_reg, //registers
i8237_mod, //modifiers
@@ -391,8 +387,6 @@ t_stat i8237_reset(DEVICE *dptr, uint16 base)
sim_printf("i8237_reset: too many devices!\n");
return SCPE_MEM;
}
sim_printf(" 8237 Reset\n");
sim_printf(" 8237: Registered at %03X\n", base);
i8237_port[i8237_devnum] = reg_dev(i8237_r0x, base);
reg_dev(i8237_r1x, base + 1);
reg_dev(i8237_r2x, base + 2);
@@ -413,7 +407,7 @@ t_stat i8237_reset(DEVICE *dptr, uint16 base)
sim_printf(" 8237: Registered at %03X\n", base);
sim_activate (&i8237_unit[i8237_devnum], i8237_unit[i8237_devnum].wait); /* activate unit */
if ((i8237_dev.flags & DEV_DIS) == 0)
i8237_reset1(i8237_devnum);
i8237_reset1();
i8237_devnum++;
return SCPE_OK;
}
@@ -429,25 +423,36 @@ uint8 i8237_get_dn(void)
return 0xFF;
}
void i8237_reset1(int32 devnum)
void i8237_reset1(void)
{
int32 i;
UNIT *uptr;
static int flag = 1;
uptr = i8237_dev[devnum].units;
if (uptr->capac == 0) { /* if not configured */
uptr->capac = 0; /* initialize unit */
uptr->u3 = 0;
uptr->u4 = 0;
uptr->u5 = 0;
uptr->u6 = i; /* unit number - only set here! */
sim_activate (&i8237_unit[devnum], i8237_unit[devnum].wait);
for (i = 0; i < 1; i++) { /* handle all units */
uptr = i8237_dev.units + i;
if (uptr->capac == 0) { /* if not configured */
// sim_printf(" SBC208%d: Not configured\n", i);
// if (flag) {
// sim_printf(" ALL: \"set isbc208 en\"\n");
// sim_printf(" EPROM: \"att isbc2080 <filename>\"\n");
// flag = 0;
// }
uptr->capac = 0; /* initialize unit */
uptr->u3 = 0;
uptr->u4 = 0;
uptr->u5 = 0;
uptr->u6 = i; /* unit number - only set here! */
sim_activate (&i8237_unit[uptr->u6], i8237_unit[uptr->u6].wait);
} else {
// sim_printf(" SBC208%d: Configured, Attached to %s\n", i, uptr->filename);
}
}
i8237_r8[devnum] = 0; /* status */
i8237_r9[devnum] = 0; /* command */
i8237_rB[devnum] = 0x0F; /* mask */
i8237_rC[devnum] = 0; /* request */
i8237_rD[devnum] = 0; /* first/last FF */
i8237_r8 = 0; /* status */
i8237_r9 = 0; /* command */
i8237_rB = 0x0F; /* mask */
i8237_rC = 0; /* request */
i8237_rD = 0; /* first/last FF */
}
@@ -478,26 +483,27 @@ uint8 i8237_r0x(t_bool io, uint8 data)
if (io == 0) { /* read current address CH 0 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r0[%d](H) read as %04X\n", devnum, i8237_r0[devnum]);
return (i8237_r0[devnum] >> 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r0(H) read as %04X\n", i8237_r0);
return (i8237_r0 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r0[%d](L) read as %04X\n", devnum, i8237_r0[devnum]);
return (i8237_r0[devnum] & 0xFF);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r0(L) read as %04X\n", i8237_r0);
return (i8237_r0 & 0xFF);
}
} else { /* write base & current address CH 0 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r0[devnum] |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r0[%d](H) set to %04X\n", devnum, i8237_r0[devnum]);
i8237_r0 |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r0(H) set to %04X\n", i8237_r0);
} else { /* low byte */
i8237_rD++;
i8237_r0[devnum] = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r0[%d](L) set to %04X\n"devnum, , i8237_r0[devnum]);
i8237_r0 = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r0(L) set to %04X\n", i8237_r0);
}
return 0;
}
}
return 0;
}
uint8 i8237_r1x(t_bool io, uint8 data)
@@ -508,26 +514,27 @@ uint8 i8237_r1x(t_bool io, uint8 data)
if (io == 0) { /* read current word count CH 0 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r1[%d](H) read as %04X\n", devnum, i8237_r1[devnum]);
return (i8237_r1[devnum][devnum] >> 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r1(H) read as %04X\n", i8237_r1);
return (i8237_r1 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r1[%d](L) read as %04X\n", devnum, i8237_r1[devnum]);
return (i8237_r1[devnum] & 0xFF);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r1(L) read as %04X\n", i8237_r1);
return (i8237_r1 & 0xFF);
}
} else { /* write base & current address CH 0 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r1[devnum] |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r1[%d](H) set to %04X\n", devnum, i8237_r1[devnum]);
i8237_r1 |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r1(H) set to %04X\n", i8237_r1);
} else { /* low byte */
i8237_rD++;
i8237_r1[devnum] = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r1[%d](L) set to %04X\n", devnum, i8237_r1[devnum]);
i8237_r1 = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r1(L) set to %04X\n", i8237_r1);
}
return 0;
}
}
return 0;
}
uint8 i8237_r2x(t_bool io, uint8 data)
@@ -538,26 +545,27 @@ uint8 i8237_r2x(t_bool io, uint8 data)
if (io == 0) { /* read current address CH 1 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r2[%d](H) read as %04X\n", devnum, i8237_r2[devnum]);
return (i8237_r2[devnum] >> 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r2(H) read as %04X\n", i8237_r2);
return (i8237_r2 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r2[%d](L) read as %04X\n", devnum, i8237_r2[devnum]);
return (i8237_r2[devnum] & 0xFF);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r2(L) read as %04X\n", i8237_r2);
return (i8237_r2 & 0xFF);
}
} else { /* write base & current address CH 1 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r2[devnum] |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r2[%d](H) set to %04X\n", devnum, i8237_r2[devnum]);
i8237_r2 |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r2(H) set to %04X\n", i8237_r2);
} else { /* low byte */
i8237_rD++;
i8237_r2[devnum] = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r2[%d](L) set to %04X\n", devnum, i8237_r2[devnum]);
i8237_r2 = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r2(L) set to %04X\n", i8237_r2);
}
return 0;
}
}
return 0;
}
uint8 i8237_r3x(t_bool io, uint8 data)
@@ -588,6 +596,7 @@ uint8 i8237_r3x(t_bool io, uint8 data)
return 0;
}
}
return 0;
}
uint8 i8237_r4x(t_bool io, uint8 data)
@@ -618,6 +627,7 @@ uint8 i8237_r4x(t_bool io, uint8 data)
return 0;
}
}
return 0;
}
uint8 i8237_r5x(t_bool io, uint8 data)
@@ -648,6 +658,7 @@ uint8 i8237_r5x(t_bool io, uint8 data)
return 0;
}
}
return 0;
}
uint8 i8237_r6x(t_bool io, uint8 data)
@@ -678,6 +689,7 @@ uint8 i8237_r6x(t_bool io, uint8 data)
return 0;
}
}
return 0;
}
uint8 i8237_r7x(t_bool io, uint8 data)
@@ -708,6 +720,7 @@ uint8 i8237_r7x(t_bool io, uint8 data)
return 0;
}
}
return 0;
}
uint8 i8237_r8x(t_bool io, uint8 data)
@@ -724,6 +737,7 @@ uint8 i8237_r8x(t_bool io, uint8 data)
return 0;
}
}
return 0;
}
uint8 i8237_r9x(t_bool io, uint8 data)
@@ -740,6 +754,7 @@ uint8 i8237_r9x(t_bool io, uint8 data)
return 0;
}
}
return 0;
}
uint8 i8237_rAx(t_bool io, uint8 data)
@@ -781,6 +796,7 @@ uint8 i8237_rAx(t_bool io, uint8 data)
return 0;
}
}
return 0;
}
uint8 i8237_rBx(t_bool io, uint8 data)
@@ -797,6 +813,7 @@ uint8 i8237_rBx(t_bool io, uint8 data)
return 0;
}
}
return 0;
}
uint8 i8237_rCx(t_bool io, uint8 data)
@@ -813,6 +830,7 @@ uint8 i8237_rCx(t_bool io, uint8 data)
return 0;
}
}
return 0;
}
uint8 i8237_rDx(t_bool io, uint8 data)
@@ -829,6 +847,7 @@ uint8 i8237_rDx(t_bool io, uint8 data)
return 0;
}
}
return 0;
}
uint8 i8237_rEx(t_bool io, uint8 data)
@@ -845,6 +864,7 @@ uint8 i8237_rEx(t_bool io, uint8 data)
return 0;
}
}
return 0;
}
uint8 i8237_rFx(t_bool io, uint8 data)
@@ -861,6 +881,7 @@ uint8 i8237_rFx(t_bool io, uint8 data)
return 0;
}
}
return 0;
}
/* end of i8237.c */

View File

@@ -0,0 +1,866 @@
/* i8237.c: Intel 8237 DMA adapter
Copyright (c) 2016, William A. Beech
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
WILLIAM A. BEECH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of William A. Beech shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from William A. Beech.
MODIFICATIONS:
11 Jul 16 - Original file.
NOTES:
Default is none. Since all channel registers in the i8237 are 16-bit, transfers
are done as two 8-bit operations, low- then high-byte.
Port addressing is as follows (Port offset = 0):
Port Mode Command Function
00 Write Load DMAC Channel 0 Base and Current Address Regsiters
Read Read DMAC Channel 0 Current Address Register
01 Write Load DMAC Channel 0 Base and Current Word Count Registers
Read Read DMAC Channel 0 Current Word Count Register
02 Write Load DMAC Channel 1 Base and Current Address Regsiters
Read Read DMAC Channel 1 Current Address Register
03 Write Load DMAC Channel 1 Base and Current Word Count Registers
Read Read DMAC Channel 1 Current Word Count Register
04 Write Load DMAC Channel 2 Base and Current Address Regsiters
Read Read DMAC Channel 2 Current Address Register
05 Write Load DMAC Channel 2 Base and Current Word Count Registers
Read Read DMAC Channel 2 Current Word Count Register
06 Write Load DMAC Channel 3 Base and Current Address Regsiters
Read Read DMAC Channel 3 Current Address Register
07 Write Load DMAC Channel 3 Base and Current Word Count Registers
Read Read DMAC Channel 3 Current Word Count Register
08 Write Load DMAC Command Register
Read Read DMAC Status Register
09 Write Load DMAC Request Register
0A Write Set/Reset DMAC Mask Register
0B Write Load DMAC Mode Register
0C Write Clear DMAC First/Last Flip-Flop
0D Write DMAC Master Clear
0F Write Load DMAC Mask Register
Register usage is defined in the following paragraphs.
Read/Write DMAC Address Registers
Used to simultaneously load a channel's current-address register and base-address
register with the memory address of the first byte to be transferred. (The Channel
0 current/base address register must be loaded prior to initiating a diskette read
or write operation.) Since each channel's address registers are 16 bits in length
(64K address range), two "write address register" commands must be executed in
order to load the complete current/base address registers for any channel.
Read/Write DMAC Word Count Registers
The Write DMAC Word Count Register command is used to simultaneously load a
channel's current and base word-count registers with the number of bytes
to be transferred during a subsequent DMA operation. Since the word-count
registers are 16-bits in length, two commands must be executed to load both
halves of the registers.
Write DMAC Command Register
The Write DMAC Command Register command loads an 8-bit byte into the
DMAC's command register to define the operating characteristics of the
DMAC. The functions of the individual bits in the command register are
defined in the following diagram. Note that only two bits within the
register are applicable to the controller; the remaining bits select
functions that are not supported and, accordingly, must always be set
to zero.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+
| |
| +---------- 0 CONTROLLER ENABLE
| 1 CONTROLLER DISABLE
|
+------------------ 0 FIXED PRIORITY
1 ROTATING PRIORITY
Read DMAC Status Register Command
The Read DMAC Status Register command accesses an 8-bit status byte that
identifies the DMA channels that have reached terminal count or that
have a pending DMA request.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| 0 0 |
+---+---+---+---+---+---+---+---+
| | | | | |
| | | | | +-- CHANNEL 0 TC
| | | | +---------- CHANNEL 2 TC
| | | +-------------- CHANNEL 3 TC
| | +------------------ CHANNEL 0 DMA REQUEST
| +-------------------------- CHANNEL 2 DMA REQUEST
+------------------------------ CHANNEL 3 DMA REQUEST
Write DMAC Request Register
The data byte associated with the Write DMAC Request Register command
sets or resets a channel's associated request bit within the DMAC's
internal 4-bit request register.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| X X X X X |
+---+---+---+---+---+---+---+---+
| | |
| +---+-- 00 SELECT CHANNEL 0
| 01 SELECT CHANNEL 1
| 10 SELECT CHANNEL 2
| 11 SELECT CHANNEL 3
|
+---------- 0 RESET REQUEST BIT
1 SET REQUEST BIT
Set/Reset DMAC Mask Register
Prior to a DREQ-initiated DMA transfer, the channel's mask bit must
be reset to enable recognition of the DREQ input. When the transfer
is complete (terminal count reached or external EOP applied) and
the channel is not programmed to autoinitialize, the channel's
mask bit is automatically set (disabling DREQ) and must be reset
prior to a subsequent DMA transfer. All four bits of the mask
register are set (disabling the DREQ inputs) by a DMAC master
clear or controller reset. Additionally, all four bits can be
set/reset by a single Write DMAC Mask Register command.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| X X X X X |
+---+---+---+---+---+---+---+---+
| | |
| +---+-- 00 SELECT CHANNEL 0
| 01 SELECT CHANNEL 1
| 10 SELECT CHANNEL 2
| 11 SELECT CHANNEL 3
|
+---------- 0 RESET REQUEST BIT
1 SET REQUEST BIT
Write DMAC Mode Register
The Write DMAC Mode Register command is used to define the
operating mode characteristics for each DMA channel. Each
channel has an internal 6-bit mode register; the high-order
six bits of the associated data byte are written into the
mode register addressed by the two low-order bits.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| |
+---+---+---+---+---+---+---+---+
| | | | | | | |
| | | | | | +---+-- 00 SELECT CHANNEL 0
| | | | | | 01 SELECT CHANNEL 1
| | | | | | 10 SELECT CHANNEL 2
| | | | | | 11 SELECT CHANNEL 3
| | | | | |
| | | | +---+---------- 00 VERIFY TRANSFER
| | | | 01 WRITE TRANSFER
| | | | 10 READ TRANSFER
| | | |
| | | +------------------ 0 AUTOINITIALIZE DISABLE
| | | 1 AUTOINITIALIZE ENABLE
| | |
| | +---------------------- 0 ADDRESS INCREMENT
| | 1 ADDRESS DECREMENT
| |
+---+-------------------------- 00 DEMAND MODE
01 SINGLE MODE
10 BLOCK MODE
Clear DMAC First/Last Flip-Flop
The Clear DMAC First/Last Flip-Flop command initializes
the DMAC's internal first/last flip-flop so that the
next byte written to or re~d from the 16-bit address
or word-count registers is the low-order byte. The
flip-flop is toggled with each register access so that
a second register read or write command accesses the
high-order byte.
DMAC Master Clear
The DMAC Master Clear command clears the DMAC's command, status,
request, and temporary registers to zero, initializes the
first/last flip-flop, and sets the four channel mask bits in
the mask register to disable all DMA requests (i.e., the DMAC
is placed in an idle state).
Write DMAC Mask Register
The Write DMAC Mask Register command allows all four bits of the
DMAC's mask register to be written with a single command.
7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+
| X X X X X |
+---+---+---+---+---+---+---+---+
| | |
| | +-- 0 CLEAR CHANNEL 0 MASK BIT
| | 1 SET CHANNEL 0 MASK BIT
| |
| +---------- 0 CLEAR CHANNEL 2 MASK BIT
| 1 SET CHANNEL 2 MASK BIT
|
+-------------- 0 CLEAR CHANNEL 3 MASK BIT
1 SET CHANNEL 3 MASK BIT
*/
#include "system_defs.h"
/* external globals */
extern uint16 port; //port called in dev_table[port]
/* globals */
int32 i8237_devnum = 0; //actual number of 8253 instances + 1
uint16 i8237_port[4]; //base port registered to each instance
/* function prototypes */
t_stat i8237_svc(UNIT *uptr);
t_stat i8237_reset(DEVICE *dptr, uint16 base);
void i8237_reset1(int32 devnum);
t_stat i8237_set_mode (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
uint8 i8237_r0x(t_bool io, uint8 data);
uint8 i8237_r1x(t_bool io, uint8 data);
uint8 i8237_r2x(t_bool io, uint8 data);
uint8 i8237_r3x(t_bool io, uint8 data);
uint8 i8237_r4x(t_bool io, uint8 data);
uint8 i8237_r5x(t_bool io, uint8 data);
uint8 i8237_r6x(t_bool io, uint8 data);
uint8 i8237_r7x(t_bool io, uint8 data);
uint8 i8237_r8x(t_bool io, uint8 data);
uint8 i8237_r9x(t_bool io, uint8 data);
uint8 i8237_rAx(t_bool io, uint8 data);
uint8 i8237_rBx(t_bool io, uint8 data);
uint8 i8237_rCx(t_bool io, uint8 data);
uint8 i8237_rDx(t_bool io, uint8 data);
uint8 i8237_rEx(t_bool io, uint8 data);
uint8 i8237_rFx(t_bool io, uint8 data);
/* external function prototypes */
extern uint16 reg_dev(uint8 (*routine)(t_bool, uint8), uint16);
/* 8237 physical register definitions */
uint16 i8237_r0[4]; // 8237 ch 0 address register
uint16 i8237_r1[4]; // 8237 ch 0 count register
uint16 i8237_r2[4]; // 8237 ch 1 address register
uint16 i8237_r3[4]; // 8237 ch 1 count register
uint16 i8237_r4[4]; // 8237 ch 2 address register
uint16 i8237_r5[4]; // 8237 ch 2 count register
uint16 i8237_r6[4]; // 8237 ch 3 address register
uint16 i8237_r7[4]; // 8237 ch 3 count register
uint8 i8237_r8[4]; // 8237 status register
uint8 i8237_r9[4]; // 8237 command register
uint8 i8237_rA[4]; // 8237 mode register
uint8 i8237_rB[4]; // 8237 mask register
uint8 i8237_rC[4]; // 8237 request register
uint8 i8237_rD[4]; // 8237 first/last ff
uint8 i8237_rE[4]; // 8237
uint8 i8237_rF[4]; // 8237
/* i8237 physical register definitions */
uint16 i8237_sr[4]; // isbc-208 segment register
uint8 i8237_i[4]; // iSBC-208 interrupt register
uint8 i8237_a[4]; // iSBC-208 auxillary port register
/* i8237 Standard SIMH Device Data Structures - 1 unit */
UNIT i8237_unit[] = {
{ UDATA (0, 0, 0) ,20 }, /* i8237 0 */
{ UDATA (0, 0, 0) ,20 }, /* i8237 1 */
{ UDATA (0, 0, 0) ,20 }, /* i8237 2 */
{ UDATA (0, 0, 0) ,20 } /* i8237 3 */
};
REG i8237_reg[] = {
{ HRDATA (CH0ADR, i8237_r0[devnum], 16) },
{ HRDATA (CH0CNT, i8237_r1[devnum], 16) },
{ HRDATA (CH1ADR, i8237_r2[devnum], 16) },
{ HRDATA (CH1CNT, i8237_r3, 16) },
{ HRDATA (CH2ADR, i8237_r4, 16) },
{ HRDATA (CH2CNT, i8237_r5, 16) },
{ HRDATA (CH3ADR, i8237_r6, 16) },
{ HRDATA (CH3CNT, i8237_r7, 16) },
{ HRDATA (STAT37, i8237_r8, 8) },
{ HRDATA (CMD37, i8237_r9, 8) },
{ HRDATA (MODE, i8237_rA, 8) },
{ HRDATA (MASK, i8237_rB, 8) },
{ HRDATA (REQ, i8237_rC, 8) },
{ HRDATA (FF, i8237_rD, 8) },
{ HRDATA (SEGREG, i8237_sr, 8) },
{ HRDATA (AUX, i8237_a, 8) },
{ HRDATA (INT, i8237_i, 8) },
{ NULL }
};
MTAB i8237_mod[] = {
{ 0 }
};
DEBTAB i8237_debug[] = {
{ "ALL", DEBUG_all },
{ "FLOW", DEBUG_flow },
{ "READ", DEBUG_read },
{ "WRITE", DEBUG_write },
{ "LEV1", DEBUG_level1 },
{ "LEV2", DEBUG_level2 },
{ "REG", DEBUG_reg },
{ NULL }
};
DEVICE i8237_dev = {
"I8237", //name
i8237_unit, //units
i8237_reg, //registers
i8237_mod, //modifiers
1, //numunits
16, //aradix
32, //awidth
1, //aincr
16, //dradix
8, //dwidth
NULL, //examine
NULL, //deposit
// &i8237_reset, //deposit
NULL, //reset
NULL, //boot
NULL, //attach
NULL, //detach
NULL, //ctxt
DEV_DEBUG+DEV_DISABLE+DEV_DIS, //flags
0, //dctrl
// DEBUG_flow + DEBUG_read + DEBUG_write, //dctrl
i8237_debug, //debflags
NULL, //msize
NULL //lname
};
/* Service routines to handle simulator functions */
/* service routine - actually does the simulated DMA */
t_stat i8237_svc(UNIT *uptr)
{
sim_activate (&i8237_unit[uptr->u6], i8237_unit[uptr->u6].wait);
return SCPE_OK;
}
/* Reset routine */
t_stat i8237_reset(DEVICE *dptr, uint16 base)
{
if (i8237_devnum > I8237_NUM) {
sim_printf("i8237_reset: too many devices!\n");
return SCPE_MEM;
}
sim_printf(" 8237 Reset\n");
sim_printf(" 8237: Registered at %03X\n", base);
i8237_port[i8237_devnum] = reg_dev(i8237_r0x, base);
reg_dev(i8237_r1x, base + 1);
reg_dev(i8237_r2x, base + 2);
reg_dev(i8237_r3x, base + 3);
reg_dev(i8237_r4x, base + 4);
reg_dev(i8237_r5x, base + 5);
reg_dev(i8237_r6x, base + 6);
reg_dev(i8237_r7x, base + 7);
reg_dev(i8237_r8x, base + 8);
reg_dev(i8237_r9x, base + 9);
reg_dev(i8237_rAx, base + 10);
reg_dev(i8237_rBx, base + 11);
reg_dev(i8237_rCx, base + 12);
reg_dev(i8237_rDx, base + 13);
reg_dev(i8237_rEx, base + 14);
reg_dev(i8237_rFx, base + 15);
sim_printf(" 8237 Reset\n");
sim_printf(" 8237: Registered at %03X\n", base);
sim_activate (&i8237_unit[i8237_devnum], i8237_unit[i8237_devnum].wait); /* activate unit */
if ((i8237_dev.flags & DEV_DIS) == 0)
i8237_reset1(i8237_devnum);
i8237_devnum++;
return SCPE_OK;
}
uint8 i8237_get_dn(void)
{
int i;
for (i=0; i<I8237_NUM; i++)
if (port >=i8237_port[i] && port <= i8237_port[i] + 16)
return i;
sim_printf("i8237_get_dn: port %03X not in 8237 device table\n", port);
return 0xFF;
}
void i8237_reset1(int32 devnum)
{
int32 i;
UNIT *uptr;
uptr = i8237_dev[devnum].units;
if (uptr->capac == 0) { /* if not configured */
uptr->capac = 0; /* initialize unit */
uptr->u3 = 0;
uptr->u4 = 0;
uptr->u5 = 0;
uptr->u6 = i; /* unit number - only set here! */
sim_activate (&i8237_unit[devnum], i8237_unit[devnum].wait);
}
i8237_r8[devnum] = 0; /* status */
i8237_r9[devnum] = 0; /* command */
i8237_rB[devnum] = 0x0F; /* mask */
i8237_rC[devnum] = 0; /* request */
i8237_rD[devnum] = 0; /* first/last FF */
}
/* i8237 set mode = 8- or 16-bit data bus */
/* always 8-bit mode for current simulators */
t_stat i8237_set_mode(UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
sim_debug (DEBUG_flow, &i8237_dev, " i8237_set_mode: Entered with val=%08XH uptr->flags=%08X\n", val, uptr->flags);
sim_debug (DEBUG_flow, &i8237_dev, " i8237_set_mode: Done\n");
return SCPE_OK;
}
/* I/O instruction handlers, called from the CPU module when an
IN or OUT instruction is issued.
Each function is passed an 'io' flag, where 0 means a read from
the port, and 1 means a write to the port. On input, the actual
input is passed as the return value, on output, 'data' is written
to the device.
*/
uint8 i8237_r0x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read current address CH 0 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r0[%d](H) read as %04X\n", devnum, i8237_r0[devnum]);
return (i8237_r0[devnum] >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r0[%d](L) read as %04X\n", devnum, i8237_r0[devnum]);
return (i8237_r0[devnum] & 0xFF);
}
} else { /* write base & current address CH 0 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r0[devnum] |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r0[%d](H) set to %04X\n", devnum, i8237_r0[devnum]);
} else { /* low byte */
i8237_rD++;
i8237_r0[devnum] = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r0[%d](L) set to %04X\n"devnum, , i8237_r0[devnum]);
}
return 0;
}
}
}
uint8 i8237_r1x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read current word count CH 0 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r1[%d](H) read as %04X\n", devnum, i8237_r1[devnum]);
return (i8237_r1[devnum][devnum] >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r1[%d](L) read as %04X\n", devnum, i8237_r1[devnum]);
return (i8237_r1[devnum] & 0xFF);
}
} else { /* write base & current address CH 0 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r1[devnum] |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r1[%d](H) set to %04X\n", devnum, i8237_r1[devnum]);
} else { /* low byte */
i8237_rD++;
i8237_r1[devnum] = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r1[%d](L) set to %04X\n", devnum, i8237_r1[devnum]);
}
return 0;
}
}
}
uint8 i8237_r2x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read current address CH 1 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r2[%d](H) read as %04X\n", devnum, i8237_r2[devnum]);
return (i8237_r2[devnum] >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r2[%d](L) read as %04X\n", devnum, i8237_r2[devnum]);
return (i8237_r2[devnum] & 0xFF);
}
} else { /* write base & current address CH 1 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r2[devnum] |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r2[%d](H) set to %04X\n", devnum, i8237_r2[devnum]);
} else { /* low byte */
i8237_rD++;
i8237_r2[devnum] = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r2[%d](L) set to %04X\n", devnum, i8237_r2[devnum]);
}
return 0;
}
}
}
uint8 i8237_r3x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read current word count CH 1 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r3(H) read as %04X\n", i8237_r3);
return (i8237_r3 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r3(L) read as %04X\n", i8237_r3);
return (i8237_r3 & 0xFF);
}
} else { /* write base & current address CH 1 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r3 |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r3(H) set to %04X\n", i8237_r3);
} else { /* low byte */
i8237_rD++;
i8237_r3 = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r3(L) set to %04X\n", i8237_r3);
}
return 0;
}
}
}
uint8 i8237_r4x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read current address CH 2 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r4(H) read as %04X\n", i8237_r4);
return (i8237_r4 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r4(L) read as %04X\n", i8237_r4);
return (i8237_r4 & 0xFF);
}
} else { /* write base & current address CH 2 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r4 |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r4(H) set to %04X\n", i8237_r4);
} else { /* low byte */
i8237_rD++;
i8237_r4 = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r4(L) set to %04X\n", i8237_r4);
}
return 0;
}
}
}
uint8 i8237_r5x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read current word count CH 2 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r5(H) read as %04X\n", i8237_r5);
return (i8237_r5 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r5(L) read as %04X\n", i8237_r5);
return (i8237_r5 & 0xFF);
}
} else { /* write base & current address CH 2 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r5 |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r5(H) set to %04X\n", i8237_r5);
} else { /* low byte */
i8237_rD++;
i8237_r5 = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r5(L) set to %04X\n", i8237_r5);
}
return 0;
}
}
}
uint8 i8237_r6x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read current address CH 3 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r6(H) read as %04X\n", i8237_r6);
return (i8237_r6 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r6(L) read as %04X\n", i8237_r6);
return (i8237_r6 & 0xFF);
}
} else { /* write base & current address CH 3 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r6 |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r6(H) set to %04X\n", i8237_r6);
} else { /* low byte */
i8237_rD++;
i8237_r6 = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r6(L) set to %04X\n", i8237_r6);
}
return 0;
}
}
}
uint8 i8237_r7x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read current word count CH 3 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r7(H) read as %04X\n", i8237_r7);
return (i8237_r7 >> 8);
} else { /* low byte */
i8237_rD++;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r7(L) read as %04X\n", i8237_r7);
return (i8237_r7 & 0xFF);
}
} else { /* write base & current address CH 3 */
if (i8237_rD) { /* high byte */
i8237_rD = 0;
i8237_r7 |= (data << 8);
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r7(H) set to %04X\n", i8237_r7);
} else { /* low byte */
i8237_rD++;
i8237_r7 = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r7(L) set to %04X\n", i8237_r7);
}
return 0;
}
}
}
uint8 i8237_r8x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read status register */
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r8 (status) read as %02X\n", i8237_r8);
return (i8237_r8);
} else { /* write command register */
i8237_r9 = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_r9 (command) set to %02X\n", i8237_r9);
return 0;
}
}
}
uint8 i8237_r9x(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) {
sim_debug (DEBUG_reg, &i8237_dev, "Illegal read of i8237_r9\n");
return 0;
} else { /* write request register */
i8237_rC = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_rC (request) set to %02X\n", i8237_rC);
return 0;
}
}
}
uint8 i8237_rAx(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) {
sim_debug (DEBUG_reg, &i8237_dev, "Illegal read of i8237_rA\n");
return 0;
} else { /* write single mask register */
switch(data & 0x03) {
case 0:
if (data & 0x04)
i8237_rB |= 1;
else
i8237_rB &= ~1;
break;
case 1:
if (data & 0x04)
i8237_rB |= 2;
else
i8237_rB &= ~2;
break;
case 2:
if (data & 0x04)
i8237_rB |= 4;
else
i8237_rB &= ~4;
break;
case 3:
if (data & 0x04)
i8237_rB |= 8;
else
i8237_rB &= ~8;
break;
}
sim_debug (DEBUG_reg, &i8237_dev, "i8237_rB (mask) set to %02X\n", i8237_rB);
return 0;
}
}
}
uint8 i8237_rBx(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) {
sim_debug (DEBUG_reg, &i8237_dev, "Illegal read of i8237_rB\n");
return 0;
} else { /* write mode register */
i8237_rA = data & 0xFF;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_rA (mode) set to %02X\n", i8237_rA);
return 0;
}
}
}
uint8 i8237_rCx(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) {
sim_debug (DEBUG_reg, &i8237_dev, "Illegal read of i8237_rC\n");
return 0;
} else { /* clear byte pointer FF */
i8237_rD = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_rD (FF) cleared\n");
return 0;
}
}
}
uint8 i8237_rDx(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) { /* read temporary register */
sim_debug (DEBUG_reg, &i8237_dev, "Illegal read of i8237_rD\n");
return 0;
} else { /* master clear */
i8237_reset1();
sim_debug (DEBUG_reg, &i8237_dev, "i8237 master clear\n");
return 0;
}
}
}
uint8 i8237_rEx(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) {
sim_debug (DEBUG_reg, &i8237_dev, "Illegal read of i8237_rE\n");
return 0;
} else { /* clear mask register */
i8237_rB = 0;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_rB (mask) cleared\n");
return 0;
}
}
}
uint8 i8237_rFx(t_bool io, uint8 data)
{
uint8 devnum;
if ((devnum = i8237_get_dn()) != 0xFF) {
if (io == 0) {
sim_debug (DEBUG_reg, &i8237_dev, "Illegal read of i8237_rF\n");
return 0;
} else { /* write all mask register bits */
i8237_rB = data & 0x0F;
sim_debug (DEBUG_reg, &i8237_dev, "i8237_rB (mask) set to %02X\n", i8237_rB);
return 0;
}
}
}
/* end of i8237.c */

View File

@@ -28,7 +28,7 @@
This software was written by Bill Beech, 24 Jan 13, to allow emulation of
more complex Multibus Computer Systems.
This program simulates up to 2 i8259 devices. It handles 1 i8259
This program simulates up to 4 i8259 devices. It handles 1 i8259
device on the iSBC 80/20 and iSBC 80/30 SBCs. Other devices could be on
other multibus boards in the simulated system.
*/
@@ -69,7 +69,7 @@ uint8 i8259_ocw3[I8259_NUM];
uint8 icw_num0 = 1, icw_num1 = 1;
/* i8259 Standard I/O Data Structures */
/* up to 2 i8259 devices */
/* up to 4 i8259 devices */
UNIT i8259_unit[] = {
{ UDATA (0, 0, 0) }, /* i8259 0 */
@@ -99,7 +99,6 @@ DEBTAB i8259_debug[] = {
{ "FLOW", DEBUG_flow },
{ "READ", DEBUG_read },
{ "WRITE", DEBUG_write },
{ "XACK", DEBUG_xack },
{ "LEV1", DEBUG_level1 },
{ "LEV2", DEBUG_level2 },
{ NULL }

View File

@@ -183,6 +183,9 @@
#define RB1RD0 0x40 //drive 0 ready
#define RB1RD1 0x80 //drive 1 ready
#define MDSSD 256256 //single density FDD size
#define MDSDD 512512 //double density FDD size
/* external globals */
extern uint16 port; //port called in dev_table[port]
@@ -512,7 +515,7 @@ uint8 isbc2012(t_bool io, uint8 data)
} else { /* write data port */
fdc201[fdcnum].iopb |= (data << 8);
if (DEBUG)
sim_printf("\n isbc202-%d: 0x7A IOPB=%04X PCX=%04X",
sim_printf("\n isbc201-%d: 0x7A IOPB=%04X PCX=%04X",
fdcnum, fdc201[fdcnum].iopb, PCX);
isbc201_diskio(fdcnum);
if (fdc201[fdcnum].intff)

View File

@@ -0,0 +1,736 @@
/* isbc202.c: Intel double density disk adapter adapter
Copyright (c) 2010, William A. Beech
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
WILLIAM A. BEECH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of William A. Beech shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from William A. Beech.
MODIFICATIONS:
27 Jun 16 - Original file.
NOTES:
This controller will mount 4 DD disk images on drives :F0: thru :F3: addressed
at ports 078H to 07FH.
Registers:
078H - Read - Subsystem status
bit 0 - ready status of drive 0
bit 1 - ready status of drive 1
bit 2 - state of channel's interrupt FF
bit 3 - controller presence indicator
bit 4 - DD controller presence indicator
bit 5 - ready status of drive 2
bit 6 - ready status of drive 3
bit 7 - zero
079H - Read - Read result type (bits 2-7 are zero)
00 - I/O complete with error
01 - Reserved
10 - Result byte contains diskette ready status
11 - Reserved
079H - Write - IOPB address low byte.
07AH - Write - IOPB address high byte and start operation.
07BH - Read - Read result byte
If result type is 00H
bit 0 - deleted record
bit 1 - CRC error
bit 2 - seek error
bit 3 - address error
bit 4 - data overrun/underrun
bit 5 - write protect
bit 6 - write error
bit 7 - not ready
If result type is 02H and ready has changed
bit 0 - zero
bit 1 - zero
bit 2 - zero
bit 3 - zero
bit 4 - drive 2 ready
bit 5 - drive 3 ready
bit 6 - drive 0 ready
bit 7 - drive 1 ready
else return 0
07FH - Write - Reset diskette system.
Operations:
NOP - 0x00
Seek - 0x01
Format Track - 0x02
Recalibrate - 0x03
Read Data - 0x04
Verify CRC - 0x05
Write Data - 0x06
Write Deleted Data - 0x07
IOPB - I/O Parameter Block
Byte 0 - Channel Word
bit 3 - data word length (=8-bit, 1=16-bit)
bit 4-5 - interrupt control
00 - I/O complete interrupt to be issued
01 - I/O complete interrupts are disabled
10 - illegal code
11 - illegal code
bit 6- randon format sequence
Byte 1 - Diskette Instruction
bit 0-2 - operation code
000 - no operation
001 - seek
010 - format track
011 - recalibrate
100 - read data
101 - verify CRC
110 - write data
111 - write deleted data
bit 3 - data word length ( same as byte-0, bit-3)
bit 4-5 - unit select
00 - drive 0
01 - drive 1
10 - drive 2
11 - drive 3
bit 6-7 - reserved (zero)
Byte 2 - Number of Records
Byte 4 - Track Address
Byte 5 - Sector Address
Byte 6 - Buffer Low Address
Byte 7 - Buffer High Address
u3 -
u4 -
u5 - fdc number (board instance number).
u6 - fdd number.
*/
#include "system_defs.h" /* system header in system dir */
#define DEBUG 0
#define UNIT_V_WPMODE (UNIT_V_UF) /* Write protect */
#define UNIT_WPMODE (1 << UNIT_V_WPMODE)
#define FDD_NUM 4
//disk controoler operations
#define DNOP 0x00 //disk no operation
#define DSEEK 0x01 //disk seek
#define DFMT 0x02 //disk format
#define DHOME 0x03 //disk home
#define DREAD 0x04 //disk read
#define DVCRC 0x05 //disk verify CRC
#define DWRITE 0x06 //disk write
//status
#define RDY0 0x01 //FDD 0 ready
#define RDY1 0x02 //FDD 1 ready
#define FDCINT 0x04 //FDC interrupt flag
#define FDCPRE 0x08 //FDC board present
#define FDCDD 0x10 //fdc is DD
#define RDY2 0x20 //FDD 2 ready
#define RDY3 0x40 //FDD 3 ready
//result type
#define RERR 0x00 //FDC returned error
#define ROK 0x02 //FDC returned ok
// If result type is RERR then rbyte is
#define RB0DR 0x01 //deleted record
#define RB0CRC 0x02 //CRC error
#define RB0SEK 0x04 //seek error
#define RB0ADR 0x08 //address error
#define RB0OU 0x10 //data overrun/underrun
#define RB0WP 0x20 //write protect
#define RB0WE 0x40 //write error
#define RB0NR 0x80 //not ready
// If result type is ROK then rbyte is
#define RB1RD2 0x10 //drive 2 ready
#define RB1RD3 0x20 //drive 3 ready
#define RB1RD0 0x40 //drive 0 ready
#define RB1RD1 0x80 //drive 1 ready
#define MDSSD 256256 //single density FDD size
#define MDSDD 512512 //double density FDD size
#define MAXSECSD 26 //single density last sector
#define MAXSECDD 52 //double density last sector
#define MAXTRK 76 //last track
/* external globals */
extern uint16 port; //port called in dev_table[port]
extern int32 PCX;
/* external function prototypes */
extern uint16 reg_dev(uint8 (*routine)(t_bool, uint8), uint16, uint8);
extern uint8 multibus_get_mbyte(uint16 addr);
extern uint16 multibus_get_mword(uint16 addr);
extern void multibus_put_mbyte(uint16 addr, uint8 val);
extern uint8 multibus_put_mword(uint16 addr, uint16 val);
/* function prototypes */
t_stat isbc202_reset(DEVICE *dptr, uint16 base);
void isbc202_reset1(uint8 fdcnum);
t_stat isbc202_attach (UNIT *uptr, CONST char *cptr);
t_stat isbc202_set_mode (UNIT *uptr, int32 val, CONST char *cptr, void *desc);
uint8 isbc202_get_dn(void);
uint8 isbc2020(t_bool io, uint8 data); /* isbc202 0 */
uint8 isbc2021(t_bool io, uint8 data); /* isbc202 1 */
uint8 isbc2022(t_bool io, uint8 data); /* isbc202 2 */
uint8 isbc2023(t_bool io, uint8 data); /* isbc202 3 */
uint8 isbc2027(t_bool io, uint8 data); /* isbc202 7 */
void isbc202_diskio(uint8 fdcnum); //do actual disk i/o
/* globals */
int32 isbc202_fdcnum = 0; //actual number of SBC-202 instances + 1
typedef struct { //FDD definition
int t0;
int rdy;
uint8 sec;
uint8 cyl;
} FDDDEF;
typedef struct { //FDC definition
uint16 baseport; //FDC base port
uint16 iopb; //FDC IOPB
uint8 stat; //FDC status
uint8 rdychg; //FDC ready change
uint8 rtype; //FDC result type
uint8 rbyte0; //FDC result byte for type 00
uint8 rbyte1; //FDC result byte for type 10
uint8 intff; //fdc interrupt FF
FDDDEF fdd[FDD_NUM]; //indexed by the FDD number
} FDCDEF;
FDCDEF fdc202[4]; //indexed by the isbc-202 instance number
UNIT isbc202_unit[] = {
{ UDATA (0, UNIT_ATTABLE+UNIT_DISABLE+UNIT_BUFABLE+UNIT_MUSTBUF, 0), 20 },
{ UDATA (0, UNIT_ATTABLE+UNIT_DISABLE+UNIT_BUFABLE+UNIT_MUSTBUF, 0), 20 },
{ UDATA (0, UNIT_ATTABLE+UNIT_DISABLE+UNIT_BUFABLE+UNIT_MUSTBUF, 0), 20 },
{ UDATA (0, UNIT_ATTABLE+UNIT_DISABLE+UNIT_BUFABLE+UNIT_MUSTBUF, 0), 20 }
};
REG isbc202_reg[] = {
{ HRDATA (STAT0, fdc202[0].stat, 8) }, /* isbc202 0 status */
{ HRDATA (RTYP0, fdc202[0].rtype, 8) }, /* isbc202 0 result type */
{ HRDATA (RBYT0A, fdc202[0].rbyte0, 8) }, /* isbc202 0 result byte 0 */
{ HRDATA (RBYT0B, fdc202[0].rbyte1, 8) }, /* isbc202 0 result byte 1 */
{ HRDATA (INTFF0, fdc202[0].intff, 8) }, /* isbc202 0 interrupt f/f */
{ HRDATA (STAT1, fdc202[1].stat, 8) }, /* isbc202 1 status */
{ HRDATA (RTYP1, fdc202[1].rtype, 8) }, /* isbc202 1 result type */
{ HRDATA (RBYT1A, fdc202[1].rbyte0, 8) }, /* isbc202 1 result byte 0 */
{ HRDATA (RBYT1B, fdc202[1].rbyte1, 8) }, /* isbc202 1 result byte 1 */
{ HRDATA (INTFF1, fdc202[1].intff, 8) }, /* isbc202 1 interrupt f/f */
{ HRDATA (STAT2, fdc202[2].stat, 8) }, /* isbc202 2 status */
{ HRDATA (RTYP2, fdc202[2].rtype, 8) }, /* isbc202 2 result type */
{ HRDATA (RBYT2A, fdc202[2].rbyte0, 8) }, /* isbc202 2 result byte 0 */
{ HRDATA (RBYT2B, fdc202[2].rbyte1, 8) }, /* isbc202 2 result byte 1 */
{ HRDATA (INTFF2, fdc202[2].intff, 8) }, /* isbc202 2 interrupt f/f */
{ HRDATA (STAT3, fdc202[3].stat, 8) }, /* isbc202 3 status */
{ HRDATA (RTYP3, fdc202[3].rtype, 8) }, /* isbc202 3 result type */
{ HRDATA (RBYT3A, fdc202[3].rbyte0, 8) }, /* isbc202 3 result byte 0 */
{ HRDATA (RBYT3B, fdc202[3].rbyte1, 8) }, /* isbc202 3 result byte 1 */
{ HRDATA (INTFF3, fdc202[3].intff, 8) }, /* isbc202 3 interrupt f/f */
{ NULL }
};
MTAB isbc202_mod[] = {
{ UNIT_WPMODE, 0, "RW", "RW", &isbc202_set_mode },
{ UNIT_WPMODE, UNIT_WPMODE, "WP", "WP", &isbc202_set_mode },
{ 0 }
};
DEBTAB isbc202_debug[] = {
{ "ALL", DEBUG_all },
{ "FLOW", DEBUG_flow },
{ "READ", DEBUG_read },
{ "WRITE", DEBUG_write },
{ "XACK", DEBUG_xack },
{ "LEV1", DEBUG_level1 },
{ "LEV2", DEBUG_level2 },
{ NULL }
};
/* address width is set to 16 bits to use devices in 8086/8088 implementations */
DEVICE isbc202_dev = {
"SBC202", //name
isbc202_unit, //units
isbc202_reg, //registers
isbc202_mod, //modifiers
FDD_NUM, //numunits
16, //aradix
16, //awidth
1, //aincr
16, //dradix
8, //dwidth
NULL, //examine
NULL, //deposit
NULL, //reset
NULL, //boot
&isbc202_attach, //attach
NULL, //detach
NULL, //ctxt
DEV_DEBUG+DEV_DISABLE+DEV_DIS, //flags
DEBUG_flow + DEBUG_read + DEBUG_write, //dctrl
isbc202_debug, //debflags
NULL, //msize
NULL //lname
};
/* Hardware reset routine */
t_stat isbc202_reset(DEVICE *dptr, uint16 base)
{
int32 i;
UNIT *uptr;
sim_printf(" iSBC-202 FDC Board");
if (SBC202_NUM) {
sim_printf(" - Found\n");
sim_printf(" isbc202-%d: Hardware Reset\n", isbc202_fdcnum);
sim_printf(" isbc202-%d: Registered at %04X\n", isbc202_fdcnum, base);
//register base port address for this FDC instance
fdc202[isbc202_fdcnum].baseport = base;
//register I/O port addresses for each function
reg_dev(isbc2020, base, isbc202_fdcnum); //read status
reg_dev(isbc2021, base + 1, isbc202_fdcnum); //read rslt type/write IOPB addr-l
reg_dev(isbc2022, base + 2, isbc202_fdcnum); //write IOPB addr-h and start
reg_dev(isbc2023, base + 3, isbc202_fdcnum); //read rstl byte
reg_dev(isbc2027, base + 7, isbc202_fdcnum); //write reset isbc202
// one-time initialization for all FDDs for this FDC instance
for (i = 0; i < FDD_NUM; i++) {
uptr = isbc202_dev.units + i;
uptr->u5 = isbc202_fdcnum; //fdc device number
uptr->u6 = i; //fdd unit number
uptr->flags |= UNIT_WPMODE; //set WP in unit flags
}
isbc202_reset1(isbc202_fdcnum); //software reset
isbc202_fdcnum++; //next FDC instance
} else
sim_printf(" - Not Found\n");
return SCPE_OK;
}
/* Software reset routine */
void isbc202_reset1(uint8 fdcnum)
{
int32 i;
UNIT *uptr;
sim_printf(" isbc202-%d: Software Reset\n", fdcnum);
fdc202[fdcnum].stat = 0; //clear status
for (i = 0; i < FDD_NUM; i++) { /* handle all FDDs */
uptr = isbc202_dev.units + i;
fdc202[fdcnum].stat |= FDCPRE | FDCDD; //set the FDC status
fdc202[fdcnum].rtype = ROK;
// sim_printf("FDD %d uptr->capac=%d\n", i, uptr->capac);
if (uptr->capac == 0) { /* if not configured */
sim_printf(" SBC202%d: Configured, FDC Status=%02X Not attached\n", i, fdc202[fdcnum].stat);
} else {
switch(i){
case 0:
fdc202[fdcnum].stat |= RDY0; //set FDD 0 ready
fdc202[fdcnum].rbyte1 |= RB1RD0;
break;
case 1:
fdc202[fdcnum].stat |= RDY1; //set FDD 1 ready
fdc202[fdcnum].rbyte1 |= RB1RD1;
break;
case 2:
fdc202[fdcnum].stat |= RDY2; //set FDD 2 ready
fdc202[fdcnum].rbyte1 |= RB1RD2;
break;
case 3:
fdc202[fdcnum].stat |= RDY3; //set FDD 3 ready
fdc202[fdcnum].rbyte1 |= RB1RD3;
break;
}
fdc202[fdcnum].rdychg = 0;
sim_printf(" SBC202%d: Configured, FDC Status=%02X Attached to %s\n",
i, fdc202[fdcnum].stat, uptr->filename);
}
}
}
/* isbc202 attach - attach an .IMG file to a FDD */
t_stat isbc202_attach (UNIT *uptr, CONST char *cptr)
{
t_stat r;
uint8 fdcnum, fddnum;
sim_debug (DEBUG_flow, &isbc202_dev, " isbc202_attach: Entered with cptr=%s\n", cptr);
if ((r = attach_unit (uptr, cptr)) != SCPE_OK) {
sim_printf(" isbc202_attach: Attach error\n");
return r;
}
fdcnum = uptr->u5;
fddnum = uptr->u6;
uptr->capac = MDSDD;
switch(fddnum){
case 0:
fdc202[fdcnum].stat |= RDY0; //set FDD 0 ready
fdc202[fdcnum].rbyte1 |= RB1RD0;
break;
case 1:
fdc202[fdcnum].stat |= RDY1; //set FDD 1 ready
fdc202[fdcnum].rbyte1 |= RB1RD1;
break;
case 2:
fdc202[fdcnum].stat |= RDY2; //set FDD 2 ready
fdc202[fdcnum].rbyte1 |= RB1RD2;
break;
case 3:
fdc202[fdcnum].stat |= RDY3; //set FDD 3 ready
fdc202[fdcnum].rbyte1 |= RB1RD3;
break;
}
fdc202[fdcnum].rtype = ROK;
sim_printf(" iSBC-202%d: FDD: %d Configured %d bytes, Attached to %s\n",
fdcnum, fddnum, uptr->capac, uptr->filename);
sim_debug (DEBUG_flow, &isbc202_dev, " isbc202_attach: Done\n");
return SCPE_OK;
}
/* isbc202 set mode = Write protect */
t_stat isbc202_set_mode (UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
sim_debug (DEBUG_flow, &isbc202_dev, " isbc202_set_mode: Entered with val=%08XH uptr->flags=%08X\n",
val, uptr->flags);
if (val & UNIT_WPMODE) { /* write protect */
uptr->flags |= val;
} else { /* read write */
uptr->flags &= ~val;
}
sim_debug (DEBUG_flow, &isbc202_dev, " isbc202_set_mode: Done\n");
return SCPE_OK;
}
uint8 isbc202_get_dn(void)
{
int i;
for (i=0; i<SBC202_NUM; i++)
if (port >= fdc202[i].baseport && port <= fdc202[i].baseport + 7)
return i;
sim_printf("isbc202_get_dn: port %04X not in isbc202 device table\n", port);
return 0xFF;
}
/* ISBC202 control port functions */
uint8 isbc2020(t_bool io, uint8 data)
{
uint8 fdcnum;
if ((fdcnum = isbc202_get_dn()) != 0xFF) {
if (io == 0) { /* read ststus*/
if (DEBUG)
sim_printf("\n isbc202-%d: 0x78 returned status=%02X PCX=%04X",
fdcnum, fdc202[fdcnum].stat, PCX);
return fdc202[fdcnum].stat;
}
}
return 0;
}
uint8 isbc2021(t_bool io, uint8 data)
{
uint8 fdcnum;
if ((fdcnum = isbc202_get_dn()) != 0xFF) {
if (io == 0) { /* read data port */
fdc202[fdcnum].intff = 0; //clear interrupt FF
fdc202[fdcnum].stat &= ~FDCINT;
if (DEBUG)
sim_printf("\n isbc202-%d: 0x79 returned rtype=%02X intff=%02X status=%02X PCX=%04X",
fdcnum, fdc202[fdcnum].rtype, fdc202[fdcnum].intff, fdc202[fdcnum].stat, PCX);
return fdc202[fdcnum].rtype;
} else { /* write data port */
fdc202[fdcnum].iopb = data;
if (DEBUG)
sim_printf("\n isbc202-%d: 0x79 IOPB low=%02X PCX=%04X",
fdcnum, data, PCX);
}
}
return 0;
}
uint8 isbc2022(t_bool io, uint8 data)
{
uint8 fdcnum;
int i;
if ((fdcnum = isbc202_get_dn()) != 0xFF) {
if (io == 0) { /* read data port */
;
} else { /* write data port */
fdc202[fdcnum].iopb |= (data << 8);
// if (DEBUG)
sim_printf("\n isbc202-%d: 0x7A IOPB=%04X PCX=%04X",
fdcnum, fdc202[fdcnum].iopb, PCX);
sim_printf("\nIOPB: ");
for (i=0; i<7; i++)
sim_printf("%02X ", multibus_get_mbyte(fdc202[fdcnum].iopb + i));
sim_printf("\n");
isbc202_diskio(fdcnum);
if (fdc202[fdcnum].intff)
fdc202[fdcnum].stat |= FDCINT;
}
}
return 0;
}
uint8 isbc2023(t_bool io, uint8 data)
{
uint8 fdcnum;
if ((fdcnum = isbc202_get_dn()) != 0xFF) {
if (io == 0) { /* read data port */
if (fdc202[fdcnum].rtype == 0) {
if (DEBUG)
sim_printf("\n isbc202-%d: 0x7B returned rbyte0=%02X PCX=%04X",
fdcnum, fdc202[fdcnum].rbyte0, PCX);
return fdc202[fdcnum].rbyte0;
} else {
if (fdc202[fdcnum].rdychg) {
if (DEBUG)
sim_printf("\n isbc202-%d: 0x7B returned rbyte1=%02X PCX=%04X",
fdcnum, fdc202[fdcnum].rbyte1, PCX);
return fdc202[fdcnum].rbyte1;
} else {
if (DEBUG)
sim_printf("\n isbc202-%d: 0x7B returned rbytex=%02X PCX=%04X",
fdcnum, 0, PCX);
return 0;
}
}
} else { /* write data port */
; //stop diskette operation
}
}
return 0;
}
uint8 isbc2027(t_bool io, uint8 data)
{
uint8 fdcnum;
if ((fdcnum = isbc202_get_dn()) != 0xFF) {
if (io == 0) { /* read data port */
;
} else { /* write data port */
isbc202_reset1(fdcnum);
}
}
return 0;
}
// perform the actual disk I/O operation
void isbc202_diskio(uint8 fdcnum)
{
uint8 cw, di, nr, ta, sa, data, nrptr;
uint16 ba;
uint32 dskoff;
uint8 fddnum, fmtb;
uint32 i;
UNIT *uptr;
uint8 *fbuf = (uint8 *) (isbc202_dev.units + fddnum)->filebuf;
//parse the IOPB
cw = multibus_get_mbyte(fdc202[fdcnum].iopb);
di = multibus_get_mbyte(fdc202[fdcnum].iopb + 1);
nr = multibus_get_mbyte(fdc202[fdcnum].iopb + 2);
ta = multibus_get_mbyte(fdc202[fdcnum].iopb + 3);
sa = multibus_get_mbyte(fdc202[fdcnum].iopb + 4);
ba = multibus_get_mword(fdc202[fdcnum].iopb + 5);
fddnum = (di & 0x30) >> 4;
uptr = isbc202_dev.units + fddnum;
if (DEBUG) {
sim_printf("\n isbc202-%d: isbc202_diskio IOPB=%04X FDD=%02X STAT=%02X",
fdcnum, fdc202[fdcnum].iopb, fddnum, fdc202[fdcnum].stat);
sim_printf("\n isbc202-%d: cw=%02X di=%02X nr=%02X ta=%02X sa=%02X ba=%04X",
fdcnum, cw, di, nr, ta, sa, ba);
}
//check for not ready
switch(fddnum) {
case 0:
if ((fdc202[fdcnum].stat & RDY0) == 0) {
fdc202[fdcnum].rtype = RERR;
fdc202[fdcnum].rbyte0 = RB0NR;
fdc202[fdcnum].intff = 1; //set interrupt FF
sim_printf("\n isbc202-%d: Ready error on drive %d", fdcnum, fddnum);
return;
}
break;
case 1:
if ((fdc202[fdcnum].stat & RDY1) == 0) {
fdc202[fdcnum].rtype = RERR;
fdc202[fdcnum].rbyte0 = RB0NR;
fdc202[fdcnum].intff = 1; //set interrupt FF
sim_printf("\n isbc202-%d: Ready error on drive %d", fdcnum, fddnum);
return;
}
break;
case 2:
if ((fdc202[fdcnum].stat & RDY2) == 0) {
fdc202[fdcnum].rtype = RERR;
fdc202[fdcnum].rbyte0 = RB0NR;
fdc202[fdcnum].intff = 1; //set interrupt FF
sim_printf("\n isbc202-%d: Ready error on drive %d", fdcnum, fddnum);
return;
}
break;
case 3:
if ((fdc202[fdcnum].stat & RDY3) == 0) {
fdc202[fdcnum].rtype = RERR;
fdc202[fdcnum].rbyte0 = RB0NR;
fdc202[fdcnum].intff = 1; //set interrupt FF
sim_printf("\n isbc202-%d: Ready error on drive %d", fdcnum, fddnum);
return;
}
break;
}
//check for address error
if (
((di & 0x07) != DHOME) && (
(sa > MAXSECDD) ||
((sa + nr) > (MAXSECDD + 1)) ||
(sa == 0) ||
(ta > MAXTRK)
)) {
fdc202[fdcnum].rtype = RERR;
fdc202[fdcnum].rbyte0 = RB0ADR;
fdc202[fdcnum].intff = 1; //set interrupt FF
sim_printf("\n isbc202-%d: Address error on drive %d", fdcnum, fddnum);
return;
}
switch (di & 0x07) { //decode disk command
case DNOP:
fdc202[fdcnum].rtype = ROK;
fdc202[fdcnum].intff = 1; //set interrupt FF
break;
case DSEEK:
fdc202[fdcnum].fdd[fddnum].sec = sa;
fdc202[fdcnum].fdd[fddnum].cyl = ta;
fdc202[fdcnum].rtype = ROK;
fdc202[fdcnum].intff = 1; //set interrupt FF
break;
case DHOME:
fdc202[fdcnum].fdd[fddnum].sec = sa;
fdc202[fdcnum].fdd[fddnum].cyl = 0;
fdc202[fdcnum].rtype = ROK;
fdc202[fdcnum].intff = 1; //set interrupt FF
break;
case DVCRC:
fdc202[fdcnum].rtype = ROK;
fdc202[fdcnum].intff = 1; //set interrupt FF
break;
case DFMT:
//check for WP
if(uptr->flags & UNIT_WPMODE) {
fdc202[fdcnum].rtype = RERR;
fdc202[fdcnum].rbyte0 = RB0WP;
fdc202[fdcnum].intff = 1; //set interrupt FF
sim_printf("\n isbc202-%d: Write protect error 1 on drive %d", fdcnum, fddnum);
return;
}
fmtb = multibus_get_mbyte(ba); //get the format byte
//calculate offset into disk image
dskoff = ((ta * MAXSECDD) + (sa - 1)) * 128;
for(i=0; i<=((uint32)(MAXSECDD) * 128); i++) {
*(fbuf + (dskoff + i)) = fmtb;
}
fdc202[fdcnum].rtype = ROK;
fdc202[fdcnum].intff = 1; //set interrupt FF
break;
case DREAD:
nrptr = 0;
while(nrptr < nr) {
//calculate offset into disk image
dskoff = ((ta * MAXSECDD) + (sa - 1)) * 128;
// if (DEBUG)
sim_printf("\n isbc202-%d: cw=%02X di=%02X nr=%02X ta=%02X sa=%02X ba=%04X dskoff=%06X",
fdcnum, cw, di, nr, ta, sa, ba, dskoff);
for (i=0; i<128; i++) { //copy sector from image to RAM
data = *(fbuf + (dskoff + i));
multibus_put_mbyte(ba + i, data);
}
sa++;
ba+=0x80;
nrptr++;
}
fdc202[fdcnum].rtype = ROK;
fdc202[fdcnum].intff = 1; //set interrupt FF
break;
case DWRITE:
//check for WP
if(uptr->flags & UNIT_WPMODE) {
fdc202[fdcnum].rtype = RERR;
fdc202[fdcnum].rbyte0 = RB0WP;
fdc202[fdcnum].intff = 1; //set interrupt FF
sim_printf("\n isbc202-%d: Write protect error 2 on drive %d", fdcnum, fddnum);
return;
}
nrptr = 0;
while(nrptr < nr) {
//calculate offset into disk image
dskoff = ((ta * MAXSECDD) + (sa - 1)) * 128;
// if (DEBUG)
// sim_printf("\n isbc202-%d: cw=%02X di=%02X nr=%02X ta=%02X sa=%02X ba=%04X dskoff=%06X",
// fdcnum, cw, di, nr, ta, sa, ba, dskoff);
for (i=0; i<128; i++) { //copy sector from image to RAM
data = multibus_get_mbyte(ba + i);
*(fbuf + (dskoff + i)) = data;
}
sa++;
ba+=0x80;
nrptr++;
}
fdc202[fdcnum].rtype = ROK;
fdc202[fdcnum].intff = 1; //set interrupt FF
break;
default:
sim_printf("\n isbc202-%d: isbc202_diskio bad di=%02X", fdcnum, di & 0x07);
break;
}
}
/* end of isbc202.c */

View File

@@ -0,0 +1,467 @@
/* pcbus.c: PC bus simulator
Copyright (c) 2016, William A. Beech
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
WILLIAM A. BEECH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of William A. Beech shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from William A. Beech.
MODIFICATIONS:
11 Jul 16 - Original file.
NOTES:
This software was written by Bill Beech, Jul 2016, to allow emulation of PC XT
Computer Systems.
*/
#include "system_defs.h"
int32 mbirq = 0; /* set no interrupts */
/* function prototypes */
t_stat xtbus_svc(UNIT *uptr);
t_stat xtbus_reset(DEVICE *dptr);
void set_irq(int32 int_num);
void clr_irq(int32 int_num);
uint8 nulldev(t_bool io, uint8 data);
uint16 reg_dev(uint8 (*routine)(t_bool io, uint8 data), uint16 port);
void dump_dev_table(void);
t_stat xtbus_reset (DEVICE *dptr);
uint8 xtbus_get_mbyte(uint32 addr);
void xtbus_put_mbyte(uint32 addr, uint8 val);
/* external function prototypes */
extern uint8 RAM_get_mbyte(uint32 addr);
extern void RAM_put_mbyte(uint32 addr, uint8 val);
extern t_stat SBC_reset(DEVICE *dptr); /* reset the PC XT simulator */
extern void set_cpuint(int32 int_num);
/* external globals */
extern int32 int_req; /* i8088 INT signal */
extern uint16 port; //port called in dev_table[port]
/* Standard SIMH Device Data Structures */
UNIT xtbus_unit = {
UDATA (&xtbus_svc, 0, 0), 20
};
REG xtbus_reg[] = {
{ HRDATA (MBIRQ, mbirq, 32) },
};
DEBTAB xtbus_debug[] = {
{ "ALL", DEBUG_all },
{ "FLOW", DEBUG_flow },
{ "READ", DEBUG_read },
{ "WRITE", DEBUG_write },
{ "LEV1", DEBUG_level1 },
{ "LEV2", DEBUG_level2 },
{ NULL }
};
DEVICE xtbus_dev = {
"PCBUS", //name
&xtbus_unit, //units
xtbus_reg, //registers
NULL, //modifiers
1, //numunits
16, //aradix
16, //awidth
1, //aincr
16, //dradix
8, //dwidth
NULL, //examine
NULL, //deposit
&xtbus_reset, //reset
NULL, //boot
NULL, //attach
NULL, //detach
NULL, //ctxt
DEV_DEBUG, //flags
0, //dctrl
xtbus_debug, //debflags
NULL, //msize
NULL //lname
};
/* Service routines to handle simulator functions */
/* service routine - actually does the simulated interrupts */
t_stat xtbus_svc(UNIT *uptr)
{
switch (mbirq) {
case INT_1:
set_cpuint(INT_R);
sim_printf("xtbus_svc: mbirq=%04X int_req=%04X\n", mbirq, int_req);
break;
default:
//sim_printf("xtbus_svc: default mbirq=%04X\n", mbirq);
break;
}
sim_activate (&xtbus_unit, xtbus_unit.wait); /* continue poll */
return SCPE_OK;
}
/* Reset routine */
t_stat xtbus_reset(DEVICE *dptr)
{
SBC_reset(NULL);
sim_printf(" Xtbus: Reset\n");
sim_activate (&xtbus_unit, xtbus_unit.wait); /* activate unit */
return SCPE_OK;
}
void set_irq(int32 int_num)
{
mbirq |= int_num;
sim_printf("set_irq: int_num=%04X mbirq=%04X\n", int_num, mbirq);
}
void clr_irq(int32 int_num)
{
mbirq &= ~int_num;
sim_printf("clr_irq: int_num=%04X mbirq=%04X\n", int_num, mbirq);
}
/* This is the I/O configuration table. There are 1024 possible
device addresses, if a device is plugged to a port it's routine
address is here, 'nulldev' means no device has been registered.
The actual 808X can address 65,536 I/O ports but the IBM only uses
the first 1024. */
struct idev {
uint8 (*routine)(t_bool io, uint8 data);
};
struct idev dev_table[1024] = {
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 000H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 004H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 008H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 00CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 010H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 014H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 018H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 01CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 020H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 024H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 028H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 02CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 030H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 034H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 038H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 03CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 040H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 044H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 048H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 04CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 050H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 054H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 058H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 05CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 060H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 064H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 068H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 06CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 070H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 074H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 078H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 07CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 080H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 084H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 088H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 08CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 090H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 094H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 098H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 09CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0A0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0A4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0A8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0A0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0B0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0B4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0B8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0B0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0C0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0C4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0C8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0CCH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0D0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0D4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0D8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0DCH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0E0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0E4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0E8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0ECH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0F0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0F4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0F8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 0FCH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 100H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 104H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 108H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 10CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 110H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 114H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 118H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 11CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 120H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 124H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 128H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 12CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 130H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 134H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 138H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 13CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 140H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 144H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 148H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 14CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 150H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 154H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 158H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 15CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 160H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 164H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 168H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 16CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 170H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 174H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 178H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 17CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 180H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 184H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 188H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 18CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 190H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 194H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 198H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 19CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1A0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1A4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1A8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1A0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1B0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1B4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1B8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1B0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1C0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1C4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1C8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1CCH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1D0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1D4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1D8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1DCH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1E0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1E4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1E8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1ECH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1F0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1F4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1F8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 1FCH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 200H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 204H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 208H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 20CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 210H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 214H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 218H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 21CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 220H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 224H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 228H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 22CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 230H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 234H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 238H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 23CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 240H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 244H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 248H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 24CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 250H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 254H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 258H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 25CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 260H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 264H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 268H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 26CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 270H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 274H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 278H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 27CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 280H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 284H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 288H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 28CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 290H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 294H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 298H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 29CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2A0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2A4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2A8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2A0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2B0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2B4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2B8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2B0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2C0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2C4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2C8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2CCH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2D0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2D4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2D8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2DCH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2E0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2E4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2E8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2ECH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2F0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2F4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2F8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 2FCH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 300H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 304H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 308H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 30CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 310H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 314H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 318H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 31CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 320H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 324H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 328H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 32CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 330H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 334H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 338H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 33CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 340H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 344H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 348H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 34CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 350H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 354H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 358H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 35CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 360H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 364H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 368H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 36CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 370H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 374H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 378H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 37CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 380H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 384H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 388H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 38CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 390H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 394H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 398H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 39CH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3A0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3A4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3A8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3A0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3B0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3B4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3B8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3B0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3C0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3C4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3C8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3CCH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3D0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3D4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3D8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3DCH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3E0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3E4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3E8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3ECH */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3F0H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3F4H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev}, /* 3F8H */
{&nulldev}, {&nulldev}, {&nulldev}, {&nulldev} /* 3FCH */
};
uint8 nulldev(t_bool flag, uint8 data)
{
sim_printf("xtbus: I/O Port %03X is not assigned io=%d data=%02X\n",
port, flag, data);
if (flag == 0) /* if we got here, no valid I/O device */
return 0xFF;
return 0;
}
uint16 reg_dev(uint8 (*routine)(t_bool io, uint8 data), uint16 port)
{
if (dev_table[port].routine != &nulldev) { /* port already assigned */
sim_printf("xtbus: I/O Port %03X is already assigned\n", port);
} else {
sim_printf("Port %03X is assigned\n", port);
dev_table[port].routine = routine;
}
//dump_dev_table();
return port;
}
void dump_dev_table(void)
{
int i;
for (i=0; i<1024; i++) {
if (dev_table[i].routine != &nulldev) { /* assigned port */
sim_printf("Port %03X is assigned\n", i);
}
}
}
/* get a byte from bus */
uint8 xtbus_get_mbyte(uint32 addr)
{
return RAM_get_mbyte(addr);
}
/* put a byte to bus */
void xtbus_put_mbyte(uint32 addr, uint8 val)
{
RAM_put_mbyte(addr, val);
}
/* end of pcbus.c */

View File

@@ -0,0 +1,177 @@
/* pceprom.c: Intel EPROM simulator for 8-bit SBCs
Copyright (c) 2016, William A. Beech
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
WILLIAM A. BEECH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of William A. Beech shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from William A. Beech.
MODIFICATIONS:
11 Jul 16 - Original file.
NOTES:
These functions support a simulated ROM devices on aPC XT SBC.
This allows the attachment of the device to a binary file containing the EPROM
code image. Unit will support a single 2764, 27128, 27256, or 27512 type EPROM.
*/
#include "system_defs.h"
/* function prototypes */
t_stat EPROM_attach (UNIT *uptr, CONST char *cptr);
t_stat EPROM_reset (DEVICE *dptr, uint32 base, uint32 size);
uint8 EPROM_get_mbyte(uint32 addr);
/* external function prototypes */
/* SIMH EPROM Standard I/O Data Structures */
UNIT EPROM_unit = {
UDATA (NULL, UNIT_ATTABLE+UNIT_BINK+UNIT_ROABLE+UNIT_RO, 0), 0
};
DEBTAB EPROM_debug[] = {
{ "ALL", DEBUG_all },
{ "FLOW", DEBUG_flow },
{ "READ", DEBUG_read },
{ "WRITE", DEBUG_write },
{ "LEV1", DEBUG_level1 },
{ "LEV2", DEBUG_level2 },
{ NULL }
};
DEVICE EPROM_dev = {
"EPROM", //name
&EPROM_unit, //units
NULL, //registers
NULL, //modifiers
1, //numunits
16, //aradix
16, //awidth
1, //aincr
16, //dradix
8, //dwidth
NULL, //examine
NULL, //deposit
// &EPROM_reset, //reset
NULL, //reset
NULL, //boot
&EPROM_attach, //attach
NULL, //detach
NULL, //ctxt
DEV_DEBUG, //flags
0, //dctrl
EPROM_debug, //debflags
NULL, //msize
NULL //lname
};
/* global variables */
/* EPROM functions */
/* EPROM attach */
t_stat EPROM_attach (UNIT *uptr, CONST char *cptr)
{
uint16 j;
int c;
FILE *fp;
t_stat r;
sim_debug (DEBUG_flow, &EPROM_dev, "EPROM_attach: cptr=%s\n", cptr);
if ((r = attach_unit (uptr, cptr)) != SCPE_OK) {
sim_debug (DEBUG_flow, &EPROM_dev, "EPROM_attach: Error\n");
return r;
}
sim_debug (DEBUG_read, &EPROM_dev, "\tAllocate buffer\n");
if (EPROM_unit.filebuf == NULL) { /* no buffer allocated */
EPROM_unit.filebuf = malloc(EPROM_unit.capac); /* allocate EPROM buffer */
if (EPROM_unit.filebuf == NULL) {
sim_debug (DEBUG_flow, &EPROM_dev, "EPROM_attach: Malloc error\n");
return SCPE_MEM;
}
}
sim_debug (DEBUG_read, &EPROM_dev, "\tOpen file %s\n", EPROM_unit.filename);
fp = fopen(EPROM_unit.filename, "rb"); /* open EPROM file */
if (fp == NULL) {
sim_printf("EPROM: Unable to open ROM file %s\n", EPROM_unit.filename);
sim_printf("\tNo ROM image loaded!!!\n");
return SCPE_OK;
}
sim_debug (DEBUG_read, &EPROM_dev, "\tRead file\n");
j = 0; /* load EPROM file */
c = fgetc(fp);
while (c != EOF) {
*((uint8 *)EPROM_unit.filebuf + j++) = c & 0xFF;
c = fgetc(fp);
if (j > EPROM_unit.capac) {
sim_printf("\tImage is too large - Load truncated!!!\n");
break;
}
}
sim_printf("\tImage size=%05X unit_capac=%05X\n", j, EPROM_unit.capac);
sim_debug (DEBUG_read, &EPROM_dev, "\tClose file\n");
fclose(fp);
sim_printf("EPROM: %d bytes of ROM image %s loaded\n", j, EPROM_unit.filename);
sim_debug (DEBUG_flow, &EPROM_dev, "EPROM_attach: Done\n");
return SCPE_OK;
}
/* EPROM reset */
t_stat EPROM_reset (DEVICE *dptr, uint32 base, uint32 size)
{
sim_debug (DEBUG_flow, &EPROM_dev, " EPROM_reset: base=%05X size=%05X\n", base, size);
if ((EPROM_unit.flags & UNIT_ATT) == 0) { /* if unattached */
EPROM_unit.capac = size; /* set EPROM size */
EPROM_unit.u3 = base; /* set EPROM base addr */
sim_debug (DEBUG_flow, &EPROM_dev, "Done1\n");
sim_printf(" EPROM: Available [%05X-%05XH]\n",
base, size);
return SCPE_OK;
} else
sim_printf("EPROM: No file attached\n");
sim_debug (DEBUG_flow, &EPROM_dev, "Done2\n");
return SCPE_OK;
}
/* get a byte from memory */
uint8 EPROM_get_mbyte(uint32 addr)
{
uint8 val;
uint32 romoff;
romoff = addr - EPROM_unit.u3;
sim_debug (DEBUG_read, &EPROM_dev, "EPROM_get_mbyte: addr=%05X romoff=%05X\n", addr, romoff);
if (romoff < EPROM_unit.capac) {
val = *((uint8 *)EPROM_unit.filebuf + romoff);
sim_debug (DEBUG_read, &EPROM_dev, " val=%02X\n", val);
return (val & 0xFF);
}
sim_debug (DEBUG_read, &EPROM_dev, " Out of range\n");
return 0xFF;
}
/* end of pceprom.c */

View File

@@ -0,0 +1,145 @@
/* pcram8.c: Intel RAM simulator for 8-bit SBCs
Copyright (c) 2016, William A. Beech
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
WILLIAM A. BEECH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of William A. Beech shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from William A. Beech.
MODIFICATIONS:
11 Jul 16 - Original file.
NOTES:
These functions support a simulated RAM devices on a PC XT SBC.
*/
#include "system_defs.h"
/* function prototypes */
t_stat RAM_svc (UNIT *uptr);
t_stat RAM_reset (DEVICE *dptr, uint32 base, uint32 size);
uint8 RAM_get_mbyte(uint32 addr);
void RAM_put_mbyte(uint32 addr, uint8 val);
/* external function prototypes */
extern UNIT i8255_unit[];
/* SIMH RAM Standard I/O Data Structures */
UNIT RAM_unit = { UDATA (NULL, UNIT_BINK, 0), KBD_POLL_WAIT };
DEBTAB RAM_debug[] = {
{ "ALL", DEBUG_all },
{ "FLOW", DEBUG_flow },
{ "READ", DEBUG_read },
{ "WRITE", DEBUG_write },
{ "LEV1", DEBUG_level1 },
{ "LEV2", DEBUG_level2 },
{ NULL }
};
DEVICE RAM_dev = {
"RAM", //name
&RAM_unit, //units
NULL, //registers
NULL, //modifiers
1, //numunits
16, //aradix
16, //awidth
1, //aincr
16, //dradix
8, //dwidth
NULL, //examine
NULL, //deposit
// &RAM_reset, //reset
NULL, //reset
NULL, //boot
NULL, //attach
NULL, //detach
NULL, //ctxt
DEV_DEBUG, //flags
0, //dctrl
RAM_debug, //debflags
NULL, //msize
NULL //lname
};
/* global variables */
/* RAM functions */
/* RAM reset */
t_stat RAM_reset (DEVICE *dptr, uint32 base, uint32 size)
{
sim_debug (DEBUG_flow, &RAM_dev, " RAM_reset: base=%05X size=%05X\n", base, size-1);
if (RAM_unit.capac == 0) { /* if undefined */
RAM_unit.capac = size;
RAM_unit.u3 = base;
}
if (RAM_unit.filebuf == NULL) { /* no buffer allocated */
RAM_unit.filebuf = malloc(RAM_unit.capac);
if (RAM_unit.filebuf == NULL) {
sim_debug (DEBUG_flow, &RAM_dev, "RAM_set_size: Malloc error\n");
return SCPE_MEM;
}
}
sim_printf(" RAM: Available [%05X-%05XH]\n",
RAM_unit.u3,
RAM_unit.u3 + RAM_unit.capac - 1);
sim_debug (DEBUG_flow, &RAM_dev, "RAM_reset: Done\n");
return SCPE_OK;
}
/* get a byte from memory */
uint8 RAM_get_mbyte(uint32 addr)
{
uint8 val;
sim_debug (DEBUG_read, &RAM_dev, "RAM_get_mbyte: addr=%04X\n", addr);
if ((addr >= (uint32)RAM_unit.u3) && ( addr < (uint32)(RAM_unit.u3 + RAM_unit.capac))) {
val = *((uint8 *)RAM_unit.filebuf + (addr - RAM_unit.u3));
sim_debug (DEBUG_read, &RAM_dev, " val=%04X\n", val);
return (val & 0xFF);
}
sim_debug (DEBUG_read, &RAM_dev, " Out of range\n");
return 0xFF;
}
/* put a byte to memory */
void RAM_put_mbyte(uint32 addr, uint8 val)
{
sim_debug (DEBUG_write, &RAM_dev, "RAM_put_mbyte: addr=%04X, val=%02X\n", addr, val);
if ((addr >= (uint32)RAM_unit.u3) && (addr < (uint32)(RAM_unit.u3 + RAM_unit.capac))) {
*((uint8 *)RAM_unit.filebuf + (addr - RAM_unit.u3)) = val & 0xFF;
sim_debug (DEBUG_write, &RAM_dev, "\n");
return;
}
sim_debug (DEBUG_write, &RAM_dev, " Out of range\n");
return;
}
/* end of pcram8.c */