1
0
mirror of https://github.com/simh/simh.git synced 2026-01-31 05:43:06 +00:00

Notes For V2.10-0

WARNING: V2.10 has reorganized and renamed some of the definition
files for the PDP-10, PDP-11, and VAX.  Be sure to delete all
previous source files before you unpack the Zip archive, or
unpack it into a new directory structure.

WARNING: V2.10 has a new, more comprehensive save file format.
Restoring save files from previous releases will cause 'invalid
register' errors and loss of CPU option flags, device enable/
disable flags, unit online/offline flags, and unit writelock
flags.

WARNING: If you are using Visual Studio .NET through the IDE,
be sure to turn off the /Wp64 flag in the project settings, or
dozens of spurious errors will be generated.

WARNING: Compiling Ethernet support under Windows requires
extra steps; see the Ethernet readme file.  Ethernet support is
currently available only for Windows, Linux, NetBSD, and OpenBSD.

1. New Features

1.1 SCP and Libraries

- The VT emulation package has been replaced by the capability
  to remote the console to a Telnet session.  Telnet clients
  typically have more complete and robust VT100 emulation.
- Simulated devices may now have statically allocated buffers,
  in addition to dynamically allocated buffers or disk-based
  data stores.
- The DO command now takes substitutable arguments (max 9).
  In command files, %n represents substitutable argument n.
- The initial command line is now interpreted as the command
  name and substitutable arguments for a DO command.  This is
  backward compatible to prior versions.
- The initial command line parses switches.  -Q is interpreted
  as quiet mode; informational messages are suppressed.
- The HELP command now takes an optional argument.  HELP <cmd>
  types help on the specified command.
- Hooks have been added for implementing GUI-based consoles,
  as well as simulator-specific command extensions.  A few
  internal data structures and definitions have changed.
- Two new routines (tmxr_open_master, tmxr_close_master) have
  been added to sim_tmxr.c.  The calling sequence for
  sim_accept_conn has been changed in sim_sock.c.
- The calling sequence for the VM boot routine has been modified
  to add an additional parameter.
- SAVE now saves, and GET now restores, controller and unit flags.
- Library sim_ether.c has been added for Ethernet support.

1.2 VAX

- Non-volatile RAM (NVR) can behave either like a memory or like
  a disk-based peripheral.  If unattached, it behaves like memory
  and is saved and restored by SAVE and RESTORE, respectively.
  If attached, its contents are loaded from disk by ATTACH and
  written back to disk at DETACH and EXIT.
- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape) has been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from vax_stddev.c and
  now references a common implementation file, dec_pt.h.
- Examine and deposit switches now work on all devices, not just
  the CPU.
- Device address conflicts are not detected until simulation starts.

1.3 PDP-11

- SHOW <device> VECTOR displays the device's interrupt vector.
  Most devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The TK50 (TMSCP tape), RK611/RK06/RK07 (cartridge disk),
  RX211 (double density floppy), and KW11P programmable clock
  have been added.
- The DEQNA/DELQA (Qbus Ethernet controllers) have been added.
- Autoconfiguration support has been added.
- The paper tape reader has been removed from pdp11_stddev.c and
  now references a common implementation file, dec_pt.h.
- Device bootstraps now use the actual CSR specified by the
  SET ADDRESS command, rather than just the default CSR.  Note
  that PDP-11 operating systems may NOT support booting with
  non-standard addresses.
- Specifying more than 256KB of memory, or changing the bus
  configuration, causes all peripherals that are not compatible
  with the current bus configuration to be disabled.
- Device address conflicts are not detected until simulation starts.

1.4 PDP-10

- SHOW <device> VECTOR displays the device's interrupt vector.
  A few devices allow the vector to be changed with SET
  <device> VECTOR=nnn.
- SHOW CPU IOSPACE displays the I/O space address map.
- The RX211 (double density floppy) has been added; it is off
  by default.
- The paper tape now references a common implementation file,
  dec_pt.h.
- Device address conflicts are not detected until simulation starts.

1.5 PDP-1

- DECtape (then known as MicroTape) support has been added.
- The line printer and DECtape can be disabled and enabled.

1.6 PDP-8

- The RX28 (double density floppy) has been added as an option to
  the existing RX8E controller.
- SHOW <device> DEVNO displays the device's device number.  Most
  devices allow the device number to be changed with SET <device>
  DEVNO=nnn.
- Device number conflicts are not detected until simulation starts.

1.7 IBM 1620

- The IBM 1620 simulator has been released.

1.8 AltairZ80

- A hard drive has been added for increased storage.
- Several bugs have been fixed.

1.9 HP 2100

- The 12845A has been added and made the default line printer (LPT).
  The 12653A has been renamed LPS and is off by default.  It also
  supports the diagnostic functions needed to run the DCPC and DMS
  diagnostics.
- The 12557A/13210A disk defaults to the 13210A (7900/7901).
- The 12559A magtape is off by default.
- New CPU options (EAU/NOEAU) enable/disable the extended arithmetic
  instructions for the 2116.  These instructions are standard on
  the 2100 and 21MX.
- New CPU options (MPR/NOMPR) enable/disable memory protect for the
  2100 and 21MX.
- New CPU options (DMS/NODMS) enable/disable the dynamic mapping
  instructions for the 21MX.
- The 12539 timebase generator autocalibrates.

1.10 Simulated Magtapes

- Simulated magtapes recognize end of file and the marker
  0xFFFFFFFF as end of medium.  Only the TMSCP tape simulator
  can generate an end of medium marker.
- The error handling in simulated magtapes was overhauled to be
  consistent through all simulators.

1.11 Simulated DECtapes

- Added support for RT11 image file format (256 x 16b) to DECtapes.

2. Release Notes

2.1 Bugs Fixed

- TS11/TSV05 was not simulating the XS0_MOT bit, causing failures
  under VMS.  In addition, two of the CTL options were coded
  interchanged.
- IBM 1401 tape was not setting a word mark under group mark for
  load mode reads.  This caused the diagnostics to crash.
- SCP bugs in ssh_break and set_logon were fixed (found by Dave
  Hittner).
- Numerous bugs in the HP 2100 extended arithmetic, floating point,
  21MX, DMS, and IOP instructions were fixed.  Bugs were also fixed
  in the memory protect and DMS functions.  The moving head disks
  (DP, DQ) were revised to simulate the hardware more accurately.
  Missing functions in DQ (address skip, read address) were added.

2.2 HP 2100 Debugging

- The HP 2100 CPU nows runs all of the CPU diagnostics.
- The peripherals run most of the peripheral diagnostics.  There
  is still a problem in overlapped seek operation on the disks.
  See the file hp2100_diag.txt for details.

3. In Progress

These simulators are not finished and are available in a separate
Zip archive distribution.

- Interdata 16b/32b: coded, partially tested.  See the file
  id_diag.txt for details.
- SDS 940: coded, partially tested.
This commit is contained in:
Bob Supnik
2002-11-17 15:54:00 -08:00
committed by Mark Pizzolato
parent df6475181c
commit 2c2dd5ea33
218 changed files with 44103 additions and 17112 deletions

View File

@@ -316,11 +316,11 @@
#include "nova_defs.h"
#define UNIT_V_MICRO (UNIT_V_UF) /* Microeclipse? */
#define UNIT_MICRO (1 << UNIT_V_MICRO)
#define UNIT_V_MSIZE (UNIT_V_UF+1) /* dummy mask */
#define UNIT_MSIZE (1 << UNIT_V_MSIZE)
#define UNIT_V_17B (UNIT_V_UF) /* 17 bit MAP */
#define UNIT_V_MSIZE (UNIT_V_UF+1) /* dummy mask */
#define UNIT_MICRO (1 << UNIT_V_MICRO)
#define UNIT_17B (1 << UNIT_V_17B)
#define UNIT_MSIZE (1 << UNIT_V_MSIZE)
unsigned int16 M[MAXMEMSIZE] = { 0 }; /* memory */
int32 AC[4] = { 0 }; /* accumulators */
@@ -344,6 +344,8 @@ int32 XCT_mode = 0; /* 1 if XCT mode */
int32 XCT_inst = 0; /* XCT instruction */
int32 PPC = -1;
struct ndev dev_table[64]; /* dispatch table */
/* Instruction history buffer */
#define HISTMAX 4096
@@ -418,11 +420,12 @@ FILE *Trace;
t_stat reason;
extern int32 sim_int_char;
extern int32 sim_brk_types, sim_brk_dflt, sim_brk_summ; /* breakpoint info */
extern DEVICE *sim_devices[];
t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw);
t_stat cpu_reset (DEVICE *dptr);
t_stat cpu_boot (int32 unitno);
t_stat cpu_boot (int32 unitno, DEVICE *dptr);
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat Debug_Dump (UNIT *uptr, int32 val, char *cptr, void *desc);
t_stat map_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw);
@@ -432,59 +435,11 @@ t_stat map_svc (UNIT *uptr);
int32 GetMap(int32 addr);
int32 PutMap(int32 addr, int32 data);
int32 Debug_Entry(int32 PC, int32 inst, int32 inst2, int32 AC0, int32 AC1, int32 AC2, int32 AC3, int32 flags);
t_stat build_devtab (void);
extern int32 ptr (int32 pulse, int32 code, int32 AC);
extern int32 ptp (int32 pulse, int32 code, int32 AC);
extern int32 tti (int32 pulse, int32 code, int32 AC);
extern int32 tto (int32 pulse, int32 code, int32 AC);
extern int32 tti1 (int32 pulse, int32 code, int32 AC);
extern int32 tto1 (int32 pulse, int32 code, int32 AC);
extern int32 clk (int32 pulse, int32 code, int32 AC);
extern int32 plt (int32 pulse, int32 code, int32 AC);
extern int32 lpt (int32 pulse, int32 code, int32 AC);
extern int32 dsk (int32 pulse, int32 code, int32 AC);
extern int32 dkp (int32 pulse, int32 code, int32 AC);
extern int32 mta (int32 pulse, int32 code, int32 AC);
int32 nulldev (int32 pulse, int32 code, int32 AC);
extern t_stat fprint_sym (FILE *of, t_addr addr, t_value *val,
UNIT *uptr, int32 sw);
/* IOT dispatch table */
struct ndev dev_table[64] = {
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, /* 0 - 7 */
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ INT_TTI, PI_TTI, &tti }, { INT_TTO, PI_TTO, &tto }, /* 10 - 17 */
{ INT_PTR, PI_PTR, &ptr }, { INT_PTP, PI_PTP, &ptp },
{ INT_CLK, PI_CLK, &clk }, { INT_PLT, PI_PLT, &plt },
{ 0, 0, &nulldev }, { INT_LPT, PI_LPT, &lpt },
{ INT_DSK, PI_DSK, &dsk }, { 0, 0, &nulldev }, /* 20 - 27 */
{ INT_MTA, PI_MTA, &mta }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, /* 30 - 37 */
{ 0, 0, &nulldev }, {INT_DKP, PI_DKP, &dkp },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, /* 40 - 47 */
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ INT_TTI1, PI_TTI1, &tti1 }, { INT_TTO1, PI_TTO1, &tto1 }, /* 50 - 57 */
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, /* 60 - 67 */
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev }, /* 70 - 77 */
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev },
{ 0, 0, &nulldev }, { 0, 0, &nulldev } };
/* CPU data structures
cpu_dev CPU device descriptor
@@ -513,7 +468,6 @@ REG cpu_reg[] = {
{ ORDATA (DONE, dev_done, INT_V_ION+1), REG_RO },
{ ORDATA (DISABLE, dev_disable, INT_V_ION+1), REG_RO },
{ FLDATA (STOP_DEV, stop_dev, 0) },
{ FLDATA (MICRO, cpu_unit.flags, UNIT_V_MICRO), REG_HRO },
{ DRDATA (INDMAX, ind_max, 16), REG_NZ + PV_LEFT },
{ ORDATA (DEBUG, Debug_Flags, 16) },
{ DRDATA (MODEL, model, 16) },
@@ -606,6 +560,7 @@ int32 pushrtn(int32 pc);
/* Restore register state */
if (build_devtab () != SCPE_OK) return SCPE_IERR; /* build dispatch */
PC = saved_PC & AMASK; /* load local PC */
C = C & 0200000;
mask_out (pimask); /* reset int system */
@@ -2762,8 +2717,7 @@ else { /* IOT */
}
break; }
} /* end CPU control */
else if ((dev_table[device].mask == 0) ||
(dev_table[device].mask & iot_enb)) { /* normal device */
else if (dev_table[device].routine) { /* normal device */
iodata = dev_table[device].routine (pulse, code, AC[dstAC]);
reason = iodata >> IOT_V_REASON;
if (code & 1) AC[dstAC] = iodata & 0177777;
@@ -3189,13 +3143,6 @@ int32 unimp(int32 PC)
return 0;
}
/* Null device */
int32 nulldev (int32 pulse, int32 code, int32 AC)
{
return stop_dev << IOT_V_REASON;
}
/* New priority mask out */
void mask_out (int32 newmask)
@@ -3240,6 +3187,8 @@ M[addr] = val & 0177777;
return SCPE_OK;
}
/* Alter memory size */
t_stat cpu_set_size (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 mc = 0;
@@ -3325,7 +3274,7 @@ static const int32 boot_rom[] = {
0 /* 0 ;padding */
};
t_stat cpu_boot (int32 unitno)
t_stat cpu_boot (int32 unitno, DEVICE *dptr)
{
int32 i;
extern int32 saved_PC;
@@ -3411,38 +3360,23 @@ int32 Debug_Dump(UNIT *uptr, int32 val, char *cptr, void *desc)
return SCPE_OK;
}
/* Device enable routine */
/* Build dispatch table */
t_stat set_enb (UNIT *uptr, int32 val, char *cptr, void *desc)
t_stat build_devtab (void)
{
DEVICE *dptr;
DIB *dibp;
int32 i, dn;
if (cptr != NULL) return SCPE_ARG;
if ((uptr == NULL) || (val == 0)) return SCPE_IERR;
dptr = find_dev_from_unit (uptr);
if (dptr == NULL) return SCPE_IERR;
iot_enb = iot_enb | val;
if (dptr -> reset) dptr -> reset (dptr);
return SCPE_OK;
}
/* Device disable routine */
t_stat set_dsb (UNIT *uptr, int32 val, char *cptr, void *desc)
{
int32 i;
DEVICE *dptr;
UNIT *up;
if (cptr != NULL) return SCPE_ARG;
if ((uptr == NULL) || (val == 0)) return SCPE_IERR;
dptr = find_dev_from_unit (uptr);
if (dptr == NULL) return SCPE_IERR;
for (i = 0; i < dptr -> numunits; i++) { /* check units */
up = (dptr -> units) + i;
if ((up -> flags & UNIT_ATT) || sim_is_active (up))
return SCPE_NOFNC; }
iot_enb = iot_enb & ~val;
if (dptr -> reset) dptr -> reset (dptr);
for (i = 0; i < 64; i++) { /* clr dev_table */
dev_table[i].mask = 0;
dev_table[i].pi = 0;
dev_table[i].routine = NULL; }
for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { /* loop thru dev */
if (dibp = (DIB *) dptr->ctxt) { /* get DIB */
dn = dibp->dnum; /* get dev num */
dev_table[dn].mask = dibp->mask; /* copy entries */
dev_table[dn].pi = dibp->pi;
dev_table[dn].routine = dibp->routine; } }
return SCPE_OK;
}