1
0
mirror of https://github.com/simh/simh.git synced 2026-01-13 15:27:14 +00:00
simh.simh/sigma/sigma_sys.c
Mark Pizzolato 3071894c78 Notes For V3.9
The makefile now works for Linux and most Unix's. However, for Solaris
and MacOS, you must first export the OSTYPE environment variable:

> export OSTYPE
> make

Otherwise, you will get build errors.

1. New Features

1.1 3.9-0

1.1.1 SCP and libraries

	- added *nix READLINE support (Mark Pizzolato)
	- added "SHOW SHOW" and "SHOW <dev> SHOW" commands (Mark Pizzolato)
	- added support for BREAK key on Windows (Mark Pizzolato)

1.1.2 PDP-8

	- floating point processor is now enabled

2. Bugs Fixed

Please see the revision history on http://simh.trailing-edge.com or
in the source module sim_rev.h.

3. Status Report

This is the last release of SimH for which I will be sole editor. After this
release, the source is moving to a public repository:

under the general editorship of Dave Hittner and Mark Pizzolato. The status
of the individual simulators is as follows:

3.1 PDP-1

Stable and working; runs available software.

3.2 PDP-4/7/9/15

Stable and working; runs available software.

3.3 PDP-8

Stable and working; runs available software.

3.4 PDP-10 [KS-10 only]

Stable and working; runs available software.

3.5 PDP-11

Stable and working; runs available system software. The emulation of individual
models has numerous errors of detail, which prevents many diagnostics from
running correctly.

3.6 VAX-11/780

Stable and working; runs available software.

3.7 MicroVAX 3900 (VAX)

Stable and working; runs available software. Thanks to the kind generosity of
Camiel Vanderhoeven, this simulator has been verified with AXE, the VAX
architectural exerciser.

3.8 Nova

Stable and working; runs available software.

3.9 Eclipse

Stable and working, but not really supported. There is no Eclipse-specific
software available under a hobbyist license.

3.10 Interdata 16b

Stable and working, but no software for it has been found, other than
diagnostics.

3.11 Interdata 32b

Stable and working; runs 32b UNIX and diagnostics.

3.12 IBM 1401

Stable and working; runs available software.

3.13 IBM 1620

Hand debug only.  No software for it has been found or tested.

3.14 IBM 7094

Stable and working as a stock system; runs IBSYS. The CTSS extensions
have not been debugged.

3.15 IBM S/3

Stable and working, but not really supported. Runs available software.

3.16 IBM 1130

Stable and working; runs available software.  Supported and edited by
Brian Knittel.

3.17 HP 2100/1000

Stable and working; runs available software. Supported and edited by
Dave Bryan.

3.18 Honeywell 316/516

Stable and working; runs available software.

3.19 GRI-909/99

Hand debug only.  No software for it has been found or tested.

3.20 SDS-940

Hand debug only, and a few diagnostics.

3.21 LGP-30

Unfinished; hand debug only. Does not run available software, probably
due to my misunderstanding of the LGP-30 operational procedures.

3.22 Altair (original 8080 version)

Stable and working, but not really supported. Runs available software.

3.23 AltairZ80 (Z80 version)

Stable and working; runs available software. Supported and edited by
Peter Schorn.

3.24 SWTP 6800

Stable and working; runs available software. Supported and edited by
Bill Beech

3.25 Sigma 32b

Incomplete; more work is needed on the peripherals for accuracy.

3.26 Alpha

Incomplete; essentially just an EV-5 (21164) chip emulator.

4. Suggestions for Future Work

4.1 General Structure

	- Multi-threading, to allow true concurrency between SCP and the simulator
	- Graphics device support, particularly for the PDP-1 and PDP-11

4.2 Current Simulators

	- PDP-1 graphics, to run Space War
	- PDP-11 GT40 graphics, to run Lunar Lander
	- PDP-15 MUMPS-15
	- Interdata native OS debug, both 16b and 32b
	- SDS 940 timesharing operating system debug
	- IBM 7094 CTSS feature debug and operating system debug
	- IBM 1620 debug and software
	- GRI-909 software
	- Sigma 32b completion and debug
	- LGP-30 debug

4.3 Possible Future Simulators

	- Data General MV8000 (if a hobbyist license can be obtained for AOS)
	- Alpha simulator
	- HP 3000 (16b) simulator with MPE
2012-03-18 09:43:12 -07:00

614 lines
24 KiB
C

/* sigma_sys.c: Sigma system interface
Copyright (c) 2007-2008, Robert M Supnik
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
ROBERT M SUPNIK BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Robert M Supnik shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Robert M Supnik.
*/
#include "sigma_defs.h"
#include <ctype.h>
#define FMTASC(x) ((x) < 0x20)? "<%02X>": "%c", (x)
extern DEVICE cpu_dev;
extern DEVICE map_dev;
extern DEVICE int_dev;
extern DEVICE chan_dev[];
extern DEVICE rtc_dev;
extern DEVICE tt_dev;
extern DEVICE pt_dev;
extern DEVICE lp_dev;
extern DEVICE rad_dev;
extern DEVICE dk_dev;
extern DEVICE dp_dev[];
extern DEVICE mt_dev;
extern DEVICE mux_dev, muxl_dev;
extern REG cpu_reg[];
extern uint32 *M;
extern UNIT cpu_unit;
t_stat fprint_sym_m (FILE *of, uint32 inst);
t_stat parse_sym_m (char *cptr, t_value *val);
void fprint_ebcdic (FILE *of, uint32 c);
/* SCP data structures and interface routines
sim_name simulator name string
sim_PC pointer to saved PC register descriptor
sim_emax number of words for examine
sim_devices array of pointers to simulated devices
sim_stop_messages array of pointers to stop messages
sim_load binary loader
*/
char sim_name[] = "XDS Sigma";
REG *sim_PC = &cpu_reg[0];
int32 sim_emax = 1;
DEVICE *sim_devices[] = {
&cpu_dev,
&map_dev,
&int_dev,
&chan_dev[0],
&chan_dev[1],
&chan_dev[2],
&chan_dev[3],
&chan_dev[4],
&chan_dev[5],
&chan_dev[6],
&chan_dev[7],
&rtc_dev, /* must be first */
&tt_dev,
&pt_dev,
&lp_dev,
&mt_dev,
&rad_dev,
&dk_dev,
&dp_dev[0],
&dp_dev[1],
&mux_dev,
&muxl_dev,
NULL
};
const char *sim_stop_messages[] = {
"Unknown error",
"Invalid I/O configuration",
"Breakpoint",
"Address stop",
"Wait, interrupts off",
"Invalid PSD",
"Nested EXU's exceed limit",
"Undefined instruction",
"Illegal trap or interrupt instruction",
"Invalid interrupt vector",
"Nested traps",
};
/* Character conversion tables (from Sigma 7 manual) */
uint8 ascii_to_ebcdic[128] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x09, 0x06, 0x07, /* 00 - 1F */
0x08, 0x05, 0x15, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x14, 0x0A, 0x16, 0x17,
0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F,
0x40, 0x5A, 0x7F, 0x7B, 0x5B, 0x6C, 0x50, 0x7D, /* 20 - 3F */
0x4D, 0x5D, 0x5C, 0x4E, 0x6B, 0x60, 0x4B, 0x61,
0xF0, 0xF1, 0xF2, 0xF3, 0xF4, 0xF5, 0xF6, 0xF7,
0xF8, 0xF9, 0x7A, 0x5E, 0x4C, 0x7E, 0x6E, 0x6F,
0x7C, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, /* 40 - 5F */
0xC8, 0xC9, 0xD1, 0xD2, 0xD3, 0xD4, 0xD5, 0xD6,
0xD7, 0xD8, 0xD9, 0xE2, 0xE3, 0xE4, 0xE5, 0xE6,
0xE7, 0xE8, 0xE9, 0xB4, 0xB1, 0xB5, 0x6A, 0x6D,
0x4A, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, /* 60- 7F */
0x88, 0x89, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6,
0xA7, 0xA8, 0xA9, 0xB2, 0x4F, 0xB3, 0x5F, 0xFF
};
uint8 ebcdic_to_ascii[256] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x09, 0x06, 0x07, /* 00 - 1F */
0x08, 0x05, 0x15, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x14, 0x0A, 0x16, 0x17,
0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 20 - 3F */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
' ', 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 40 - 5F */
0x00, 0x00, '`', '.', '<', '(', '+', '|',
'&', 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, '!', '$', '*', ')', ';', '~',
'-', '/', 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 60 - 7F */
0x00, 0x00, '^', ',', '%', '_', '>', '?',
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, ':', '#', '@', '\'', '=', '"',
0x00, 'a', 'b', 'c', 'd', 'e', 'f', 'g', /* 80 - 9F */
'h', 'i', 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 'j', 'k', 'l', 'm', 'n', 'o', 'p',
'q', 'r', 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 's', 't', 'u', 'v', 'w', 'x', /* A0 - BF */
'y', 'z', 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, '\\', '{', '}', '[', ']', 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 'A', 'B', 'C', 'D', 'E', 'F', 'G', /* C0 - DF */
'H', 'I', 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 'J', 'K', 'L', 'M', 'N', 'O', 'P',
'Q', 'R', 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 'S', 'T', 'U', 'V', 'W', 'X', /* E0 - FF */
'Y', 'Z', 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 0x00, 0x00, 0x00, 0x00, 0x00, 0x7F,
};
/* Binary loader */
t_stat sim_load (FILE *fileref, char *cptr, char *fnam, int flag)
{
return SCPE_NOFNC;
}
/* Symbol and format tables */
#define IC_V_CL 17 /* class */
#define IC_M_CL 0x1F
#define IC_V_RN 16 /* takes rn */
#define IC_RN (1u << IC_V_RN)
#define IC_V_IND 15 /* takes ind */
#define IC_IND (1u << IC_V_IND)
#define IC_V_XR 13 /* takes xr */
#define IC_M_XR 0x3
#define IC_NONE 0
#define IC_XR 1
#define IC_CTL 2
#define IC_V_AW 7 /* addr width */
#define IC_M_AW 0x3F
#define IC_V_AP 2 /* addr position */
#define IC_M_AP 0x1F
#define IC_V_SGN 1 /* sign allowed */
#define IC_SGN (1u << IC_V_SGN)
#define IC_V_AOP 0 /* addr optional */
#define IC_AOP (1u << IC_V_AOP)
#define ID1_07 0 /* decode 1-7 */
#define ID1_11 1 /* decode 1-11 */
#define IDSHFT 2 /* shift */
#define IDSHFF 3 /* shift floating */
#define IDMMCX 4 /* MMC ext */
#define I_C(c,r,i,w,s,x,sn,ao) \
(((c) << IC_V_CL) | ((r) << IC_V_RN) | ((i) << IC_V_IND)|\
((w) << IC_V_AW) | ((s) << IC_V_AP) | ((x) << IC_V_XR) |\
((sn) << IC_V_SGN) | ((ao) << IC_V_AOP))
/* decode R I wd ps x sn ao */
#define IC_MRF I_C(ID1_07,1,1,17, 0,1, 0, 0) /* mem ref */
#define IC_IMM I_C(ID1_07,1,0,20, 0,0, 1, 0) /* immediate */
#define IC_LCFI I_C(ID1_07,0,0, 8, 0,2, 0, 0) /* LCFI */
#define IC_LFI I_C(ID1_11,0,0, 4, 0,0, 0, 0) /* LFI */
#define IC_LCI I_C(ID1_11,0,0, 4, 4,0, 0, 0) /* LCI */
#define IC_SHFT I_C(IDSHFT,1,0, 7, 0,1, 1, 0) /* shift */
#define IC_SHFF I_C(IDSHFF,1,0, 7, 0,1, 1, 0) /* floating shift */
#define IC_MNOR I_C(ID1_07,0,1,17, 0,1, 0, 0) /* mem ref, no reg */
#define IC_MNOX I_C(ID1_11,0,1,17, 0,1, 0, 0) /* mef ref ext */
#define IC_NOP I_C(ID1_07,1,0, 0, 0,0, 0, 0) /* no operand */
#define IC_NOPX I_C(ID1_11,1,0, 0, 0,0, 0, 0) /* no operand ext */
#define IC_MMC I_C(ID1_07,1,1, 3,17,0, 0, 0) /* MMC */
#define IC_MMCX I_C(IDMMCX,1,0, 0, 0,0, 0, 0) /* MMC extended */
#define IC_MNRI I_C(ID1_11,0,0, 0, 0,0, 0, 0) /* no operands */
#define IC_MNRO I_C(ID1_07,0,1,17, 0,1, 0, 1) /* mem ref, addr opt */
#define IC_GETCL(x) (((x) >> IC_V_CL) & IC_M_CL)
#define IC_GETXR(x) (((x) >> IC_V_XR) & IC_M_XR)
#define IC_GETAW(x) (((x) >> IC_V_AW) & IC_M_AW)
#define IC_GETAP(x) (((x) >> IC_V_AP) & IC_M_AP)
static const uint32 masks[] = {
0x7F000000, 0x7FF00000, 0x7F000700, 0x7F000100,
0x7F0E0000
};
/* Opcode tables - extended mnemonics must precede standard mnemonics */
static const uint32 opc_val[] = {
0x02100000, IC_LFI, 0x02200000, IC_LCI, 0x70100000, IC_MNOX, 0x70200000, IC_MNOX,
0x25000000, IC_SHFT, 0x25000100, IC_SHFT, 0x25000200, IC_SHFT, 0x25000000, IC_SHFT,
0x25000400, IC_SHFT, 0x25000500, IC_SHFT, 0x25000600, IC_SHFT, 0x25000700, IC_SHFT,
0x24000000, IC_SHFT, 0x24000100, IC_SHFT,
0x68000000, IC_MNOX, 0x68100000, IC_MNOX, 0x68200000, IC_MNOX, 0x68300000, IC_MNOX,
0x68400000, IC_MNOX, 0x68800000, IC_MNOX,
0x69000000, IC_MNOX, 0x69100000, IC_MNOX, 0x69200000, IC_MNOX, 0x69300000, IC_MNOX,
0x69400000, IC_MNOX, 0x69800000, IC_MNOX,
0x6F020000, IC_MMCX, 0x6F040000, IC_MMCX, 0x6F060000, IC_MMCX, 0x6F080000, IC_MMCX,
0x6F080000, IC_MMCX, 0x02000000, IC_MNRI,
0x02000000, IC_LCFI,
0x04000000, IC_MRF, 0x05000000, IC_MRF, 0x06000000, IC_MRF, 0x07000000, IC_MRF,
0x08000000, IC_MRF, 0x09000000, IC_MRF, 0x0A000000, IC_MRF, 0x0B000000, IC_MRF,
0x0C000000, IC_MRF, 0x0D000000, IC_NOP, 0x0E000000, IC_MRF, 0x0F000000, IC_MRF,
0x10000000, IC_MRF, 0x11000000, IC_MRF, 0x12000000, IC_MRF, 0x13000000, IC_MRF,
0x15000000, IC_MRF,
0x18000000, IC_MRF, 0x19000000, IC_MRF, 0x1A000000, IC_MRF, 0x1B000000, IC_MRF,
0x1C000000, IC_MRF, 0x1D000000, IC_MRF, 0x1E000000, IC_MRF, 0x1F000000, IC_MRF,
0x20000000, IC_IMM, 0x21000000, IC_IMM, 0x22000000, IC_IMM, 0x23000000, IC_IMM,
0x24000000, IC_MRF, 0x25000000, IC_MRF, 0x26000000, IC_MRF,
0x28000000, IC_MRF, 0x29000000, IC_MRF, 0x2A000000, IC_MRF, 0x2B000000, IC_MRF,
0x2C000000, IC_MRF, 0x2D000000, IC_MRF, 0x2E000000, IC_MNRO, 0x2F000000, IC_MRF,
0x30000000, IC_MRF, 0x31000000, IC_MRF, 0x32000000, IC_MRF, 0x33000000, IC_MRF,
0x34000000, IC_MRF, 0x35000000, IC_MRF, 0x36000000, IC_MRF, 0x37000000, IC_MRF,
0x38000000, IC_MRF, 0x39000000, IC_MRF, 0x3A000000, IC_MRF, 0x3B000000, IC_MRF,
0x3C000000, IC_MRF, 0x3D000000, IC_MRF, 0x3E000000, IC_MRF, 0x3F000000, IC_MRF,
0x40000000, IC_IMM, 0x41000000, IC_IMM,
0x44000000, IC_MRF, 0x45000000, IC_MRF, 0x46000000, IC_MRF, 0x47000000, IC_MRF,
0x48000000, IC_MRF, 0x49000000, IC_MRF, 0x4A000000, IC_MRF, 0x4B000000, IC_MRF,
0x4C000000, IC_MRF, 0x4D000000, IC_MRF, 0x4E000000, IC_MRF, 0x4F000000, IC_MRF,
0x50000000, IC_MRF, 0x51000000, IC_MRF, 0x52000000, IC_MRF, 0x53000000, IC_MRF,
0x55000000, IC_MRF, 0x56000000, IC_MRF, 0x57000000, IC_MRF,
0x58000000, IC_MRF, 0x5A000000, IC_MRF, 0x5B000000, IC_MRF,
0x60000000, IC_IMM, 0x61000000, IC_IMM, 0x63000000, IC_IMM,
0x64000000, IC_MRF, 0x65000000, IC_MRF, 0x66000000, IC_MRF, 0x67000000, IC_MNOR,
0x68000000, IC_MRF, 0x69000000, IC_MRF, 0x6A000000, IC_MRF, 0x6B000000, IC_MRF,
0x6C000000, IC_MRF, 0x6D000000, IC_MRF, 0x6E000000, IC_MRF, 0x6F000000, IC_MMC,
0x70000000, IC_MRF, 0x71000000, IC_MRF, 0x72000000, IC_MRF, 0x73000000, IC_MRF,
0x74000000, IC_MNOR, 0x75000000, IC_MRF, 0x76000000, IC_MRF, 0x77000000, IC_MRF,
0x78000000, IC_MRF, 0x79000000, IC_MRF, 0x7A000000, IC_MRF, 0x7B000000, IC_MRF,
0x7C000000, IC_MNOR, 0x7D000000, IC_MRF, 0x7E000000, IC_MRF, 0x7F000000, IC_MRF,
0xFFFFFFFF, 0
};
static const char *opcode[] = {
"LFI", "LCI", "LF", "LC", /* extended mmenomics */
"SLS", "SLD", "SCS", "SCD",
"SAS", "SAD", "SSS", "SSD",
"SFS", "SFL",
"B", "BGE", "BLE", "BE",
"BNOV", "BNC",
"BNVR", "BL", "BG", "BNE",
"BOV", "BC",
"LLOCKS", "LPC", "LLOCKSE", "LMAP",
"LMAPRE", "NOP",
"LCFI", /* 00 */
"CAL1", "CAL2", "CAL3", "CAL4",
"PLW", "PSW", "PLM", "PSM",
"PLS", "PSS", "LPSD", "XPSD",
"AD", "CD", "LD", "MSP", /* 10 */
"STD",
"SD", "CLM", "LCD", "LAD",
"FSL", "FAL", "FDL", "FML",
"AI", "CI", "LI", "MI", /* 20 */
"SF", "S", "LAS",
"CVS", "CVA", "LM", "STM",
"LRA", "LMS", "WAIT", "LRP",
"AW", "CW", "LW", "MTW", /* 30 */
"LVAW", "STW", "DW", "MW",
"SW", "CLR", "LCW", "LAW",
"FSS", "FAS", "FDS", "FMS",
"TTBS", "TBS", /* 40 */
"ANLZ", "CS", "XW", "STS",
"EOR", "OR", "LS", "AND",
"SIO", "TIO", "TDV", "HIO",
"AH", "CH", "LH", "MTH", /* 50 */
"STH", "DH", "MH",
"SH", "LCH", "LAH",
"CBS", "MBS", "EBS", /* 60 */
"BDR", "BIR", "AWM", "EXU",
"BCR", "BCS", "BAL", "INT",
"RD", "WD", "AIO", "MMC",
"LCF", "CB", "LB", "MTB", /* 70 */
"STCF", "STB", "PACK", "UNPK",
"DS", "DA", "DD", "DM",
"DSA", "DC", "DL", "DST",
NULL
};
/* Symbolic decode
Inputs:
*of = output stream
addr = current PC
*val = pointer to values
*uptr = pointer to unit
sw = switches
Outputs:
return = status code
*/
t_stat fprint_sym (FILE *of, t_addr addr, t_value *val,
UNIT *uptr, int32 sw)
{
uint32 inst, sc, rdx, c;
DEVICE *dptr;
inst = val[0]; /* get inst */
if (uptr == NULL) /* anon = CPU */
uptr = &cpu_unit;
else if (uptr != &cpu_unit) /* CPU only */
return SCPE_ARG;
dptr = find_dev_from_unit (uptr); /* find dev */
if (dptr == NULL)
return SCPE_IERR;
if (sw & SWMASK ('D')) /* get radix */
rdx = 10;
else if (sw & SWMASK ('O'))
rdx = 8;
else if (sw & SWMASK ('X'))
rdx = 16;
else rdx = dptr->dradix;
if (sw & SWMASK ('C')) { /* char format? */
for (sc = 0; sc < 32; sc = sc + 8) { /* print string */
c = (inst >> (24 - sc)) & BMASK;
if (sw & SWMASK ('A'))
fprintf (of, FMTASC (c & 0x7F));
else fprint_ebcdic (of, c);
}
return 0; /* return # chars */
}
if (sw & SWMASK ('A')) { /* ASCII? */
sc = 24 - ((addr & 0x3) * 8); /* shift count */
c = (inst >> sc) & 0x7F;
fprintf (of, "%c", FMTASC (c));
return 0;
}
if (sw & SWMASK ('E')) { /* EBCDIC? */
sc = 24 - ((addr & 0x3) * 8); /* shift count */
c = (inst >> sc) & BMASK;
fprint_ebcdic (of, c);
return 0;
}
if (sw & SWMASK ('B')) { /* byte? */
sc = 24 - ((addr & 0x3) * 8); /* shift count */
c = (inst >> sc) & BMASK;
fprintf (of, "%02X", c);
return 0;
}
if (sw & SWMASK ('H')) { /* halfword? */
c = ((addr & 1)? inst: inst >> 16) & HMASK;
fprintf (of, "%04X", c);
return 0;
}
if ((sw & SWMASK ('M')) && /* inst format? */
!fprint_sym_m (of, inst)) /* decode inst */
return 0;
fprint_val (of, inst, rdx, 32, PV_RZRO);
return 0;
}
/* Instruction decode */
t_stat fprint_sym_m (FILE *of, uint32 inst)
{
uint32 i, j;
for (i = 0; opc_val[i] < 0xFFFFFFFF; i = i + 2) { /* loop thru ops */
j = IC_GETCL (opc_val[i + 1]); /* get class */
if (opc_val[i] == (inst & masks[j])) { /* match? */
uint32 fl = opc_val[i + 1]; /* get format */
uint32 aw = IC_GETAW (fl);
uint32 ap = IC_GETAP (fl);
uint32 xr = IC_GETXR (fl);
uint32 rn = I_GETRN (inst); /* get fields */
uint32 xn = I_GETXR (inst);
uint32 mask = (1u << aw) - 1;
uint32 ad = (inst >> ap) & mask;
fprintf (of, "%s", opcode[i >> 1]); /* opcode */
if (fl & IC_RN) /* rn? */
fprintf (of, ",%d", rn);
if (TST_IND (inst) || aw || xr) { /* anything else? */
fputs (TST_IND (inst)? " *": " ", of); /* space{*} */
if (aw) { /* any value? */
if ((fl & IC_SGN) && /* signed and */
(ad & (1u << (aw - 1)))) /* negative? */
fprintf (of, "-%X", (mask + 1) - ad);
else fprintf (of, "%X", ad);
if ((xr == IC_XR) && xn) /* any index? */
fprintf (of, ",%d", xn);
else if (xr == IC_CTL) /* or control? */
fprintf (of, ",%X", rn);
}
}
return SCPE_OK;
}
}
return SCPE_ARG;
}
void fprint_ebcdic (FILE *of, uint32 c)
{
uint32 cv = ebcdic_to_ascii[c];
if ((cv < 0040) || (cv >= 0177))
fprintf (of, "<%02X>", c);
else fputc (cv, of);
return;
}
/* Symbolic input
Inputs:
*cptr = pointer to input string
addr = current PC
uptr = pointer to unit
*val = pointer to output values
sw = switches
Outputs:
status = error status
*/
t_stat parse_sym (char *cptr, t_addr addr, UNIT *uptr, t_value *val, int32 sw)
{
t_value num;
uint32 i, sc, rdx, c;
t_stat r;
DEVICE *dptr;
if (uptr == NULL) /* anon = CPU */
uptr = &cpu_unit;
else if (uptr != &cpu_unit) /* CPU only */
return SCPE_ARG;
dptr = find_dev_from_unit (uptr); /* find dev */
if (dptr == NULL)
return SCPE_IERR;
if (sw & SWMASK ('D')) /* get radix */
rdx = 10;
else if (sw & SWMASK ('O'))
rdx = 8;
else if (sw & SWMASK ('X'))
rdx = 16;
else rdx = dptr->dradix;
if ((sw & SWMASK ('C')) || ((*cptr == '"') && cptr++)) { /* chars? */
if (cptr[0] == 0) /* must have 1 char */
return SCPE_ARG;
for (i = 0; i < 4; i++) {
if (cptr[i] == 0)
break;
sc = 24 - (i * 8);
c = (sw & SWMASK ('A'))?
cptr[i] & 0x7F:
ascii_to_ebcdic[cptr[i]];
val[0] = (val[0] & ~(BMASK << sc)) | (c << sc);
}
return 0;
}
if ((sw & SWMASK ('A')) || ((*cptr == '#') && cptr++)) { /* ASCII char? */
if (cptr[0] == 0) /* must have 1 char */
return SCPE_ARG;
sc = 24 - (addr & 0x3) * 8; /* shift count */
val[0] = (val[0] & ~(BMASK << sc)) | (cptr[0] << sc);
return 0;
}
if ((sw & SWMASK ('E')) || ((*cptr == '\'') && cptr++)) { /* EBCDIC char? */
if (cptr[0] == 0) /* must have 1 char */
return SCPE_ARG;
sc = 24 - (addr & 0x3) * 8; /* shift count */
val[0] = (val[0] & ~(BMASK << sc)) | (ascii_to_ebcdic[cptr[0]] << sc);
return 0;
}
if (sw & SWMASK ('B')) { /* byte? */
num = get_uint (cptr, rdx, BMASK, &r); /* get byte */
if (r != SCPE_OK)
return SCPE_ARG;
sc = 24 - (addr & 0x3) * 8; /* shift count */
val[0] = (val[0] & ~(BMASK << sc)) | (num << sc);
return 0;
}
if (sw & SWMASK ('H')) { /* halfword? */
num = get_uint (cptr, rdx, HMASK, &r); /* get half word */
if (r != SCPE_OK)
return SCPE_ARG;
sc = addr & 1? 0: 16;
val[0] = (val[0] & ~(HMASK << sc)) | (num << sc);
return 0;
}
if (!parse_sym_m (cptr, val))
return 0;
val[0] = get_uint (cptr, rdx, WMASK, &r); /* get number */
if (r != SCPE_OK)
return r;
return 0;
}
t_stat parse_sym_m (char *cptr, t_value *val)
{
uint32 i, sgn;
t_stat r;
char *sep;
char gbuf[CBUFSIZE];
cptr = get_glyph (cptr, gbuf, 0); /* get opcode+reg*/
if (sep = strchr (gbuf, ',')) /* , in middle? */
*sep++ = 0; /* split strings */
for (i = 0; opcode[i] != NULL; i++) { /* loop thru ops */
if (strcmp (opcode[i], gbuf) == 0) { /* string match? */
uint32 rn, xn, ad;
uint32 k = i << 1; /* index to opval */
uint32 fl = opc_val[k + 1];
uint32 aw = IC_GETAW (fl);
uint32 ap = IC_GETAP (fl);
uint32 xr = IC_GETXR (fl);
uint32 mask = (1u << aw) - 1;
val[0] = opc_val[k];
if (fl & IC_RN) { /* need rn? */
if (sep == NULL)
return SCPE_ARG;
rn = get_uint (sep, 10, INST_M_RN, &r);
if (r != SCPE_OK)
return SCPE_ARG;
val[0] |= rn << INST_V_RN;
}
else if (sep) /* rn & not wanted */
return SCPE_ARG;
if (aw) { /* more? */
if (*cptr == 0)
return (fl & IC_AOP)? SCPE_OK: SCPE_ARG;
if ((fl & IC_IND) && (*cptr == '*')) { /* indirect? */
val[0] |= INST_IND;
cptr++;
}
if ((fl & IC_SGN) && /* signed val? */
strchr ("+-", *cptr) && /* with sign? */
(*cptr++ == '-')) /* and minus? */
sgn = 1;
else sgn = 0; /* else + */
cptr = get_glyph (cptr, gbuf, 0); /* get rest */
if (sep = strchr (gbuf, ',')) /* , in middle? */
*sep++ = 0; /* split strings */
ad = get_uint (gbuf, 16, mask, &r);
if (r != SCPE_OK)
return r;
if (sgn && ad) /* negative, nz? */
ad = (mask + 1) - ad; /* complement */
val[0] |= (ad << ap);
if ((xr == IC_XR) && sep) { /* index? */
xn = get_uint (sep, 10, 7, &r);
if (r != SCPE_OK)
return r;
val[0] |= (xn << INST_V_XR);
}
else if (xr == IC_CTL) { /* control? */
if (sep == NULL)
return SCPE_ARG;
xn = get_uint (gbuf, 16, INST_M_RN, &r);
if (r != SCPE_OK)
return r;
val[0] |= (xn << INST_V_RN);
}
else if (sep)
return SCPE_ARG;
}
if (*cptr != 0)
return SCPE_ARG;
return SCPE_OK;
}
}
return SCPE_ARG;
}