1
0
mirror of https://github.com/simh/simh.git synced 2026-01-13 07:19:43 +00:00
simh.simh/Altair8800/tarbell_fdc.c
Patrick Linstruth aad5351080 Altair8800: New Simulator
This is the initial release of the Altair8800 simulator.

Why another Altair simulator? AltairZ80 has been described as a
“software simulator”, where the intent is to run software designed
specifically for executing under a simulator. Altair8800 is intended
to accurately simulate the Altair hardware and execute software
that will run unchanged on real hardware. Software and disk images
can be moved between the Altair8800 simulator and real Altair and
other S-100 hardware without any changes. The Altair8800 simulator
is a tool that can assist with the restoration of vintage Altair
and other S-100 hardware and software along with the development
of new hardware and software. The accomplish this, the following
are major differences between AltairZ80 and Altair8800.

* The monolithic design where devices access other devices directly
through external variables and functions is no longer supported.
All devices exchange data through a new BUS device. Memory and I/O
address decoding and transfers are now handled by the BUS device.
All interrupt requests are handled by the BUS device.

* System RAM was moved from the CPU device to a new RAM device and
managed by the BUS device.

* Banked RAM was moved from the CPU device to a new BRAM device.

* Banked RAM can only be accessed through the BUS device. Memory in
banks that are not currently selected cannot be accessed. The AZ80
“banked” RAM was removed.

* ROMs were moved from the CPU and DSK devices to the new ROM device.
Mike Douglas’ Altmon Monitor is also available through the ROM
device. The custom AltairZ80 ALTAIRROM, which is not compatible
with original Altair disk images, is also available.

* The custom ALTAIRROM boot loader was replaced with the original
MITS Disk Boot Loader as the default ROM.

* The monolithic Multiple-CPU/RAM/ROM/IO/BankedRAM CPU device has
been replaced with a generic CPU device that provides an abstraction
layer between SIMH and the supported CPU architectures (currently
8080 and Z80). All IO is handled through the BUS device. RAM, Banked
RAM, and ROM are each handled by their own independent devices.

* The AltairZ80 SIO device was replaced with the M2SIO0 and M2SIO1
devices. The M2SIO devices fully support TMXR.

* A new SIO device was added to provide generic, programmable, Serial
IO. TMXR is not supported on this device.

* The Altair 8800 did not have PTR or PTP hardware devices. They have
been removed and replaced with the M2SIO1 device. PTR and PTP devices
are defined by software executing on the simulator.

* Contention between multiple enabled serial devices checking the
single host keyboard for input is now handled by the BUS device.
Port 0xFF sense switches was moved to a new SSW device and IMSAI
programmed output was moved to a new PO device.

* The SIMH pseudo device no longer uses the removed PTR and PTP
devices. The SIMH device has its own IO system. To avoid conflicts
with other devices and remain compatible with the R and W utilities
written for AltairZ80, SIMH “borrows” I/O ports 12H and 13H during
file transfers. Only SIMH commands needed to support R and W file
transfers are supported. All other SIMH commands were removed.

* AltairZ80-specific versions of CP/M are not supported by Altair8800.

* PC queue was removed from CPU device and replaced with CPU HISTORY.

* The Altair8800 simulator only supports 16-bit address and 8-bit
data buses. 8086 and 68K CPU architectures were removed.

* All CPU timing (clockFrequency) and “sleeps” (SIO SLEEP) have been
removed. SIMH THROTTLE is fully supported and is the recommended
way to manage simulator speed and host CPU utilization. Executing
“SET THROTTLE 100K/1”, for example, should provide ample speed
without tasking the host CPU.

* HEXLOAD and HEXSAVE commands were added. The LOAD “-h” option has
been removed. Intel Hex and sRecord (coming soon) formats are
supported.

* The WD179X device was converted to an API.

* A new DSK API was added to provide a consistent way to manage soft
sector raw disk images.

* Support for the proprietary IMD disk image format was removed. Only
RAW disk images are supported.

The following devices are supported by this initial release:

BUS - Altair (S-100) Bus
CPU - Intel 8080 / Zilog Z80
RAM - 64K RAM
ROM - ROMs
BRAM - Banked RAM
DSK - MITS 88-DCDD Floppy Disk Controller
M2SIO0 - MITS 88-2SIO Port 0
M2SIO1 - MITS 88-2SIO Port 1
SSW - Sense Switches
PO - Programmed Output
SIO - Generic Serial I/O
SBC200 - SD Systems SBC-200
TARBELL - Tarbell SD and DD Floppy Disk Controller
VFII - SD Systems VersaFloppy II
SIMH - SIMH Pseudo Device
2025-11-21 17:01:40 -05:00

472 lines
16 KiB
C

/* tarbell_fdc.c: Tarbell 1011/2022 Floppy Disk Controller
Copyright (c) 2025 Patrick A. Linstruth
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
PETER SCHORN BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Patrick Linstruth shall not
be used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from Patrick Linstruth.
History:
13-Nov-2025 Initial version
*/
#include "sim_defs.h"
#include "s100_bus.h"
#include "altair8800_dsk.h"
#include "tarbell_fdc.h"
#include "wd_17xx.h"
#define DEV_NAME "TARBELL"
static WD17XX_INFO *wd17xx = NULL;
/* Debug flags */
#define VERBOSE_MSG (1 << 0)
#define ERROR_MSG (1 << 1)
#define STATUS_MSG (1 << 2)
#define DRIVE_MSG (1 << 3)
#define IRQ_MSG (1 << 4)
#define READ_MSG (1 << 5)
#define WRITE_MSG (1 << 6)
#define COMMAND_MSG (1 << 7)
#define FORMAT_MSG (1 << 8)
static int32 poc = TRUE; /* Power On Clear */
static uint8 drv_sel = 0;
static int32 ddfdc_enabled = FALSE;
static int32 prom_enabled = TRUE;
static int32 prom_active = FALSE;
static RES tarbell_res = { TARBELL_IO_BASE, TARBELL_IO_SIZE, TARBELL_PROM_BASE, TARBELL_PROM_SIZE };
static MDEV mdev = { NULL, NULL };
static DSK_INFO dsk_info[TARBELL_NUM_DRIVES];
/* Tarbell PROM is 32 bytes */
static uint8 tarbell_prom[TARBELL_PROM_SIZE] = {
0xdb, 0xfc, 0xaf, 0x6f, 0x67, 0x3c, 0xd3, 0xfa,
0x3e, 0x8c, 0xd3, 0xf8, 0xdb, 0xfc, 0xb7, 0xf2,
0x19, 0x00, 0xdb, 0xfb, 0x77, 0x23, 0xc3, 0x0c,
0x00, 0xdb, 0xf8, 0xb7, 0xca, 0x7d, 0x00, 0x76
};
static t_stat tarbell_reset(DEVICE *tarbell_dev);
static t_stat tarbell_attach(UNIT *uptr, CONST char *cptr);
static t_stat tarbell_detach(UNIT *uptr);
static t_stat tarbell_boot(int32 unitno, DEVICE *dptr);
static t_stat tarbell_set_model(UNIT *uptr, int32 val, CONST char *cptr, void *desc);
static t_stat tarbell_show_model(FILE *st, UNIT *uptr, int32 val, CONST void *desc);
static t_stat tarbell_set_prom(UNIT *uptr, int32 val, CONST char *cptr, void *desc);
static t_stat tarbell_show_prom(FILE *st, UNIT *uptr, int32 val, CONST void *desc);
static void tarbell_enable_prom(void);
static void tarbell_disable_prom(void);
static int32 tarbell_io(const int32 port, const int32 io, const int32 data);
static int32 tarbell_memio(const int32 addr, const int32 rw, const int32 data);
static t_stat tarbell_show_help(FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr);
static const char* tarbell_description(DEVICE *dptr);
static UNIT tarbell_unit[TARBELL_NUM_DRIVES] = {
{ UDATA (NULL, UNIT_FIX + UNIT_ATTABLE + UNIT_DISABLE + UNIT_ROABLE, TARBELL_SD_CAPACITY) },
{ UDATA (NULL, UNIT_FIX + UNIT_ATTABLE + UNIT_DISABLE + UNIT_ROABLE, TARBELL_SD_CAPACITY) },
{ UDATA (NULL, UNIT_FIX + UNIT_ATTABLE + UNIT_DISABLE + UNIT_ROABLE, TARBELL_SD_CAPACITY) },
{ UDATA (NULL, UNIT_FIX + UNIT_ATTABLE + UNIT_DISABLE + UNIT_ROABLE, TARBELL_SD_CAPACITY) }
};
static REG tarbell_reg[] = {
{ FLDATAD (POC, poc, 0x01, "Power on Clear flag"), },
{ DRDATAD (DRVSEL, drv_sel, 8, "Drive select"), },
{ NULL }
};
#define TARBELL_NAME "Tarbell 2022 Double-Density FDC"
static const char* tarbell_description(DEVICE *dptr) {
if (dptr == NULL) {
return NULL;
}
return TARBELL_NAME;
}
static MTAB tarbell_mod[] = {
{ MTAB_XTD|MTAB_VDV, 0, "IOBASE", "IOBASE",
&set_iobase, &show_iobase, NULL, "Sets disk controller I/O base address" },
{ MTAB_XTD|MTAB_VDV|MTAB_VALR, 0, "PROM", "PROM={ENABLE|DISABLE}",
&tarbell_set_prom, &tarbell_show_prom, NULL, "ROM enabled/disabled status"},
{ MTAB_XTD|MTAB_VDV|MTAB_VALR, 0, "MODEL", "MODEL={SD|DD}",
&tarbell_set_model, &tarbell_show_model, NULL, "Set/Show the current controller model" },
{ 0 }
};
/* Debug Flags */
static DEBTAB tarbell_dt[] = {
{ "VERBOSE", VERBOSE_MSG, "Verbose messages" },
{ "ERROR", ERROR_MSG, "Error messages" },
{ "STATUS", STATUS_MSG, "Status messages" },
{ "DRIVE", DRIVE_MSG, "Drive messages" },
{ "IRQ", IRQ_MSG, "IRQ messages" },
{ "READ", READ_MSG, "Read messages" },
{ "WRITE", WRITE_MSG, "Write messages" },
{ "COMMAND", COMMAND_MSG, "Command messages" },
{ "FORMAT", FORMAT_MSG, "Format messages" },
{ NULL, 0 }
};
DEVICE tarbell_dev = {
DEV_NAME, tarbell_unit, tarbell_reg, tarbell_mod, TARBELL_NUM_DRIVES,
ADDRRADIX, ADDRWIDTH, 1, DATARADIX, DATAWIDTH,
NULL, NULL, &tarbell_reset,
&tarbell_boot, &tarbell_attach, &tarbell_detach,
&tarbell_res, (DEV_DISABLE | DEV_DIS | DEV_DEBUG), 0,
tarbell_dt, NULL, NULL, &tarbell_show_help, NULL, NULL, &tarbell_description
};
/* Reset routine */
static t_stat tarbell_reset(DEVICE *dptr)
{
RES *res;
int i;
if ((res = (RES *) dptr->ctxt) == NULL) {
sim_printf("CTX is NULL!\n");
return SCPE_IERR;
}
if(dptr->flags & DEV_DIS) { /* Unmap I/O Ports */
wd17xx = wd17xx_release(wd17xx);
s100_bus_remio(res->io_base, res->io_size, &tarbell_io);
poc = TRUE;
} else {
if (poc) {
ddfdc_enabled = FALSE;
for (i = 0; i < TARBELL_NUM_DRIVES; i++) {
tarbell_unit[i].dptr = dptr;
dsk_init(&dsk_info[i], &tarbell_unit[i], 77, 1, 0);
dsk_set_verbose_flag(&dsk_info[i], VERBOSE_MSG);
}
if (wd17xx == NULL) {
if ((wd17xx = wd17xx_init(dptr)) == NULL) {
sim_printf("Could not init WD17XX\n");
}
else {
wd17xx_set_fdctype(wd17xx, WD17XX_FDCTYPE_1771); /* Set to 1771 */
wd17xx_set_verbose_flag(wd17xx, VERBOSE_MSG);
wd17xx_set_error_flag(wd17xx, ERROR_MSG);
wd17xx_set_read_flag(wd17xx, READ_MSG);
wd17xx_set_write_flag(wd17xx, WRITE_MSG);
wd17xx_set_command_flag(wd17xx, COMMAND_MSG);
wd17xx_set_format_flag(wd17xx, FORMAT_MSG);
}
}
s100_bus_addio(res->io_base, res->io_size, &tarbell_io, DEV_NAME);
if (prom_enabled) {
tarbell_enable_prom();
}
poc = FALSE;
}
if (prom_enabled) {
prom_active = TRUE;
}
drv_sel = 0;
if (wd17xx != NULL) {
wd17xx_reset(wd17xx);
wd17xx_set_dsk(wd17xx, &dsk_info[drv_sel]);
}
}
return SCPE_OK;
}
static t_stat tarbell_boot(int32 unitno, DEVICE *dptr)
{
sim_debug(STATUS_MSG, &tarbell_dev, DEV_NAME ": Booting Controller at 0x%04x\n", tarbell_res.mem_base);
s100_bus_set_addr(tarbell_res.mem_base);
return SCPE_OK;
}
/* Attach routine */
static t_stat tarbell_attach(UNIT *uptr, CONST char *cptr)
{
t_stat r;
int d;
/* Determine drive number */
d = uptr - &tarbell_unit[0];
if (d < 0 || d >= TARBELL_NUM_DRIVES) {
return SCPE_IERR;
}
sim_switches |= SWMASK ('E'); /* File must exist */
if ((r = attach_unit(uptr, cptr)) != SCPE_OK) { /* attach unit */
sim_printf(DEV_NAME ": ATTACH error=%d\n", r);
return r;
}
/* Determine length of this disk */
uptr->capac = sim_fsize(uptr->fileref);
/* init format based on file size */
switch (uptr->capac) {
case TARBELL_DD_CAPACITY:
dsk_init_format(&dsk_info[d], 0, 0, 0, 0, DSK_DENSITY_SD, 26, 128, 1);
dsk_init_format(&dsk_info[d], 1, 76, 0, 0, DSK_DENSITY_DD, 51, 128, 1);
break;
default:
uptr->capac = TARBELL_SD_CAPACITY;
dsk_init_format(&dsk_info[d], 0, 76, 0, 0, DSK_DENSITY_SD, 26, 128, 1);
break;
}
// dsk_show(&dsk_info[d]);
return r;
}
/* Detach routine */
static t_stat tarbell_detach(UNIT *uptr)
{
t_stat r;
r = detach_unit(uptr); /* detach unit */
return r;
}
static int32 tarbell_io(const int32 port, const int32 io, const int32 data)
{
int32 result = 0xff;
if (io == S100_IO_WRITE) { /* I/O Write */
switch (port & TARBELL_IO_MASK) {
case WD17XX_REG_COMMAND:
case WD17XX_REG_TRACK:
case WD17XX_REG_SECTOR:
case WD17XX_REG_DATA:
wd17xx_outp(wd17xx, port & TARBELL_IO_MASK, data & DATAMASK);
sim_debug(STATUS_MSG, &tarbell_dev, DEV_NAME ": " ADDRESS_FORMAT
" Write WD17XX, Port 0x%02x Data 0x%02x\n", s100_bus_get_addr(), port, data & DATAMASK);
break;
case TARBELL_REG_DRVSEL:
if (ddfdc_enabled) {
drv_sel = (data & TARBELL_DSEL_MASK) >> 4; /* 2022 not inverted */
wd17xx_sel_side(wd17xx, (data & TARBELL_SIDE_MASK) >> 6);
wd17xx_sel_dden(wd17xx, (data & TARBELL_DENS_MASK) ? TRUE : FALSE);
sim_debug(DRIVE_MSG, &tarbell_dev, DEV_NAME ": " ADDRESS_FORMAT " WR DRVSEL (0x%02x) = 0x%02x: Drive: %d, Side: %d, %s-Density.\n",
s100_bus_get_addr(), port, data & DATAMASK, drv_sel,
(data & TARBELL_SIDE_MASK) >> 6, (data & TARBELL_DENS_MASK) ? "Double" : "Single");
}
else {
drv_sel = (~data & TARBELL_DSEL_MASK) >> 4; /* 1011 inverted */
wd17xx_sel_side(wd17xx, 0);
wd17xx_sel_dden(wd17xx, FALSE);
sim_debug(DRIVE_MSG, &tarbell_dev, DEV_NAME ": " ADDRESS_FORMAT " WR DRVSEL (0x%02x) = 0x%02x: Drive: %d\n",
s100_bus_get_addr(), port, data & DATAMASK, drv_sel);
}
/* Tell WD17XX which drive is selected */
wd17xx_set_dsk(wd17xx, &dsk_info[drv_sel]);
break;
case TARBELL_REG_EXTADDR:
sim_debug(STATUS_MSG, &tarbell_dev, DEV_NAME ": " ADDRESS_FORMAT
" Write Extended Address, Port 0x%02x=0x%02x\n", s100_bus_get_addr(), port, data & DATAMASK);
break;
default:
break;
}
} else { /* I/O Read */
switch (port & TARBELL_IO_MASK) {
case WD17XX_REG_STATUS:
case WD17XX_REG_TRACK:
case WD17XX_REG_SECTOR:
case WD17XX_REG_DATA:
result = wd17xx_inp(wd17xx, port & TARBELL_IO_MASK);
sim_debug(STATUS_MSG, &tarbell_dev, DEV_NAME ": " ADDRESS_FORMAT
" Read WD17XX, Port 0x%02x Result 0x%02x\n", s100_bus_get_addr(), port, result);
break;
case TARBELL_REG_WAIT:
result = (wd17xx_intrq(wd17xx)) ? 0 : TARBELL_FLAG_DRQ;
sim_debug(STATUS_MSG, &tarbell_dev, DEV_NAME ": " ADDRESS_FORMAT
" Read WAIT, Port 0x%02x Result 0x%02x\n", s100_bus_get_addr(), port, result);
break;
case TARBELL_REG_DMASTAT:
result = 0x00;
break;
}
}
return result;
}
/*
* The Tarbell Floppy Disk Constroller has a 32-byte PROM
* located at 0x0000. The PROM loads the first sector of
* track 0 from drive 0 into 0x0000. Since the PROM is
* active at 0x0000, the Tarbell asserts /PHANTOM. While
* /PHANTOM is asserted, memory reads from 0x0000-0x001f
* will be provided by the Tarbell PROM, while memory
* writes to those locations will be handled by the RAM
* board. /PHANTOM is simulated below by passing requests
* to the RAM board configured on the BUS for the first
* page of RAM. The PROM is disabled and /PHANTOM is
* deasserted when A5 is active.
*/
static int32 tarbell_memio(const int32 addr, const int32 rw, const int32 data)
{
if (rw == S100_IO_READ) {
if (prom_active && ((addr & TARBELL_PROM_MASK) == addr)) {
return tarbell_prom[addr];
}
else if (mdev.routine != NULL) {
if (addr & 0x0020) {
prom_active = FALSE;
}
return (mdev.routine)(addr, rw, data);
}
}
else {
/* If writing to RAM, call memory device routine */
if (mdev.routine != NULL) {
return (mdev.routine)(addr, rw, data);
}
}
return 0xff;
}
static t_stat tarbell_set_model(UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
if (!cptr) return SCPE_IERR;
/* Remove IO mapping */
s100_bus_remio(tarbell_res.io_base, tarbell_res.io_size, &tarbell_io);
/* this assumes that the parameter has already been upcased */
if (!strcmp(cptr, "DD")) {
ddfdc_enabled = TRUE;
tarbell_res.io_size = TARBELL_IO_SIZE;
wd17xx_set_fdctype(wd17xx, WD17XX_FDCTYPE_1791); /* Set to 1791 */
} else {
ddfdc_enabled = FALSE;
tarbell_res.io_size = TARBELL_IO_SIZE - 1;
wd17xx_set_fdctype(wd17xx, WD17XX_FDCTYPE_1771); /* Set to 1771 */
}
/* Map new IO */
s100_bus_addio(tarbell_res.io_base, tarbell_res.io_size, &tarbell_io, DEV_NAME);
return SCPE_OK;
}
static t_stat tarbell_show_model(FILE *st, UNIT *uptr, int32 val, CONST void *desc)
{
fprintf(st, "MODEL=%s", (ddfdc_enabled) ? "2022DD" : "1011SD");
return SCPE_OK;
}
static t_stat tarbell_set_prom(UNIT *uptr, int32 val, CONST char *cptr, void *desc)
{
if (!cptr) return SCPE_IERR;
if (!strlen(cptr)) return SCPE_ARG;
/* this assumes that the parameter has already been upcased */
if (!strncmp(cptr, "ENABLE", strlen(cptr)) && prom_enabled == FALSE) {
tarbell_enable_prom();
} else if (!strncmp(cptr, "DISABLE", strlen(cptr)) && prom_enabled == TRUE) {
tarbell_disable_prom();
} else {
return SCPE_ARG;
}
return SCPE_OK;
}
static void tarbell_enable_prom(void)
{
/* Save existing memory device */
s100_bus_get_mdev(tarbell_res.mem_base, &mdev);
/* Add PROM to bus */
s100_bus_addmem(tarbell_res.mem_base, tarbell_res.mem_size, &tarbell_memio, DEV_NAME);
prom_enabled = TRUE;
}
static void tarbell_disable_prom(void)
{
/* Restore memory device */
if (mdev.routine != NULL) {
s100_bus_addmem(tarbell_res.mem_base, tarbell_res.mem_size, mdev.routine, mdev.name);
mdev.routine = NULL;
mdev.name = NULL;
}
else {
s100_bus_remmem(tarbell_res.mem_base, tarbell_res.mem_size, &tarbell_memio);
}
prom_enabled = FALSE;
}
static t_stat tarbell_show_prom(FILE *st, UNIT *uptr, int32 val, CONST void *desc)
{
fprintf(st, "%s (%sactive)", (prom_enabled) ? "PROM" : "NOPROM", (prom_active) ? "" : "in");
return SCPE_OK;
}
static t_stat tarbell_show_help(FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr)
{
fprintf (st, "\nTarbell Model 1011/2022 Disk Controller (%s)\n", dptr->name);
fprint_set_help (st, dptr);
fprint_show_help (st, dptr);
fprint_reg_help (st, dptr);
return SCPE_OK;
}