1
0
mirror of https://github.com/wfjm/w11.git synced 2026-01-21 10:42:10 +00:00
wfjm.w11/tools/tcode/cpu_details.mac
wfjm 11091f15bc tcode: add CPU mode 10 tests; minor changes
- cpu_details.mac: fix systyp checks;
- cpu_mmu.mac: add MMR0/3 unimplented bit tests; add B4.1 and B4.2 tests
2022-10-22 12:22:07 +02:00

536 lines
20 KiB
Plaintext

; $Id: cpu_details.mac 1304 2022-10-22 10:19:34Z mueller $
; SPDX-License-Identifier: GPL-3.0-or-later
; Copyright 2022- by Walter F.J. Mueller <W.F.J.Mueller@gsi.de>
;
; Revision History:
; Date Rev Version Comment
; 2022-07-28 1264 1.0 Initial version
; 2022-07-18 1259 0.1 First draft
;
; Test CPU details
; Section A: CPU registers
; Section B: stress tests
; Section C: 11/70 specifics
;
.include |lib/tcode_std_base.mac|
.include |lib/defs_mmu.mac|
;
; Preface: set up MMU for kernel mode (for some tests) =======================
;
mov #kipdr,r0
mov #<127.*md.plf>!md.arw,r1 ; plf=127; ed=0(up); acf=6(w/r)
mov r1,(r0)+ ; kipdr0
mov r1,(r0)+ ; kipdr1
mov r1,(r0)+ ; kipdr2
mov r1,(r0)+ ; kipdr3
mov r1,(r0)+ ; kipdr4
mov r1,(r0)+ ; kipdr5
mov r1,(r0)+ ; kipdr6
mov r1,(r0)+ ; kipdr7
mov #kipar,r0
mov #000000,(r0)+ ; kipar0 000000 base
mov #000200,(r0)+ ; kipar1 020000 base
mov #000400,(r0)+ ; kipar2 040000 base
mov #000600,(r0)+ ; kipar3 060000 base
mov #001000,(r0)+ ; kipar4 100000 base
mov #001200,(r0)+ ; kipar5 120000 base
mov #001400,(r0)+ ; kipar6 140000 base
mov #177600,(r0)+ ; kipar7 (map I/O page)
;
; some useful definitions
kipdr5 = kipdr+12
kipdr6 = kipdr+14
kipar6 = kipar+14
p6base = <6*20000> ; page 6
;
; Section A: CPU registers ===================================================
;
; Test A1: PIRQ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
; This sub-section verifies operation of PIRQ register
;
; Test A1.1 -- PIRQ + spl ++++++++++++++++++++++++++++++++++++++++++++
; This test will exercise all 7 pirq interrupt levels:
; set 1+3 -> handle 3, set 7
; -> handle 7, set 6+4
; -> handle 6
; -> handle 4, set 5+2
; -> handle 5
; -> handle 2
; -> handle 1
;
; some useful definitions
pi.r00=bit08 ; pir 0 bit
pi.r01=bit09 ; pir 1 bit
pi.r02=bit10 ; pir 2 bit
pi.r03=bit11 ; pir 3 bit
pi.r04=bit12 ; pir 4 bit
pi.r05=bit13 ; pir 5 bit
pi.r06=bit14 ; pir 6 bit
pi.r07=bit15 ; pir 7 bit
pi.n00=0. ; lsb for no pir pending
pi.n01=1*042 ; lsb for pir 1 next
pi.n02=2*042 ; lsb for pir 2 next
pi.n03=3*042 ; lsb for pir 3 next
pi.n04=4*042 ; lsb for pir 4 next
pi.n05=5*042 ; lsb for pir 5 next
pi.n06=6*042 ; lsb for pir 6 next
pi.n07=7*042 ; lsb for pir 7 next
;
ta0101: mov #1000$,v..pir ; setup handler
mov #cp.pr7,v..pir+2 ; which runs at pr7
mov #cp.pir,r3 ; ptr to PIRQ
mov #cp.psw,r4 ; ptr to PSW
mov #1200$,r5 ; ptr to check data
clr 1300$ ; clear nesting counter
;
spl 7 ; lockout interrupts
bisb #bit01,1(r3) ; set PIRQ 1
hcmpeq (r3),#<pi.r01!pi.n01> ; check set 1
bisb #bit03,1(r3) ; set PIRQ 3
hcmpeq (r3),#<pi.r01!pi.r03!pi.n03> ; check set 1+3
spl 2
nop ; allow interrupts to happen
spl 0
nop ; allow interrupts to happen
htsteq (r3) ; PIRQ should clear now
mov #v..pir+2,v..pir; restore pirq vector catcher
clr v..pir+2
jmp 9999$
;
; PIRQ interrupt handler
; - it starts at pr7 from the vector
; - quickly lowers the priority to what is currently processed
; - new pirq bits are set at lowered priority
; - that leads to nested interrupts (tracked by a level counter)
;
1000$: inc 1300$ ; up level counter
mov (r3),r0 ; get PIRQ value
hcmpeq 1300$,(r5)+ ; check nesting level
hcmpeq r0,(r5)+ ; check pirq value
movb r0,(r4) ; PSW=PIRQ (sets priority)
bic #177761,r0 ; mask out index bits
mov r0,r1 ; r0 is word index (pri*2)
asr r1 ; r1 is byte index (pri*1)
mov #pi.r00,r2
ash r1,r2 ; r2 = pi.r00 <<(pri)
bic r2,(r3) ; clear current level in pirq
bis 1100$(r0),(r3) ; trigger new pirqs
nop ; allow nestec interrupts to happem
nop ; "
dec 1300$ ; down level counter
rti
;
; table with new pirqs triggered at a level
1100$: .word 0 ; new pirq @ level 0
.word 0 ; new pirq @ level 1
.word 0 ; new pirq @ level 2
.word pi.r07 ; new pirq @ level 3 -> 7
.word pi.r05!pi.r02 ; new pirq @ level 4 -> 5+2
.word 0 ; new pirq @ level 5
.word 0 ; new pirq @ level 6
.word pi.r06!pi.r04 ; new pirq @ level 7 -> 6+4
;
; table with expected values of pirq register in interrupt sequence
1200$: .word 1,pi.r01!pi.r03!pi.n03 ; set 1+3 -> handle 3, set 7
.word 2,pi.r01!pi.r07!pi.n07 ; set 1+7 -> handle 7, set 6+4
.word 2,pi.r01!pi.r04!pi.r06!pi.n06 ; set 1+4+6 -> handle 6
.word 2,pi.r01!pi.r04!pi.n04 ; set 1+4 -> handle 4, set 5+2
.word 3,pi.r01!pi.r02!pi.r05!pi.n05 ; set 1+2+5 -> handle 5
.word 1,pi.r01!pi.r02!pi.n02 ; set 1+2 -> handle 2
.word 1,pi.r01!pi.n01 ; set 1 -> handle 1
; nesting level counter
1300$: .word 0
;
9999$: iot ; end of test A1.1
;
; Test A2: CPUERR +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
; This sub-section verifies operation of CPUERR register
;
; setup for all A2.* tests
mov #cp.err,r0 ; ptr tp CPUERR
mov #vhugen,v..iit ; set iit handler
clr v..iit+2 ; pr0 kernel
;
; Test A2.1 -- CPUERR cp.hlt +++++++++++++++++++++++++++++++++++++++++
; Test cp.hlt: halt in non-kernel mode
;
ta0201: mov #177777,(r0) ; clear CPUERR (any write should)
hcmpeq (r0),#0 ; ensure that CPUERR is zero
;
mov #4000$,r2 ; mode list (user,supervisor)
mov #2,r3 ; number of modes
;
1000$: clr r1 ; clear tracer
mov #3000$,vhustp ; continuation address
push (r2)+ ; frame: psw
push #2000$ ; frame: address
rti ; start user mode code
halt
;
2000$: inc r1 ; proof of execution
halt ; that will abort
inc r1
tst @#001 ; that must abort
;
3000$: hcmpeq r1,#1 ; check tracer
hcmpeq (r0),#cp.hlt ; check CPUERR
mov #cp.rsv,(r0) ; clear CPUERR (any write should)
hcmpeq (r0),#0 ; check CPUERR
;
sob r3,1000$ ; go for next mode
;
br 9999$
;
4000$: .word <cp.cmu!cp.pmu> ; user mode
.word <cp.cms!cp.pms> ; supervisor mode
;
9999$: iot ; end of test A2.1
;
; Test A2.2 -- CPUERR cp.aer +++++++++++++++++++++++++++++++++++++++++
; Test cp.aer: address error abort
;
ta0202: mov #1000$,vhustp ; continuation address
tst @#001 ; odd address access
halt
1000$: hcmpeq (r0),#cp.aer ; check CPUERR
clr (r0) ; clear CPUERR (any write should)
hcmpeq (r0),#0 ; check CPUERR
;
9999$: iot ; end of test A2.2
;
; Test A2.3 -- CPUERR cp.nxm +++++++++++++++++++++++++++++++++++++++++
; Test cp.nxm: non-existent memory abort
; Use unibus map address space (248kB) below the I/O page, the w11
; will return a non-existent memory abort even in a maximum memory
; configuration.
;
ta0203: cmpb systyp,#sy.e11 ; e11 V7.3 return wrong CPUERR value
beq 9999$
push kipar6 ; save kipar6
mov #177400,kipar6
mov #m3.e22,mmr3 ; 22-bit mode
mov #m0.ena,mmr0 ; enable mmu ;! MMU 22
;
mov #1000$,vhustp ; continuation address
tst p6base ; access non-existing memory
halt
1000$: hcmpeq (r0),#cp.nxm ; check CPUERR
com (r0) ; clear CPUERR (any write should)
hcmpeq (r0),#0 ; check CPUERR
;
reset ; disable mmu ;! MMU off
pop kipar6 ; restore kipar6
9999$: iot ; end of test A2.3
;
; Test A2.4 -- CPUERR cp.ito +++++++++++++++++++++++++++++++++++++++++
; Test cp.ito: unibus timeout abort
; Use first address in I/O page (160000), always unused in w11
;
ta0204: mov #1000$,vhustp ; continuation address
tst @#160000 ; access non-existing unibus device
halt
1000$: hcmpeq (r0),#cp.ito ; check CPUERR
clr (r0) ; clear CPUERR (any write should)
hcmpeq (r0),#0 ; check CPUERR
;
9999$: iot ; end of test A2.4
;
; Test A2.5 -- CPUERR cp.ysv +++++++++++++++++++++++++++++++++++++++++
; Test cp.ysv: yellow stack trap
; Since stack is still usable after the trap, the vhugen handler can be used.
;
ta0205: cmpb systyp,#sy.e11 ; e11 V7.3 doesnt trap, runs on hold
beq 9999$
mov #1000$,vhustp ; continuation address
mov #400,sp
clr -(sp) ; should trap (not abort)
halt ; not executed, handler continues at 1000$
1000$: hcmpeq (r0),#cp.ysv ; check CPUERR
clr (r0) ; clear CPUERR (any write should)
hcmpeq (r0),#0 ; check CPUERR
;
mov #stack,sp
9999$: iot ; end of test A2.5
;
; Test A2.6 -- CPUERR cp.rsv +++++++++++++++++++++++++++++++++++++++++
; Test cp.rsv: red stack trap - simple low stack case
;
ta0206: cmpb systyp,#sy.e11 ; e11 V7.3 doesnt abort, runs on hold
beq 9999$
mov #1000$,v..iit ; setup direct iit handler
mov #340,sp
clr -(sp) ; should abort (not trap)
halt
1000$: mov #stack,sp ; direct iit handler
hcmpeq (r0),#cp.rsv ; check CPUERR
clr (r0) ; clear CPUERR (any write should)
hcmpeq (r0),#0 ; check CPUERR
;
9999$: iot ; end of test A2.6
;
; Test A2.7 -- CPUERR cp.rsv+cp.aer (odd address) ++++++++++++++++++++
; Test cp.aer: fatal stack error after odd stack
;
ta0207: cmpb systyp,#sy.e11 ; e11 V7.3 pushes to odd stack, abort after halt
beq 9999$
mov #1000$,v..iit ; setup direct iit handler
mov #stack-1,sp
clr -(sp) ; odd-address abort, fatal stack error
halt
1000$: mov #stack,sp ; direct iit handler
hcmpeq (r0),#<cp.rsv+cp.aer> ; check CPUERR
clr (r0) ; clear CPUERR (any write should)
hcmpeq (r0),#0 ; check CPUERR
;
9999$: iot ; end of test A2.7
;
; Test A2.8 -- CPUERR cp.rsv+cp.nxm ++++++++++++++++++++++++++++++++++
; Test cp.nxm: fatal stack error after non-existent memory abort
; Setup like in A2.3, put stack at p6base+4
;
ta0208: cmpb systyp,#sy.e11 ; e11 V7.3 pushes to bad stack, abort after halt
beq 9999$
mov #1000$,v..iit ; setup direct iit handler
mov #177400,kipar6
mov #m3.e22,mmr3 ; 22-bit mode
mov #m0.ena,mmr0 ; enable mmu ;! MMU 22
;
mov #p6base+4,sp ; stack in non-existing memory
clr -(sp) ; non-existing memory, fatal stack error
halt
1000$: mov #stack,sp ; direct iit handler
hcmpeq (r0),#<cp.rsv+cp.nxm> ; check CPUERR
clr (r0) ; clear CPUERR (any write should)
hcmpeq (r0),#0 ; check CPUERR
;
reset ;! MMU off
mov #001400,kipar6 ; restore kipar6
;
9999$: iot ; end of test A2.8
;
; Test A2.9 -- CPUERR cp.rsv+cp.ito ++++++++++++++++++++++++++++++++++
; Test cp.ito: fatal stack error after unibus timeout
; Setup like in A2.4, put stack at 160004
;
ta0209: cmpb systyp,#sy.e11 ; e11 V7.3 pushes to bad stack, abort after halt
beq 9999$
mov #1000$,v..iit ; setup direct iit handler
mov #160004,sp ; stack at non-existing unibus device
clr -(sp) ; non-existing memory, fatal stack error
halt
1000$: mov #stack,sp ; direct iit handler
hcmpeq (r0),#<cp.rsv+cp.ito> ; check CPUERR
clr (r0) ; clear CPUERR (any write should)
hcmpeq (r0),#0 ; check CPUERR
;
9999$: iot ; end of test A2.9
;
; Test A2.10 -- CPUERR cp.rsv+cp.aer (mmu abort) +++++++++++++++++++++
; Test cp.rsv: fatal stack error after mmu abort
; Set kernel I page 6 to non-resident
;
ta0210: cmpb systyp,#sy.sih ; this fatal stack error fails in SimH
beq 9999$
cmpb systyp,#sy.e11 ; e11 V7.3 pushes to bad stack, does MMU 250
beq 9999$
mov #1000$,v..iit ; setup direct iit handler
clr kipdr6 ; set non-resident
mov #m3.e22,mmr3 ; 22-bit mode
mov #m0.ena,mmr0 ; enable mmu ;! MMU 22
;
mov #p6base+4,sp ; stack in non-resident memory
clr -(sp) ; MMU abort, fatal stack error
halt
1000$: mov #stack,sp ; direct iit handler
hcmpeq (r0),#<cp.rsv+cp.aer> ; check CPUERR
clr (r0) ; clear CPUERR (any write should)
hcmpeq (r0),#0 ; check CPUERR
;
reset ;! MMU off
mov kipdr5,kipdr6 ; restore kipdr6 (default kipdr are identical)
;
9999$: iot ; end of test A2.10
;
; -----------------------------------------------
; end of A2.* tests, restore iit handler
mov v..iit+2,v..iit ; restore iit handler
;
; Section B: Stress tests ====================================================
;
; Test B1: address mode torture tests +++++++++++++++++++++++++++++++++++++++
; This sub-section tests peculiar address node usage
;
; Test B1.1 -- src-dst update hazards with (r0)+,(r0) ++++++++++++++++
;
tb0101: mov #2,r5
100$: mov #1000$,r0
mov #1110$,r1
push 1000$+2 ; save data that will change
push 1000$+6
push 1100$+0
push 1100$+4
;
mov (r0)+,(r0)+ ; mov 111 over 222
add (r0)+,(r0)+ ; add 333 to 444
mov -(r1),-(r1) ; mov 444 over 333
add -(r1),-(r1) ; add 222 to 111
;
hcmpeq 1000$+2,#000111
hcmpeq 1000$+6,#000777
hcmpeq 1100$+4,#000444
hcmpeq 1100$+0,#000333
;
pop 1100$+4 ; restore data
pop 1100$+0
pop 1000$+6
pop 1000$+2
sob r5,100$
jmp 9999$
;
1000$: .word 000111 ; data for (r0)+ part
.word 000222
.word 000333
.word 000444
;
1100$: .word 000111 ; data for -(r0) part
.word 000222
.word 000333
.word 000444
1110$:
;
9999$: iot ; end of test B1.1
;
; Test B1.2 -- (pc)+ as destination ++++++++++++++++++++++++++++++++++
;
tb0102: mov #2,r5
100$: push 1000$+4 ; save data that will change
push 1100$+4
push 1200$+2
;
clr r0
1000$: mov #1,#0 ; (pc)+,(pc)+: write #1 over #0
1100$: add #1,#2 ; (pc)+,(pc)+: add #1 to #2
mov 1000$+4,1200$+2 ; -14(pc),2(pc): dst of mov -> src of add
1200$: add #0,r0 ; add #1(!) to r0
;
hcmpeq 1000$+4,#1
hcmpeq 1100$+4,#3
hcmpeq r0,#1
;
pop 1200$+2 ; restore data
pop 1100$+4
pop 1000$+4
sob r5,100$
;
9999$: iot ; end of test B1.2
;
; Test B1.3 -- pc as destination in clr, mov, and add ++++++++++++++++
;
tb0103: mov #000137,@#0 ; setup jmp 1000$ at mem(0)
mov #1000$,@#2
clr pc
halt
halt
halt
1000$: mov #1100$,pc
halt
halt
halt
1100$: clr r0
add #4,pc ; skip two instructions
inc r0
inc r0
inc r0 ; lands here
inc r0
hcmpeq r0,#2
;
clr @#0 ; remove jmp 1000$ at mem(0)
clr @#2
;
9999$: iot ; end of test B1.3
;
; Test B2: pipeline torture tests +++++++++++++++++++++++++++++++++++++++++++
; This sub-section tests self-modifying code
;
; Test B2.1 -- self-modifying code, use (pc), -(pc) ++++++++++++++++++
;
tb0201: mov #2,r5
100$: mov 1000$,-(sp)
mov 1100$,-(sp)
;
clr r0
clr r1
clr r2
mov #005201,r3 ; r3= inc r1
mov #005202,r4 ; r4= inc r2
;
inc r0
mov r3,(pc) ; will overwrite next instruction
1000$: halt ; will be overwritten with 'inc r1'
inc r0
1100$: mov r4,-(pc) ; will overwrite itself and re-execute(!)
inc r0
;
hcmpeq r0,#3 ; 3 inc r0 in code
hcmpeq r1,#1 ; check that 'inc r1' was executed
hcmpeq r2,#1 ; check that 'inc r2' was executed
;
mov (sp)+,1100$
mov (sp)+,1000$
sob r5,100$
;
9999$: iot ; end of test B2.1
;
; Test B2.2 -- self-modifying code, use (pc) case 2 ++++++++++++++++++
; Was insprired by KDJ11A.MAC (J11 is indeed pipelined)
;
tb0202: mov #2,r5
100$: mov 1000$,-(sp)
mov 1100$,-(sp)
mov 1200$,-(sp)
;
mov #1999$,r1
clr r2
;
mov #005202,(pc) ; will replace jmp (r1) with 'inc r2'
1000$: jmp (r1)
mov #005202,(pc) ; will replace jmp (r1) with 'inc r2'
1100$: jmp (r1)
mov #005202,(pc) ; will replace jmp (r1) with 'inc r2'
1200$: jmp (r1)
;
hcmpeq r2,#3 ; check that 'inc r2' was executed
;
mov (sp)+,1200$
mov (sp)+,1100$
mov (sp)+,1000$
sob r5,100$
jmp 9999$
;
1999$: halt ; halt as target for 'jmp (r1)'
;
9999$: iot ; end of test B2.2
;
; END OF ALL TESTS - loop closure ============================================
;
mov tstno,r0 ; hack, for easy monitoring ...
hcmpeq tstno,#16. ; all tests done ?
;
jmp loop
;
; kernel handlers ============================================================
;
; vhugen - generic handler for expected traps/abort ++++++++++++++++++++++++++
; the kernel continution address must be written to vhustp
; execution will reset vhustp to a catcher value
; --> vhustp must be set for each execution
;
vhugen: tst (sp)+ ; discard one word of vector push
mov vhustp,(sp) ; set up kernel return address
mov #vhuhlt,vhustp ; reset stop address by catcher
rts pc ; end return to continuation address
vhustp: .word vhuhlt
vhuhlt: halt
;
.end start