1
0
mirror of https://github.com/Gehstock/Mist_FPGA.git synced 2026-01-19 09:18:02 +00:00

Moon Patrol: update to common MiST components

This commit is contained in:
Gyorgy Szombathelyi 2019-06-03 19:47:48 +02:00
parent 30bf24c2dd
commit 6402124f90
6 changed files with 22 additions and 1110 deletions

View File

@ -155,7 +155,7 @@ set_global_assignment -name GENERATE_RBF_FILE ON
# SignalTap II Assignments
# ========================
set_global_assignment -name ENABLE_SIGNALTAP OFF
set_global_assignment -name USE_SIGNALTAP_FILE stp1.stp
set_global_assignment -name USE_SIGNALTAP_FILE Output/snd.stp
# Advanced I/O Timing Assignments
# ===============================
@ -187,7 +187,7 @@ set_global_assignment -name CYCLONEIII_CONFIGURATION_SCHEME "PASSIVE SERIAL"
set_global_assignment -name FORCE_CONFIGURATION_VCCIO ON
set_global_assignment -name POWER_PRESET_COOLING_SOLUTION "NO HEAT SINK WITH STILL AIR"
set_global_assignment -name POWER_BOARD_THERMAL_MODEL "NONE (CONSERVATIVE)"
set_instance_assignment -name PARTITION_HIERARCHY root_partition -to | -section_id Top
set_global_assignment -name QIP_FILE ../../../common/mist/mist.qip
set_global_assignment -name VHDL_FILE src/bitmapctl_e.vhd
set_global_assignment -name VHDL_FILE src/tilemapctl_e.vhd
set_global_assignment -name VHDL_FILE src/target_pkg.vhd
@ -232,10 +232,7 @@ set_global_assignment -name VHDL_FILE src/bitmap2_ctl.vhd
set_global_assignment -name VHDL_FILE src/bitmap1_ctl.vhd
set_global_assignment -name VHDL_FILE src/i82c55.vhd
set_global_assignment -name VERILOG_FILE src/keyboard.v
set_global_assignment -name VERILOG_FILE src/scandoubler.v
set_global_assignment -name SYSTEMVERILOG_FILE src/rgb2ypbpr.sv
set_global_assignment -name VERILOG_FILE src/osd.v
set_global_assignment -name VERILOG_FILE src/user_io.v
set_global_assignment -name VHDL_FILE src/sprite_array.vhd
set_global_assignment -name VHDL_FILE src/Clock.vhd
set_global_assignment -name VHDL_FILE src/build_id.vhd
set_global_assignment -name VHDL_FILE src/build_id.vhd
set_instance_assignment -name PARTITION_HIERARCHY root_partition -to | -section_id Top

View File

@ -8,6 +8,7 @@ use work.pace_pkg.all;
use work.video_controller_pkg.all;
use work.build_id.all;
use work.mist.all;
entity mpatrol is
port
@ -50,8 +51,8 @@ architecture SYN of mpatrol is
--MIST
signal audio : std_logic;
signal status : std_logic_vector(31 downto 0);
signal joystick1 : std_logic_vector(7 downto 0);
signal joystick2 : std_logic_vector(7 downto 0);
signal joystick1 : std_logic_vector(31 downto 0);
signal joystick2 : std_logic_vector(31 downto 0);
signal joystick : std_logic_vector(7 downto 0);
signal kbd_joy : std_logic_vector(9 downto 0);
signal switches : std_logic_vector(1 downto 0);
@ -64,24 +65,6 @@ architecture SYN of mpatrol is
signal audio_out : std_logic_vector(11 downto 0);
signal sound_data : std_logic_vector(7 downto 0);
signal sd_r : std_logic_vector(5 downto 0);
signal sd_g : std_logic_vector(5 downto 0);
signal sd_b : std_logic_vector(5 downto 0);
signal sd_hs : std_logic;
signal sd_vs : std_logic;
signal osd_red_i : std_logic_vector(5 downto 0);
signal osd_green_i : std_logic_vector(5 downto 0);
signal osd_blue_i : std_logic_vector(5 downto 0);
signal osd_vs_i : std_logic;
signal osd_hs_i : std_logic;
signal osd_red_o : std_logic_vector(5 downto 0);
signal osd_green_o : std_logic_vector(5 downto 0);
signal osd_blue_o : std_logic_vector(5 downto 0);
signal vga_y_o : std_logic_vector(5 downto 0);
signal vga_pb_o : std_logic_vector(5 downto 0);
signal vga_pr_o : std_logic_vector(5 downto 0);
constant CONF_STR : string :=
"MPATROL;;"&
"O12,Scandoubler Fx,None,CRT 25%,CRT 50%,CRT 75%;"&
@ -118,77 +101,6 @@ component keyboard
joystick :out STD_LOGIC_VECTOR(9 downto 0));
end component;
component user_io
generic ( STRLEN : integer := 0 );
port (
clk_sys : in STD_LOGIC;
conf_str : in std_logic_vector(8*STRLEN-1 downto 0);
SPI_CLK : in STD_LOGIC;
SPI_SS_IO : in STD_LOGIC;
SPI_MOSI : in STD_LOGIC;
SPI_MISO : out STD_LOGIC;
switches : out STD_LOGIC_VECTOR(1 downto 0);
buttons : out STD_LOGIC_VECTOR(1 downto 0);
scandoubler_disable : out STD_LOGIC;
ypbpr : out STD_LOGIC;
joystick_1 : out STD_LOGIC_VECTOR(7 downto 0);
joystick_0 : out STD_LOGIC_VECTOR(7 downto 0);
status : out STD_LOGIC_VECTOR(31 downto 0);
ps2_kbd_clk : out STD_LOGIC;
ps2_kbd_data : out STD_LOGIC);
end component;
component scandoubler
port (
clk_sys : in std_logic;
scanlines : in std_logic_vector(1 downto 0);
hs_in : in std_logic;
vs_in : in std_logic;
r_in : in std_logic_vector(5 downto 0);
g_in : in std_logic_vector(5 downto 0);
b_in : in std_logic_vector(5 downto 0);
hs_out : out std_logic;
vs_out : out std_logic;
r_out : out std_logic_vector(5 downto 0);
g_out : out std_logic_vector(5 downto 0);
b_out : out std_logic_vector(5 downto 0)
);
end component scandoubler;
component osd
generic ( OSD_COLOR : integer := 1 ); -- blue
port (
clk_sys : in std_logic;
R_in : in std_logic_vector(5 downto 0);
G_in : in std_logic_vector(5 downto 0);
B_in : in std_logic_vector(5 downto 0);
HSync : in std_logic;
VSync : in std_logic;
R_out : out std_logic_vector(5 downto 0);
G_out : out std_logic_vector(5 downto 0);
B_out : out std_logic_vector(5 downto 0);
SPI_SCK : in std_logic;
SPI_SS3 : in std_logic;
SPI_DI : in std_logic
);
end component osd;
COMPONENT rgb2ypbpr
PORT (
red : IN std_logic_vector(5 DOWNTO 0);
green : IN std_logic_vector(5 DOWNTO 0);
blue : IN std_logic_vector(5 DOWNTO 0);
y : OUT std_logic_vector(5 DOWNTO 0);
pb : OUT std_logic_vector(5 DOWNTO 0);
pr : OUT std_logic_vector(5 DOWNTO 0)
);
END COMPONENT;
begin
--CLOCK
@ -279,7 +191,7 @@ u_keyboard : keyboard
joystick => kbd_joy
);
joystick <= joystick1 or joystick2;
joystick <= joystick1(7 downto 0) or joystick2(7 downto 0);
inputs_i.jamma_n.coin(1) <= not (joystick(6) or kbd_joy(3));--ESC
inputs_i.jamma_n.p(1).start <= not (kbd_joy(1) or joystick1(7));--KB 1
@ -352,64 +264,29 @@ pace_inst : entity work.pace
sound_data_o => sound_data
);
scandoubler_inst: scandoubler
mist_video: work.mist.mist_video
port map (
clk_sys => clk_vid,
scanlines => status(2 downto 1),
hs_in => video_o.hsync,
vs_in => video_o.vsync,
r_in => video_o.rgb.r(9 downto 4),
g_in => video_o.rgb.g(9 downto 4),
b_in => video_o.rgb.b(9 downto 4),
hs_out => sd_hs,
vs_out => sd_vs,
r_out => sd_r,
g_out => sd_g,
b_out => sd_b
);
osd_inst: osd
port map (
clk_sys => clk_vid,
scandoubler_disable => scandoubler_disable,
ypbpr => ypbpr,
rotate => "00",
SPI_SCK => SPI_SCK,
SPI_SS3 => SPI_SS3,
SPI_DI => SPI_DI,
R_in => osd_red_i,
G_in => osd_green_i,
B_in => osd_blue_i,
HSync => osd_hs_i,
VSync => osd_vs_i,
HSync => video_o.hsync,
VSync => video_o.vsync,
R => video_o.rgb.r(9 downto 4),
G => video_o.rgb.g(9 downto 4),
B => video_o.rgb.b(9 downto 4),
R_out => osd_red_o,
G_out => osd_green_o,
B_out => osd_blue_o
VGA_HS => VGA_HS,
VGA_VS => VGA_VS,
VGA_R => VGA_R,
VGA_G => VGA_G,
VGA_B => VGA_B
);
rgb2component: component rgb2ypbpr
port map (
red => osd_red_o,
green => osd_green_o,
blue => osd_blue_o,
y => vga_y_o,
pb => vga_pb_o,
pr => vga_pr_o
);
osd_red_i <= video_o.rgb.r(9 downto 4) when scandoubler_disable = '1' else sd_r;
osd_green_i <= video_o.rgb.g(9 downto 4) when scandoubler_disable = '1' else sd_g;
osd_blue_i <= video_o.rgb.b(9 downto 4) when scandoubler_disable = '1' else sd_b;
osd_hs_i <= video_o.hsync when scandoubler_disable = '1' else sd_hs;
osd_vs_i <= video_o.vsync when scandoubler_disable = '1' else sd_vs;
-- If 15kHz Video - composite sync to VGA_HS and VGA_VS high for MiST RGB cable
VGA_HS <= not (video_o.hsync xor video_o.vsync) when scandoubler_disable='1' else not (sd_hs xor sd_vs) when ypbpr='1' else sd_hs;
VGA_VS <= '1' when scandoubler_disable='1' or ypbpr='1' else sd_vs;
VGA_R <= vga_pr_o when ypbpr='1' else osd_red_o;
VGA_G <= vga_y_o when ypbpr='1' else osd_green_o;
VGA_B <= vga_pb_o when ypbpr='1' else osd_blue_o;
--
end SYN;

View File

@ -1,179 +0,0 @@
// A simple OSD implementation. Can be hooked up between a cores
// VGA output and the physical VGA pins
module osd (
// OSDs pixel clock, should be synchronous to cores pixel clock to
// avoid jitter.
input clk_sys,
// SPI interface
input SPI_SCK,
input SPI_SS3,
input SPI_DI,
// VGA signals coming from core
input [5:0] R_in,
input [5:0] G_in,
input [5:0] B_in,
input HSync,
input VSync,
// VGA signals going to video connector
output [5:0] R_out,
output [5:0] G_out,
output [5:0] B_out
);
parameter OSD_X_OFFSET = 10'd0;
parameter OSD_Y_OFFSET = 10'd0;
parameter OSD_COLOR = 3'd0;
localparam OSD_WIDTH = 10'd256;
localparam OSD_HEIGHT = 10'd128;
// *********************************************************************************
// spi client
// *********************************************************************************
// this core supports only the display related OSD commands
// of the minimig
reg osd_enable;
(* ramstyle = "no_rw_check" *) reg [7:0] osd_buffer[2047:0]; // the OSD buffer itself
// the OSD has its own SPI interface to the io controller
always@(posedge SPI_SCK, posedge SPI_SS3) begin
reg [4:0] cnt;
reg [10:0] bcnt;
reg [7:0] sbuf;
reg [7:0] cmd;
if(SPI_SS3) begin
cnt <= 0;
bcnt <= 0;
end else begin
sbuf <= {sbuf[6:0], SPI_DI};
// 0:7 is command, rest payload
if(cnt < 15) cnt <= cnt + 1'd1;
else cnt <= 8;
if(cnt == 7) begin
cmd <= {sbuf[6:0], SPI_DI};
// lower three command bits are line address
bcnt <= {sbuf[1:0], SPI_DI, 8'h00};
// command 0x40: OSDCMDENABLE, OSDCMDDISABLE
if(sbuf[6:3] == 4'b0100) osd_enable <= SPI_DI;
end
// command 0x20: OSDCMDWRITE
if((cmd[7:3] == 5'b00100) && (cnt == 15)) begin
osd_buffer[bcnt] <= {sbuf[6:0], SPI_DI};
bcnt <= bcnt + 1'd1;
end
end
end
// *********************************************************************************
// video timing and sync polarity anaylsis
// *********************************************************************************
// horizontal counter
reg [9:0] h_cnt;
reg [9:0] hs_low, hs_high;
wire hs_pol = hs_high < hs_low;
wire [9:0] dsp_width = hs_pol ? hs_low : hs_high;
// vertical counter
reg [9:0] v_cnt;
reg [9:0] vs_low, vs_high;
wire vs_pol = vs_high < vs_low;
wire [9:0] dsp_height = vs_pol ? vs_low : vs_high;
wire doublescan = (dsp_height>350);
reg ce_pix;
always @(negedge clk_sys) begin
integer cnt = 0;
integer pixsz, pixcnt;
reg hs;
cnt <= cnt + 1;
hs <= HSync;
pixcnt <= pixcnt + 1;
if(pixcnt == pixsz) pixcnt <= 0;
ce_pix <= !pixcnt;
if(hs && ~HSync) begin
cnt <= 0;
pixsz <= (cnt >> 9) - 1;
pixcnt <= 0;
ce_pix <= 1;
end
end
always @(posedge clk_sys) begin
reg hsD, hsD2;
reg vsD, vsD2;
if(ce_pix) begin
// bring hsync into local clock domain
hsD <= HSync;
hsD2 <= hsD;
// falling edge of HSync
if(!hsD && hsD2) begin
h_cnt <= 0;
hs_high <= h_cnt;
end
// rising edge of HSync
else if(hsD && !hsD2) begin
h_cnt <= 0;
hs_low <= h_cnt;
v_cnt <= v_cnt + 1'd1;
end else begin
h_cnt <= h_cnt + 1'd1;
end
vsD <= VSync;
vsD2 <= vsD;
// falling edge of VSync
if(!vsD && vsD2) begin
v_cnt <= 0;
vs_high <= v_cnt;
end
// rising edge of VSync
else if(vsD && !vsD2) begin
v_cnt <= 0;
vs_low <= v_cnt;
end
end
end
// area in which OSD is being displayed
wire [9:0] h_osd_start = ((dsp_width - OSD_WIDTH)>> 1) + OSD_X_OFFSET;
wire [9:0] h_osd_end = h_osd_start + OSD_WIDTH;
wire [9:0] v_osd_start = ((dsp_height- (OSD_HEIGHT<<doublescan))>> 1) + OSD_Y_OFFSET;
wire [9:0] v_osd_end = v_osd_start + (OSD_HEIGHT<<doublescan);
wire [9:0] osd_hcnt = h_cnt - h_osd_start + 1'd1; // one pixel offset for osd_byte register
wire [9:0] osd_vcnt = v_cnt - v_osd_start;
wire osd_de = osd_enable &&
(HSync != hs_pol) && (h_cnt >= h_osd_start) && (h_cnt < h_osd_end) &&
(VSync != vs_pol) && (v_cnt >= v_osd_start) && (v_cnt < v_osd_end);
reg [7:0] osd_byte;
always @(posedge clk_sys) if(ce_pix) osd_byte <= osd_buffer[{doublescan ? osd_vcnt[7:5] : osd_vcnt[6:4], osd_hcnt[7:0]}];
wire osd_pixel = osd_byte[doublescan ? osd_vcnt[4:2] : osd_vcnt[3:1]];
assign R_out = !osd_de ? R_in : {osd_pixel, osd_pixel, OSD_COLOR[2], R_in[5:3]};
assign G_out = !osd_de ? G_in : {osd_pixel, osd_pixel, OSD_COLOR[1], G_in[5:3]};
assign B_out = !osd_de ? B_in : {osd_pixel, osd_pixel, OSD_COLOR[0], B_in[5:3]};
endmodule

View File

@ -1,55 +0,0 @@
module rgb2ypbpr (
input [5:0] red,
input [5:0] green,
input [5:0] blue,
output [5:0] y,
output [5:0] pb,
output [5:0] pr
);
wire [5:0] yuv_full[225] = '{
6'd0, 6'd0, 6'd0, 6'd0, 6'd1, 6'd1, 6'd1, 6'd1,
6'd2, 6'd2, 6'd2, 6'd3, 6'd3, 6'd3, 6'd3, 6'd4,
6'd4, 6'd4, 6'd5, 6'd5, 6'd5, 6'd5, 6'd6, 6'd6,
6'd6, 6'd7, 6'd7, 6'd7, 6'd7, 6'd8, 6'd8, 6'd8,
6'd9, 6'd9, 6'd9, 6'd9, 6'd10, 6'd10, 6'd10, 6'd11,
6'd11, 6'd11, 6'd11, 6'd12, 6'd12, 6'd12, 6'd13, 6'd13,
6'd13, 6'd13, 6'd14, 6'd14, 6'd14, 6'd15, 6'd15, 6'd15,
6'd15, 6'd16, 6'd16, 6'd16, 6'd17, 6'd17, 6'd17, 6'd17,
6'd18, 6'd18, 6'd18, 6'd19, 6'd19, 6'd19, 6'd19, 6'd20,
6'd20, 6'd20, 6'd21, 6'd21, 6'd21, 6'd21, 6'd22, 6'd22,
6'd22, 6'd23, 6'd23, 6'd23, 6'd23, 6'd24, 6'd24, 6'd24,
6'd25, 6'd25, 6'd25, 6'd25, 6'd26, 6'd26, 6'd26, 6'd27,
6'd27, 6'd27, 6'd27, 6'd28, 6'd28, 6'd28, 6'd29, 6'd29,
6'd29, 6'd29, 6'd30, 6'd30, 6'd30, 6'd31, 6'd31, 6'd31,
6'd31, 6'd32, 6'd32, 6'd32, 6'd33, 6'd33, 6'd33, 6'd33,
6'd34, 6'd34, 6'd34, 6'd35, 6'd35, 6'd35, 6'd35, 6'd36,
6'd36, 6'd36, 6'd36, 6'd37, 6'd37, 6'd37, 6'd38, 6'd38,
6'd38, 6'd38, 6'd39, 6'd39, 6'd39, 6'd40, 6'd40, 6'd40,
6'd40, 6'd41, 6'd41, 6'd41, 6'd42, 6'd42, 6'd42, 6'd42,
6'd43, 6'd43, 6'd43, 6'd44, 6'd44, 6'd44, 6'd44, 6'd45,
6'd45, 6'd45, 6'd46, 6'd46, 6'd46, 6'd46, 6'd47, 6'd47,
6'd47, 6'd48, 6'd48, 6'd48, 6'd48, 6'd49, 6'd49, 6'd49,
6'd50, 6'd50, 6'd50, 6'd50, 6'd51, 6'd51, 6'd51, 6'd52,
6'd52, 6'd52, 6'd52, 6'd53, 6'd53, 6'd53, 6'd54, 6'd54,
6'd54, 6'd54, 6'd55, 6'd55, 6'd55, 6'd56, 6'd56, 6'd56,
6'd56, 6'd57, 6'd57, 6'd57, 6'd58, 6'd58, 6'd58, 6'd58,
6'd59, 6'd59, 6'd59, 6'd60, 6'd60, 6'd60, 6'd60, 6'd61,
6'd61, 6'd61, 6'd62, 6'd62, 6'd62, 6'd62, 6'd63, 6'd63,
6'd63
};
wire [18:0] y_8 = 19'd04096 + ({red, 8'd0} + {red, 3'd0}) + ({green, 9'd0} + {green, 2'd0}) + ({blue, 6'd0} + {blue, 5'd0} + {blue, 2'd0});
wire [18:0] pb_8 = 19'd32768 - ({red, 7'd0} + {red, 4'd0} + {red, 3'd0}) - ({green, 8'd0} + {green, 5'd0} + {green, 3'd0}) + ({blue, 8'd0} + {blue, 7'd0} + {blue, 6'd0});
wire [18:0] pr_8 = 19'd32768 + ({red, 8'd0} + {red, 7'd0} + {red, 6'd0}) - ({green, 8'd0} + {green, 6'd0} + {green, 5'd0} + {green, 4'd0} + {green, 3'd0}) - ({blue, 6'd0} + {blue , 3'd0});
wire [7:0] y_i = ( y_8[17:8] < 16) ? 8'd16 : ( y_8[17:8] > 235) ? 8'd235 : y_8[15:8];
wire [7:0] pb_i = (pb_8[17:8] < 16) ? 8'd16 : (pb_8[17:8] > 240) ? 8'd240 : pb_8[15:8];
wire [7:0] pr_i = (pr_8[17:8] < 16) ? 8'd16 : (pr_8[17:8] > 240) ? 8'd240 : pr_8[15:8];
assign pr = yuv_full[pr_i - 8'd16];
assign y = yuv_full[y_i - 8'd16];
assign pb = yuv_full[pb_i - 8'd16];
endmodule

View File

@ -1,178 +0,0 @@
//
// scandoubler.v
//
// Copyright (c) 2015 Till Harbaum <till@harbaum.org>
//
// This source file is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This source file is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// TODO: Delay vsync one line
module scandoubler
(
// system interface
input clk_sys,
// scanlines (00-none 01-25% 10-50% 11-75%)
input [1:0] scanlines,
// shifter video interface
input hs_in,
input vs_in,
input [5:0] r_in,
input [5:0] g_in,
input [5:0] b_in,
// output interface
output reg hs_out,
output reg vs_out,
output reg [5:0] r_out,
output reg [5:0] g_out,
output reg [5:0] b_out
);
// try to detect changes in input signal and lock input clock gate
// it
reg [1:0] i_div;
wire ce_x1 = (i_div == 2'b01);
wire ce_x2 = i_div[0];
always @(posedge clk_sys) begin
reg last_hs_in;
last_hs_in <= hs_in;
if(last_hs_in & !hs_in) begin
i_div <= 2'b00;
end else begin
i_div <= i_div + 2'd1;
end
end
// --------------------- create output signals -----------------
// latch everything once more to make it glitch free and apply scanline effect
reg scanline;
always @(posedge clk_sys) begin
if(ce_x2) begin
hs_out <= hs_sd;
vs_out <= vs_in;
// reset scanlines at every new screen
if(vs_out != vs_in) scanline <= 0;
// toggle scanlines at begin of every hsync
if(hs_out && !hs_sd) scanline <= !scanline;
// if no scanlines or not a scanline
if(!scanline || !scanlines) begin
r_out <= sd_out[17:12];
g_out <= sd_out[11:6];
b_out <= sd_out[5:0];
end else begin
case(scanlines)
1: begin // reduce 25% = 1/2 + 1/4
r_out <= {1'b0, sd_out[17:14], 1'b0} + {2'b00, sd_out[17:14]};
g_out <= {1'b0, sd_out[11:8], 1'b0} + {2'b00, sd_out[11:8] };
b_out <= {1'b0, sd_out[5:2], 1'b0} + {2'b00, sd_out[5:2] };
end
2: begin // reduce 50% = 1/2
r_out <= {1'b0, sd_out[17:14], 1'b0};
g_out <= {1'b0, sd_out[11:8], 1'b0};
b_out <= {1'b0, sd_out[5:2], 1'b0};
end
3: begin // reduce 75% = 1/4
r_out <= {2'b00, sd_out[17:14]};
g_out <= {2'b00, sd_out[11:8]};
b_out <= {2'b00, sd_out[5:2]};
end
endcase
end
end
end
// scan doubler output register
reg [17:0] sd_out;
// ==================================================================
// ======================== the line buffers ========================
// ==================================================================
// 2 lines of 512 pixels 3*6 bit RGB
(* ramstyle = "no_rw_check" *) reg [17:0] sd_buffer[2048];
// use alternating sd_buffers when storing/reading data
reg line_toggle;
// total hsync time (in 16MHz cycles), hs_total reaches 1024
reg [9:0] hs_max;
reg [9:0] hs_rise;
reg [9:0] hcnt;
always @(posedge clk_sys) begin
reg hsD, vsD;
if(ce_x1) begin
hsD <= hs_in;
// falling edge of hsync indicates start of line
if(hsD && !hs_in) begin
hs_max <= hcnt;
hcnt <= 0;
end else begin
hcnt <= hcnt + 1'd1;
end
// save position of rising edge
if(!hsD && hs_in) hs_rise <= hcnt;
vsD <= vs_in;
if(vsD != vs_in) line_toggle <= 0;
// begin of incoming hsync
if(hsD && !hs_in) line_toggle <= !line_toggle;
sd_buffer[{line_toggle, hcnt}] <= {r_in, g_in, b_in};
end
end
// ==================================================================
// ==================== output timing generation ====================
// ==================================================================
reg [9:0] sd_hcnt;
reg hs_sd;
// timing generation runs 32 MHz (twice the input signal analysis speed)
always @(posedge clk_sys) begin
reg hsD;
if(ce_x2) begin
hsD <= hs_in;
// output counter synchronous to input and at twice the rate
sd_hcnt <= sd_hcnt + 1'd1;
if(hsD && !hs_in) sd_hcnt <= hs_max;
if(sd_hcnt == hs_max) sd_hcnt <= 0;
// replicate horizontal sync at twice the speed
if(sd_hcnt == hs_max) hs_sd <= 0;
if(sd_hcnt == hs_rise) hs_sd <= 1;
// read data from line sd_buffer
sd_out <= sd_buffer[{~line_toggle, sd_hcnt}];
end
end
endmodule

View File

@ -1,550 +0,0 @@
//
// user_io.v
//
// user_io for the MiST board
// http://code.google.com/p/mist-board/
//
// Copyright (c) 2014 Till Harbaum <till@harbaum.org>
//
// This source file is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This source file is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// parameter STRLEN and the actual length of conf_str have to match
module user_io #(parameter STRLEN=0, parameter PS2DIV=100) (
input [(8*STRLEN)-1:0] conf_str,
input clk_sys, // clock for system-related messages (kbd, joy, etc...)
input clk_sd, // clock for SD-card related messages
input SPI_CLK,
input SPI_SS_IO,
output reg SPI_MISO,
input SPI_MOSI,
output reg [31:0] joystick_0,
output reg [31:0] joystick_1,
output reg [31:0] joystick_2,
output reg [31:0] joystick_3,
output reg [31:0] joystick_4,
output reg [15:0] joystick_analog_0,
output reg [15:0] joystick_analog_1,
output [1:0] buttons,
output [1:0] switches,
output scandoubler_disable,
output ypbpr,
output reg [31:0] status,
// connection to sd card emulation
input [31:0] sd_lba,
input sd_rd,
input sd_wr,
output reg sd_ack,
output reg sd_ack_conf,
input sd_conf,
input sd_sdhc,
output reg [7:0] sd_dout, // valid on rising edge of sd_dout_strobe
output reg sd_dout_strobe,
input [7:0] sd_din,
output reg sd_din_strobe,
output reg [8:0] sd_buff_addr,
output reg img_mounted, //rising edge if a new image is mounted
output reg [31:0] img_size, // size of image in bytes
// ps2 keyboard/mouse emulation
output ps2_kbd_clk,
output reg ps2_kbd_data,
output ps2_mouse_clk,
output reg ps2_mouse_data,
// mouse data
output reg [8:0] mouse_x,
output reg [8:0] mouse_y,
output reg [7:0] mouse_flags, // YOvfl, XOvfl, dy8, dx8, 1, mbtn, rbtn, lbtn
output reg mouse_strobe, // mouse data is valid on mouse_strobe
// serial com port
input [7:0] serial_data,
input serial_strobe
);
reg [6:0] sbuf;
reg [7:0] cmd;
reg [2:0] bit_cnt; // counts bits 0-7 0-7 ...
reg [9:0] byte_cnt; // counts bytes
reg [7:0] but_sw;
reg [2:0] stick_idx;
assign buttons = but_sw[1:0];
assign switches = but_sw[3:2];
assign scandoubler_disable = but_sw[4];
assign ypbpr = but_sw[5];
// this variant of user_io is for 8 bit cores (type == a4) only
wire [7:0] core_type = 8'ha4;
// command byte read by the io controller
wire [7:0] sd_cmd = { 4'h5, sd_conf, sd_sdhc, sd_wr, sd_rd };
wire spi_sck = SPI_CLK;
// ---------------- PS2 ---------------------
// 8 byte fifos to store ps2 bytes
localparam PS2_FIFO_BITS = 3;
reg ps2_clk;
always @(negedge clk_sys) begin
integer cnt;
cnt <= cnt + 1'd1;
if(cnt == PS2DIV) begin
ps2_clk <= ~ps2_clk;
cnt <= 0;
end
end
// keyboard
reg [7:0] ps2_kbd_fifo [(2**PS2_FIFO_BITS)-1:0];
reg [PS2_FIFO_BITS-1:0] ps2_kbd_wptr;
reg [PS2_FIFO_BITS-1:0] ps2_kbd_rptr;
// ps2 transmitter state machine
reg [3:0] ps2_kbd_tx_state;
reg [7:0] ps2_kbd_tx_byte;
reg ps2_kbd_parity;
assign ps2_kbd_clk = ps2_clk || (ps2_kbd_tx_state == 0);
// ps2 transmitter
// Takes a byte from the FIFO and sends it in a ps2 compliant serial format.
reg ps2_kbd_r_inc;
always@(posedge clk_sys) begin
reg ps2_clkD;
ps2_clkD <= ps2_clk;
if (~ps2_clkD & ps2_clk) begin
ps2_kbd_r_inc <= 1'b0;
if(ps2_kbd_r_inc)
ps2_kbd_rptr <= ps2_kbd_rptr + 1'd1;
// transmitter is idle?
if(ps2_kbd_tx_state == 0) begin
// data in fifo present?
if(ps2_kbd_wptr != ps2_kbd_rptr) begin
// load tx register from fifo
ps2_kbd_tx_byte <= ps2_kbd_fifo[ps2_kbd_rptr];
ps2_kbd_r_inc <= 1'b1;
// reset parity
ps2_kbd_parity <= 1'b1;
// start transmitter
ps2_kbd_tx_state <= 4'd1;
// put start bit on data line
ps2_kbd_data <= 1'b0; // start bit is 0
end
end else begin
// transmission of 8 data bits
if((ps2_kbd_tx_state >= 1)&&(ps2_kbd_tx_state < 9)) begin
ps2_kbd_data <= ps2_kbd_tx_byte[0]; // data bits
ps2_kbd_tx_byte[6:0] <= ps2_kbd_tx_byte[7:1]; // shift down
if(ps2_kbd_tx_byte[0])
ps2_kbd_parity <= !ps2_kbd_parity;
end
// transmission of parity
if(ps2_kbd_tx_state == 9)
ps2_kbd_data <= ps2_kbd_parity;
// transmission of stop bit
if(ps2_kbd_tx_state == 10)
ps2_kbd_data <= 1'b1; // stop bit is 1
// advance state machine
if(ps2_kbd_tx_state < 11)
ps2_kbd_tx_state <= ps2_kbd_tx_state + 4'd1;
else
ps2_kbd_tx_state <= 4'd0;
end
end
end
// mouse
reg [7:0] ps2_mouse_fifo [(2**PS2_FIFO_BITS)-1:0];
reg [PS2_FIFO_BITS-1:0] ps2_mouse_wptr;
reg [PS2_FIFO_BITS-1:0] ps2_mouse_rptr;
// ps2 transmitter state machine
reg [3:0] ps2_mouse_tx_state;
reg [7:0] ps2_mouse_tx_byte;
reg ps2_mouse_parity;
assign ps2_mouse_clk = ps2_clk || (ps2_mouse_tx_state == 0);
// ps2 transmitter
// Takes a byte from the FIFO and sends it in a ps2 compliant serial format.
reg ps2_mouse_r_inc;
always@(posedge clk_sys) begin
reg ps2_clkD;
ps2_clkD <= ps2_clk;
if (~ps2_clkD & ps2_clk) begin
ps2_mouse_r_inc <= 1'b0;
if(ps2_mouse_r_inc)
ps2_mouse_rptr <= ps2_mouse_rptr + 1'd1;
// transmitter is idle?
if(ps2_mouse_tx_state == 0) begin
// data in fifo present?
if(ps2_mouse_wptr != ps2_mouse_rptr) begin
// load tx register from fifo
ps2_mouse_tx_byte <= ps2_mouse_fifo[ps2_mouse_rptr];
ps2_mouse_r_inc <= 1'b1;
// reset parity
ps2_mouse_parity <= 1'b1;
// start transmitter
ps2_mouse_tx_state <= 4'd1;
// put start bit on data line
ps2_mouse_data <= 1'b0; // start bit is 0
end
end else begin
// transmission of 8 data bits
if((ps2_mouse_tx_state >= 1)&&(ps2_mouse_tx_state < 9)) begin
ps2_mouse_data <= ps2_mouse_tx_byte[0]; // data bits
ps2_mouse_tx_byte[6:0] <= ps2_mouse_tx_byte[7:1]; // shift down
if(ps2_mouse_tx_byte[0])
ps2_mouse_parity <= !ps2_mouse_parity;
end
// transmission of parity
if(ps2_mouse_tx_state == 9)
ps2_mouse_data <= ps2_mouse_parity;
// transmission of stop bit
if(ps2_mouse_tx_state == 10)
ps2_mouse_data <= 1'b1; // stop bit is 1
// advance state machine
if(ps2_mouse_tx_state < 11)
ps2_mouse_tx_state <= ps2_mouse_tx_state + 4'd1;
else
ps2_mouse_tx_state <= 4'd0;
end
end
end
// fifo to receive serial data from core to be forwarded to io controller
// 16 byte fifo to store serial bytes
localparam SERIAL_OUT_FIFO_BITS = 6;
reg [7:0] serial_out_fifo [(2**SERIAL_OUT_FIFO_BITS)-1:0];
reg [SERIAL_OUT_FIFO_BITS-1:0] serial_out_wptr;
reg [SERIAL_OUT_FIFO_BITS-1:0] serial_out_rptr;
wire serial_out_data_available = serial_out_wptr != serial_out_rptr;
wire [7:0] serial_out_byte = serial_out_fifo[serial_out_rptr] /* synthesis keep */;
wire [7:0] serial_out_status = { 7'b1000000, serial_out_data_available};
// status[0] is reset signal from io controller and is thus used to flush
// the fifo
always @(posedge serial_strobe or posedge status[0]) begin
if(status[0] == 1) begin
serial_out_wptr <= 0;
end else begin
serial_out_fifo[serial_out_wptr] <= serial_data;
serial_out_wptr <= serial_out_wptr + 1'd1;
end
end
always@(negedge spi_sck or posedge status[0]) begin
if(status[0] == 1) begin
serial_out_rptr <= 0;
end else begin
if((byte_cnt != 0) && (cmd == 8'h1b)) begin
// read last bit -> advance read pointer
if((bit_cnt == 7) && !byte_cnt[0] && serial_out_data_available)
serial_out_rptr <= serial_out_rptr + 1'd1;
end
end
end
// SPI bit and byte counters
always@(posedge spi_sck or posedge SPI_SS_IO) begin
if(SPI_SS_IO == 1) begin
bit_cnt <= 0;
byte_cnt <= 0;
end else begin
if((bit_cnt == 7)&&(~&byte_cnt))
byte_cnt <= byte_cnt + 8'd1;
bit_cnt <= bit_cnt + 1'd1;
end
end
// SPI transmitter FPGA -> IO
reg [7:0] spi_byte_out;
always@(negedge spi_sck or posedge SPI_SS_IO) begin
if(SPI_SS_IO == 1) begin
SPI_MISO <= 1'bZ;
end else begin
SPI_MISO <= spi_byte_out[~bit_cnt];
end
end
always@(posedge spi_sck or posedge SPI_SS_IO) begin
reg [31:0] sd_lba_r;
if(SPI_SS_IO == 1) begin
spi_byte_out <= core_type;
end else begin
// read the command byte to choose the response
if(bit_cnt == 7) begin
if(!byte_cnt) cmd <= {sbuf, SPI_MOSI};
spi_byte_out <= 0;
case({(!byte_cnt) ? {sbuf, SPI_MOSI} : cmd})
// reading config string
8'h14: if(byte_cnt < STRLEN) spi_byte_out <= conf_str[(STRLEN - byte_cnt - 1)<<3 +:8];
// reading sd card status
8'h16: if(byte_cnt == 0) begin
spi_byte_out <= sd_cmd;
sd_lba_r <= sd_lba;
end
else if(byte_cnt < 5) spi_byte_out <= sd_lba_r[(4-byte_cnt)<<3 +:8];
// reading sd card write data
8'h18: spi_byte_out <= sd_din;
8'h1b:
// send alternating flag byte and data
if(byte_cnt[0]) spi_byte_out <= serial_out_status;
else spi_byte_out <= serial_out_byte;
endcase
end
end
end
// SPI receiver IO -> FPGA
reg spi_receiver_strobe_r = 0;
reg spi_transfer_end_r = 1;
reg [7:0] spi_byte_in;
// Read at spi_sck clock domain, assemble bytes for transferring to clk_sys
always@(posedge spi_sck or posedge SPI_SS_IO) begin
if(SPI_SS_IO == 1) begin
spi_transfer_end_r <= 1;
end else begin
spi_transfer_end_r <= 0;
if(bit_cnt != 7)
sbuf[6:0] <= { sbuf[5:0], SPI_MOSI };
// finished reading a byte, prepare to transfer to clk_sys
if(bit_cnt == 7) begin
spi_byte_in <= { sbuf, SPI_MOSI};
spi_receiver_strobe_r <= ~spi_receiver_strobe_r;
end
end
end
// Process bytes from SPI at the clk_sys domain
always @(posedge clk_sys) begin
reg spi_receiver_strobe;
reg spi_transfer_end;
reg spi_receiver_strobeD;
reg spi_transfer_endD;
reg [7:0] acmd;
reg [7:0] abyte_cnt; // counts bytes
reg [7:0] mouse_flags_r;
reg [7:0] mouse_x_r;
//synchronize between SPI and sys clock domains
spi_receiver_strobeD <= spi_receiver_strobe_r;
spi_receiver_strobe <= spi_receiver_strobeD;
spi_transfer_endD <= spi_transfer_end_r;
spi_transfer_end <= spi_transfer_endD;
mouse_strobe <= 0;
if (~spi_transfer_endD & spi_transfer_end) begin
abyte_cnt <= 8'd0;
end else if (spi_receiver_strobeD ^ spi_receiver_strobe) begin
if(~&abyte_cnt)
abyte_cnt <= abyte_cnt + 8'd1;
if(abyte_cnt == 0) begin
acmd <= spi_byte_in;
end else begin
case(acmd)
// buttons and switches
8'h01: but_sw <= spi_byte_in;
8'h60: if (abyte_cnt < 5) joystick_0[(abyte_cnt-1)<<3 +:8] <= spi_byte_in;
8'h61: if (abyte_cnt < 5) joystick_1[(abyte_cnt-1)<<3 +:8] <= spi_byte_in;
8'h62: if (abyte_cnt < 5) joystick_2[(abyte_cnt-1)<<3 +:8] <= spi_byte_in;
8'h63: if (abyte_cnt < 5) joystick_3[(abyte_cnt-1)<<3 +:8] <= spi_byte_in;
8'h64: if (abyte_cnt < 5) joystick_4[(abyte_cnt-1)<<3 +:8] <= spi_byte_in;
8'h04: begin
// store incoming ps2 mouse bytes
ps2_mouse_fifo[ps2_mouse_wptr] <= spi_byte_in;
ps2_mouse_wptr <= ps2_mouse_wptr + 1'd1;
if (abyte_cnt == 1) mouse_flags_r <= spi_byte_in;
else if (abyte_cnt == 2) mouse_x_r <= spi_byte_in;
else if (abyte_cnt == 3) begin
// flags: YOvfl, XOvfl, dy8, dx8, 1, mbtn, rbtn, lbtn
mouse_flags <= mouse_flags_r;
mouse_x <= { mouse_flags_r[4], mouse_x_r };
mouse_y <= { mouse_flags_r[5], spi_byte_in };
mouse_strobe <= 1;
end
end
8'h05: begin
// store incoming ps2 keyboard bytes
ps2_kbd_fifo[ps2_kbd_wptr] <= spi_byte_in;
ps2_kbd_wptr <= ps2_kbd_wptr + 1'd1;
end
// joystick analog
8'h1a: begin
// first byte is joystick index
if(abyte_cnt == 1)
stick_idx <= spi_byte_in[2:0];
else if(abyte_cnt == 2) begin
// second byte is x axis
if(stick_idx == 0)
joystick_analog_0[15:8] <= spi_byte_in;
else if(stick_idx == 1)
joystick_analog_1[15:8] <= spi_byte_in;
end else if(abyte_cnt == 3) begin
// third byte is y axis
if(stick_idx == 0)
joystick_analog_0[7:0] <= spi_byte_in;
else if(stick_idx == 1)
joystick_analog_1[7:0] <= spi_byte_in;
end
end
8'h15: status <= spi_byte_in;
// status, 32bit version
8'h1e: if(abyte_cnt<5) status[(abyte_cnt-1)<<3 +:8] <= spi_byte_in;
endcase
end
end
end
// Process SD-card related bytes from SPI at the clk_sd domain
always @(posedge clk_sd) begin
reg spi_receiver_strobe;
reg spi_transfer_end;
reg spi_receiver_strobeD;
reg spi_transfer_endD;
reg sd_wrD;
reg [7:0] acmd;
reg [7:0] abyte_cnt; // counts bytes
//synchronize between SPI and sd clock domains
spi_receiver_strobeD <= spi_receiver_strobe_r;
spi_receiver_strobe <= spi_receiver_strobeD;
spi_transfer_endD <= spi_transfer_end_r;
spi_transfer_end <= spi_transfer_endD;
if(sd_dout_strobe) begin
sd_dout_strobe<= 0;
if(~&sd_buff_addr) sd_buff_addr <= sd_buff_addr + 1'b1;
end
sd_din_strobe<= 0;
sd_wrD <= sd_wr;
// fetch the first byte immediately after the write command seen
if (~sd_wrD & sd_wr) begin
sd_buff_addr <= 0;
sd_din_strobe <= 1;
end
img_mounted <= 0;
if (~spi_transfer_endD & spi_transfer_end) begin
abyte_cnt <= 8'd0;
sd_ack <= 1'b0;
sd_ack_conf <= 1'b0;
sd_dout_strobe <= 1'b0;
sd_din_strobe <= 1'b0;
sd_buff_addr <= 0;
end else if (spi_receiver_strobeD ^ spi_receiver_strobe) begin
if(~&abyte_cnt)
abyte_cnt <= abyte_cnt + 8'd1;
if(abyte_cnt == 0) begin
acmd <= spi_byte_in;
if(spi_byte_in == 8'h18) begin
sd_din_strobe <= 1'b1;
if(~&sd_buff_addr) sd_buff_addr <= sd_buff_addr + 1'b1;
end
if((spi_byte_in == 8'h17) || (spi_byte_in == 8'h18))
sd_ack <= 1'b1;
end else begin
case(acmd)
// send sector IO -> FPGA
8'h17: begin
// flag that download begins
sd_dout_strobe <= 1'b1;
sd_dout <= spi_byte_in;
end
// send sector FPGA -> IO
8'h18: begin
sd_din_strobe <= 1'b1;
if(~&sd_buff_addr) sd_buff_addr <= sd_buff_addr + 1'b1;
end
// send SD config IO -> FPGA
8'h19: begin
// flag that download begins
sd_dout_strobe <= 1'b1;
sd_ack_conf <= 1'b1;
sd_dout <= spi_byte_in;
end
8'h1c: img_mounted <= 1;
// send image info
8'h1d: if(abyte_cnt<5) img_size[(abyte_cnt-1)<<3 +:8] <= spi_byte_in;
endcase
end
end
end
endmodule