1
0
mirror of https://github.com/Gehstock/Mist_FPGA.git synced 2026-01-19 09:18:02 +00:00

Publish some Source

This commit is contained in:
Gehstock 2018-10-19 23:16:51 +02:00
parent 3161ae1d9e
commit d74e00fc61
25 changed files with 3582 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 914 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 504 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 209 KiB

View File

@ -0,0 +1,31 @@
# -------------------------------------------------------------------------- #
#
# Copyright (C) 1991-2013 Altera Corporation
# Your use of Altera Corporation's design tools, logic functions
# and other software and tools, and its AMPP partner logic
# functions, and any output files from any of the foregoing
# (including device programming or simulation files), and any
# associated documentation or information are expressly subject
# to the terms and conditions of the Altera Program License
# Subscription Agreement, Altera MegaCore Function License
# Agreement, or other applicable license agreement, including,
# without limitation, that your use is for the sole purpose of
# programming logic devices manufactured by Altera and sold by
# Altera or its authorized distributors. Please refer to the
# applicable agreement for further details.
#
# -------------------------------------------------------------------------- #
#
# Quartus II 64-Bit
# Version 13.0.1 Build 232 06/12/2013 Service Pack 1 SJ Full Version
# Date created = 14:32:28 October 06, 2018
#
# -------------------------------------------------------------------------- #
QUARTUS_VERSION = "13.0"
DATE = "14:32:28 October 06, 2018"
# Revisions
PROJECT_REVISION = "Galaksija_Mist"
PROJECT_REVISION = "AtomElectron_Mist"

View File

@ -0,0 +1,222 @@
# -------------------------------------------------------------------------- #
#
# Copyright (C) 1991-2013 Altera Corporation
# Your use of Altera Corporation's design tools, logic functions
# and other software and tools, and its AMPP partner logic
# functions, and any output files from any of the foregoing
# (including device programming or simulation files), and any
# associated documentation or information are expressly subject
# to the terms and conditions of the Altera Program License
# Subscription Agreement, Altera MegaCore Function License
# Agreement, or other applicable license agreement, including,
# without limitation, that your use is for the sole purpose of
# programming logic devices manufactured by Altera and sold by
# Altera or its authorized distributors. Please refer to the
# applicable agreement for further details.
#
# -------------------------------------------------------------------------- #
#
# Quartus II 64-Bit
# Version 13.0.1 Build 232 06/12/2013 Service Pack 1 SJ Full Version
# Date created = 23:16:13 October 05, 2018
#
# -------------------------------------------------------------------------- #
#
# Notes:
#
# 1) The default values for assignments are stored in the file:
# AtomElectron_Mist_assignment_defaults.qdf
# If this file doesn't exist, see file:
# assignment_defaults.qdf
#
# 2) Altera recommends that you do not modify this file. This
# file is updated automatically by the Quartus II software
# and any changes you make may be lost or overwritten.
#
# -------------------------------------------------------------------------- #
# Project-Wide Assignments
# ========================
set_global_assignment -name ORIGINAL_QUARTUS_VERSION 13.1
set_global_assignment -name PROJECT_CREATION_TIME_DATE "07:11:53 MARCH 09, 2017"
set_global_assignment -name LAST_QUARTUS_VERSION "13.0 SP1"
set_global_assignment -name PROJECT_OUTPUT_DIRECTORY output_files
# Pin & Location Assignments
# ==========================
set_location_assignment PIN_7 -to LED
set_location_assignment PIN_54 -to CLOCK_27
set_location_assignment PIN_144 -to VGA_R[5]
set_location_assignment PIN_143 -to VGA_R[4]
set_location_assignment PIN_142 -to VGA_R[3]
set_location_assignment PIN_141 -to VGA_R[2]
set_location_assignment PIN_137 -to VGA_R[1]
set_location_assignment PIN_135 -to VGA_R[0]
set_location_assignment PIN_133 -to VGA_B[5]
set_location_assignment PIN_132 -to VGA_B[4]
set_location_assignment PIN_125 -to VGA_B[3]
set_location_assignment PIN_121 -to VGA_B[2]
set_location_assignment PIN_120 -to VGA_B[1]
set_location_assignment PIN_115 -to VGA_B[0]
set_location_assignment PIN_114 -to VGA_G[5]
set_location_assignment PIN_113 -to VGA_G[4]
set_location_assignment PIN_112 -to VGA_G[3]
set_location_assignment PIN_111 -to VGA_G[2]
set_location_assignment PIN_110 -to VGA_G[1]
set_location_assignment PIN_106 -to VGA_G[0]
set_location_assignment PIN_136 -to VGA_VS
set_location_assignment PIN_119 -to VGA_HS
set_location_assignment PIN_65 -to AUDIO_L
set_location_assignment PIN_80 -to AUDIO_R
set_location_assignment PIN_105 -to SPI_DO
set_location_assignment PIN_88 -to SPI_DI
set_location_assignment PIN_126 -to SPI_SCK
set_location_assignment PIN_127 -to SPI_SS2
set_location_assignment PIN_91 -to SPI_SS3
set_location_assignment PIN_13 -to CONF_DATA0
set_location_assignment PIN_49 -to SDRAM_A[0]
set_location_assignment PIN_44 -to SDRAM_A[1]
set_location_assignment PIN_42 -to SDRAM_A[2]
set_location_assignment PIN_39 -to SDRAM_A[3]
set_location_assignment PIN_4 -to SDRAM_A[4]
set_location_assignment PIN_6 -to SDRAM_A[5]
set_location_assignment PIN_8 -to SDRAM_A[6]
set_location_assignment PIN_10 -to SDRAM_A[7]
set_location_assignment PIN_11 -to SDRAM_A[8]
set_location_assignment PIN_28 -to SDRAM_A[9]
set_location_assignment PIN_50 -to SDRAM_A[10]
set_location_assignment PIN_30 -to SDRAM_A[11]
set_location_assignment PIN_32 -to SDRAM_A[12]
set_location_assignment PIN_83 -to SDRAM_DQ[0]
set_location_assignment PIN_79 -to SDRAM_DQ[1]
set_location_assignment PIN_77 -to SDRAM_DQ[2]
set_location_assignment PIN_76 -to SDRAM_DQ[3]
set_location_assignment PIN_72 -to SDRAM_DQ[4]
set_location_assignment PIN_71 -to SDRAM_DQ[5]
set_location_assignment PIN_69 -to SDRAM_DQ[6]
set_location_assignment PIN_68 -to SDRAM_DQ[7]
set_location_assignment PIN_86 -to SDRAM_DQ[8]
set_location_assignment PIN_87 -to SDRAM_DQ[9]
set_location_assignment PIN_98 -to SDRAM_DQ[10]
set_location_assignment PIN_99 -to SDRAM_DQ[11]
set_location_assignment PIN_100 -to SDRAM_DQ[12]
set_location_assignment PIN_101 -to SDRAM_DQ[13]
set_location_assignment PIN_103 -to SDRAM_DQ[14]
set_location_assignment PIN_104 -to SDRAM_DQ[15]
set_location_assignment PIN_58 -to SDRAM_BA[0]
set_location_assignment PIN_51 -to SDRAM_BA[1]
set_location_assignment PIN_85 -to SDRAM_DQMH
set_location_assignment PIN_67 -to SDRAM_DQML
set_location_assignment PIN_60 -to SDRAM_nRAS
set_location_assignment PIN_64 -to SDRAM_nCAS
set_location_assignment PIN_66 -to SDRAM_nWE
set_location_assignment PIN_59 -to SDRAM_nCS
set_location_assignment PIN_33 -to SDRAM_CKE
set_location_assignment PIN_43 -to SDRAM_CLK
set_location_assignment PIN_31 -to UART_RXD
set_location_assignment PIN_46 -to UART_TXD
set_location_assignment PLL_1 -to "pll:pll|altpll:altpll_component"
# Classic Timing Assignments
# ==========================
set_global_assignment -name MIN_CORE_JUNCTION_TEMP 0
set_global_assignment -name MAX_CORE_JUNCTION_TEMP 85
# Analysis & Synthesis Assignments
# ================================
set_global_assignment -name FAMILY "Cyclone III"
set_global_assignment -name TOP_LEVEL_ENTITY Galaksija_MiST
set_global_assignment -name SEARCH_PATH roms/ -tag from_archive
set_global_assignment -name SEARCH_PATH src/ -tag from_archive
set_global_assignment -name SEARCH_PATH src/MC6522/ -tag from_archive
set_global_assignment -name SEARCH_PATH src/RAM/ -tag from_archive
set_global_assignment -name SEARCH_PATH src/T6502/ -tag from_archive
set_global_assignment -name SEARCH_PATH src/ps2kybrd/ -tag from_archive
# Fitter Assignments
# ==================
set_global_assignment -name DEVICE EP3C25E144C8
set_global_assignment -name CYCLONEIII_CONFIGURATION_SCHEME "PASSIVE SERIAL"
set_global_assignment -name CRC_ERROR_OPEN_DRAIN OFF
set_global_assignment -name FORCE_CONFIGURATION_VCCIO ON
set_global_assignment -name STRATIX_DEVICE_IO_STANDARD "3.3-V LVTTL"
set_global_assignment -name CYCLONEII_RESERVE_NCEO_AFTER_CONFIGURATION "USE AS REGULAR IO"
set_global_assignment -name RESERVE_DATA0_AFTER_CONFIGURATION "USE AS REGULAR IO"
set_global_assignment -name RESERVE_DATA1_AFTER_CONFIGURATION "USE AS REGULAR IO"
set_global_assignment -name RESERVE_FLASH_NCE_AFTER_CONFIGURATION "USE AS REGULAR IO"
# EDA Netlist Writer Assignments
# ==============================
set_global_assignment -name EDA_SIMULATION_TOOL "ModelSim-Altera (VHDL)"
# Assembler Assignments
# =====================
set_global_assignment -name USE_CONFIGURATION_DEVICE OFF
set_global_assignment -name GENERATE_RBF_FILE ON
# Power Estimation Assignments
# ============================
set_global_assignment -name POWER_PRESET_COOLING_SOLUTION "23 MM HEAT SINK WITH 200 LFPM AIRFLOW"
set_global_assignment -name POWER_BOARD_THERMAL_MODEL "NONE (CONSERVATIVE)"
# Advanced I/O Timing Assignments
# ===============================
set_global_assignment -name OUTPUT_IO_TIMING_NEAR_END_VMEAS "HALF VCCIO" -rise
set_global_assignment -name OUTPUT_IO_TIMING_NEAR_END_VMEAS "HALF VCCIO" -fall
set_global_assignment -name OUTPUT_IO_TIMING_FAR_END_VMEAS "HALF SIGNAL SWING" -rise
set_global_assignment -name OUTPUT_IO_TIMING_FAR_END_VMEAS "HALF SIGNAL SWING" -fall
# start EDA_TOOL_SETTINGS(eda_simulation)
# ---------------------------------------
# EDA Netlist Writer Assignments
# ==============================
set_global_assignment -name EDA_OUTPUT_DATA_FORMAT VHDL -section_id eda_simulation
# end EDA_TOOL_SETTINGS(eda_simulation)
# -------------------------------------
# -------------------------------
# start ENTITY(AtomElectron_Mist)
# start DESIGN_PARTITION(Top)
# ---------------------------
# Incremental Compilation Assignments
# ===================================
# end DESIGN_PARTITION(Top)
# -------------------------
# end ENTITY(AtomElectron_Mist)
# -----------------------------
set_global_assignment -name PARTITION_NETLIST_TYPE SOURCE -section_id Top
set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL PLACEMENT_AND_ROUTING -section_id Top
set_global_assignment -name PARTITION_COLOR 16764057 -section_id Top
set_global_assignment -name DEVICE_FILTER_PACKAGE TQFP
set_global_assignment -name DEVICE_FILTER_PIN_COUNT 144
set_global_assignment -name DEVICE_FILTER_SPEED_GRADE 8
set_global_assignment -name SYSTEMVERILOG_FILE rtl/Galaksija_MiST.sv
set_global_assignment -name VERILOG_FILE rtl/galaksija_top.v
set_global_assignment -name VHDL_FILE rtl/spram.vhd
set_global_assignment -name VHDL_FILE rtl/sprom.vhd
set_global_assignment -name VHDL_FILE rtl/dpram.vhd
set_global_assignment -name SYSTEMVERILOG_FILE rtl/video_mixer.sv
set_global_assignment -name VERILOG_FILE rtl/scandoubler.v
set_global_assignment -name VERILOG_FILE rtl/osd.v
set_global_assignment -name SYSTEMVERILOG_FILE rtl/hq2x.sv
set_global_assignment -name VERILOG_FILE rtl/mist_io.v
set_global_assignment -name VERILOG_FILE rtl/pll.v
set_global_assignment -name VERILOG_FILE rtl/video.v
set_global_assignment -name VERILOG_FILE rtl/TV80/tv80n.v
set_global_assignment -name VERILOG_FILE rtl/TV80/tv80_reg.v
set_global_assignment -name VERILOG_FILE rtl/TV80/tv80_mcode.v
set_global_assignment -name VERILOG_FILE rtl/TV80/tv80_core.v
set_global_assignment -name VERILOG_FILE rtl/TV80/tv80_alu.v
set_global_assignment -name VHDL_FILE rtl/galaksija_keyboard_v2.vhd
set_global_assignment -name VHDL_FILE rtl/keyboard.vhd
set_global_assignment -name SYSTEMVERILOG_FILE rtl/ay8910.sv
set_global_assignment -name VHDL_FILE rtl/dac.vhd
set_instance_assignment -name PARTITION_HIERARCHY root_partition -to | -section_id Top

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

278
Galaksija_MiST/galaxy.cpp Normal file
View File

@ -0,0 +1,278 @@
// license:BSD-3-Clause
// copyright-holders:Krzysztof Strzecha, Miodrag Milanovic
/***************************************************************************
Galaksija driver by Krzysztof Strzecha and Miodrag Milanovic
22/05/2008 Tape support added (Miodrag Milanovic)
21/05/2008 Galaksija plus initial support (Miodrag Milanovic)
20/05/2008 Added real video implementation (Miodrag Milanovic)
18/04/2005 Possibilty to disable ROM 2. 2k, 22k, 38k and 54k memory
configurations added.
13/03/2005 Memory mapping improved. Palette corrected. Supprort for newer
version of snapshots added. Lot of cleanups. Keyboard mapping
corrected.
19/09/2002 malloc() replaced by image_malloc().
15/09/2002 Snapshot loading fixed. Code cleanup.
31/01/2001 Snapshot loading corrected.
09/01/2001 Fast mode implemented (many thanks to Kevin Thacker).
07/01/2001 Keyboard corrected (still some keys unknown).
Horizontal screen positioning in video subsystem added.
05/01/2001 Keyboard implemented (some keys unknown).
03/01/2001 Snapshot loading added.
01/01/2001 Preliminary driver.
***************************************************************************/
#include "emu.h"
#include "includes/galaxy.h"
#include "cpu/z80/z80.h"
#include "formats/gtp_cas.h"
#include "imagedev/cassette.h"
#include "imagedev/snapquik.h"
#include "machine/ram.h"
#include "sound/ay8910.h"
#include "sound/wave.h"
#include "emupal.h"
#include "screen.h"
#include "softlist.h"
#include "speaker.h"
void galaxy_state::galaxyp_io(address_map &map)
{
map.global_mask(0x01);
map.unmap_value_high();
map(0x00, 0x00).w("ay8910", FUNC(ay8910_device::address_w));
map(0x01, 0x01).w("ay8910", FUNC(ay8910_device::data_w));
}
void galaxy_state::galaxy_mem(address_map &map)
{
map(0x0000, 0x0fff).rom();
map(0x2000, 0x2037).mirror(0x07c0).r(FUNC(galaxy_state::galaxy_keyboard_r));
map(0x2038, 0x203f).mirror(0x07c0).w(FUNC(galaxy_state::galaxy_latch_w));
}
void galaxy_state::galaxyp_mem(address_map &map)
{
map(0x0000, 0x0fff).rom(); // ROM A
map(0x1000, 0x1fff).rom(); // ROM B
map(0x2000, 0x2037).mirror(0x07c0).r(FUNC(galaxy_state::galaxy_keyboard_r));
map(0x2038, 0x203f).mirror(0x07c0).w(FUNC(galaxy_state::galaxy_latch_w));
map(0xe000, 0xefff).rom(); // ROM C
map(0xf000, 0xffff).rom(); // ROM D
}
/* 2008-05 FP:
Small note about natural keyboard support. Currently:
- "List" is mapped to 'ESC'
- "Break" is mapped to 'F1'
- "Repeat" is mapped to 'F2' */
static INPUT_PORTS_START (galaxy_common)
PORT_START("LINE0")
PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_UNUSED)
PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_A) PORT_CHAR('A')
PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_B) PORT_CHAR('B')
PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_C) PORT_CHAR('C')
PORT_BIT(0x10, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_D) PORT_CHAR('D')
PORT_BIT(0x20, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_E) PORT_CHAR('E')
PORT_BIT(0x40, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_F) PORT_CHAR('F')
PORT_BIT(0x80, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_G) PORT_CHAR('G')
PORT_START("LINE1")
PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_H) PORT_CHAR('H')
PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_I) PORT_CHAR('I')
PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_J) PORT_CHAR('J')
PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_K) PORT_CHAR('K')
PORT_BIT(0x10, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_L) PORT_CHAR('L')
PORT_BIT(0x20, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_M) PORT_CHAR('M')
PORT_BIT(0x40, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_N) PORT_CHAR('N')
PORT_BIT(0x80, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_O) PORT_CHAR('O')
PORT_START("LINE2")
PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_P) PORT_CHAR('P')
PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_Q) PORT_CHAR('Q')
PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_R) PORT_CHAR('R')
PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_S) PORT_CHAR('S')
PORT_BIT(0x10, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_T) PORT_CHAR('T')
PORT_BIT(0x20, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_U) PORT_CHAR('U')
PORT_BIT(0x40, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_V) PORT_CHAR('V')
PORT_BIT(0x80, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_W) PORT_CHAR('W')
PORT_START("LINE3")
PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_X) PORT_CHAR('X')
PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_Y) PORT_CHAR('Y')
PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_Z) PORT_CHAR('Z')
PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_UP) PORT_CHAR(UCHAR_MAMEKEY(UP))
PORT_BIT(0x10, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_DOWN) PORT_CHAR(UCHAR_MAMEKEY(DOWN))
PORT_BIT(0x20, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_LEFT) PORT_CHAR(UCHAR_MAMEKEY(LEFT))
PORT_BIT(0x40, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_RIGHT) PORT_CHAR(UCHAR_MAMEKEY(RIGHT))
PORT_BIT(0x80, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_SPACE) PORT_CHAR(' ')
PORT_START("LINE4")
PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_0) PORT_CHAR('0') PORT_CHAR('_')
PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_1) PORT_CHAR('1') PORT_CHAR('!')
PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_2) PORT_CHAR('2') PORT_CHAR('"')
PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_3) PORT_CHAR('3') PORT_CHAR('#')
PORT_BIT(0x10, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_4) PORT_CHAR('4') PORT_CHAR('$')
PORT_BIT(0x20, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_5) PORT_CHAR('5') PORT_CHAR('%')
PORT_BIT(0x40, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_6) PORT_CHAR('6') PORT_CHAR('&')
PORT_BIT(0x80, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_7) PORT_CHAR('7') PORT_CHAR('\'')
PORT_START("LINE5")
PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_8) PORT_CHAR('8') PORT_CHAR('(')
PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_9) PORT_CHAR('9') PORT_CHAR(')')
PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_COLON) PORT_CHAR(';') PORT_CHAR('+')
PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_QUOTE) PORT_CHAR(':') PORT_CHAR('*')
PORT_BIT(0x10, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_COMMA) PORT_CHAR(',') PORT_CHAR('<')
PORT_BIT(0x20, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_EQUALS) PORT_CHAR('=') PORT_CHAR('-')
PORT_BIT(0x40, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_STOP) PORT_CHAR('.') PORT_CHAR('>')
PORT_BIT(0x80, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_SLASH) PORT_CHAR('/') PORT_CHAR('?')
PORT_START("LINE6")
PORT_BIT(0x01, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_ENTER) PORT_CHAR(13)
PORT_BIT(0x02, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("Break") PORT_CODE(KEYCODE_PAUSE) PORT_CHAR(UCHAR_MAMEKEY(F1))
PORT_BIT(0x04, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("Repeat") PORT_CODE(KEYCODE_LALT) PORT_CHAR(UCHAR_MAMEKEY(F2))
PORT_BIT(0x08, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("Delete") PORT_CODE(KEYCODE_BACKSPACE) PORT_CHAR(8)
PORT_BIT(0x10, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_NAME("List") PORT_CODE(KEYCODE_ESC) PORT_CHAR(UCHAR_MAMEKEY(ESC))
PORT_BIT(0x20, IP_ACTIVE_HIGH, IPT_KEYBOARD) PORT_CODE(KEYCODE_LSHIFT) PORT_CODE(KEYCODE_RSHIFT) PORT_CHAR(UCHAR_SHIFT_1)
PORT_BIT(0x40, IP_ACTIVE_HIGH, IPT_UNUSED)
PORT_BIT(0x80, IP_ACTIVE_HIGH, IPT_UNUSED)
INPUT_PORTS_END
static INPUT_PORTS_START( galaxy )
PORT_INCLUDE( galaxy_common )
PORT_START("ROM2")
PORT_CONFNAME(0x01, 0x01, "ROM 2")
PORT_CONFSETTING(0x01, "Installed")
PORT_CONFSETTING(0x00, "Not installed")
INPUT_PORTS_END
static INPUT_PORTS_START( galaxyp )
PORT_INCLUDE( galaxy_common )
INPUT_PORTS_END
#define XTAL 6144000
/* F4 Character Displayer */
static const gfx_layout galaxy_charlayout =
{
8, 16, /* 8 x 16 characters */
128, /* 128 characters */
1, /* 1 bits per pixel */
{ 0 }, /* no bitplanes */
/* x offsets */
{ 7, 6, 5, 4, 3, 2, 1, 0 },
/* y offsets */
{ 0, 1*128*8, 2*128*8, 3*128*8, 4*128*8, 5*128*8, 6*128*8, 7*128*8, 8*128*8, 9*128*8, 10*128*8, 11*128*8, 12*128*8, 13*128*8, 14*128*8, 15*128*8 },
8 /* every char takes 1 x 16 bytes */
};
static GFXDECODE_START( gfx_galaxy )
GFXDECODE_ENTRY( "gfx1", 0x0000, galaxy_charlayout, 0, 1 )
GFXDECODE_END
MACHINE_CONFIG_START(galaxy_state::galaxy)
/* basic machine hardware */
MCFG_DEVICE_ADD("maincpu", Z80, XTAL / 2)
MCFG_DEVICE_PROGRAM_MAP(galaxy_mem)
MCFG_DEVICE_VBLANK_INT_DRIVER("screen", galaxy_state, galaxy_interrupt)
MCFG_DEVICE_IRQ_ACKNOWLEDGE_DRIVER(galaxy_state,galaxy_irq_callback)
MCFG_SCREEN_ADD("screen", RASTER)
MCFG_SCREEN_REFRESH_RATE(50)
MCFG_SCREEN_PALETTE("palette")
MCFG_MACHINE_RESET_OVERRIDE(galaxy_state, galaxy )
/* video hardware */
MCFG_SCREEN_SIZE(384, 212)
MCFG_SCREEN_VISIBLE_AREA(0, 384-1, 0, 208-1)
MCFG_SCREEN_UPDATE_DRIVER(galaxy_state, screen_update_galaxy)
MCFG_DEVICE_ADD("gfxdecode", GFXDECODE, "palette", gfx_galaxy)
MCFG_PALETTE_ADD_MONOCHROME("palette")
/* snapshot */
MCFG_SNAPSHOT_ADD("snapshot", galaxy_state, galaxy, "gal", 0)
SPEAKER(config, "mono").front_center();
WAVE(config, "wave", "cassette").add_route(ALL_OUTPUTS, "mono", 0.25);
MCFG_CASSETTE_ADD( "cassette" )
MCFG_CASSETTE_FORMATS(gtp_cassette_formats)
MCFG_CASSETTE_DEFAULT_STATE(CASSETTE_STOPPED | CASSETTE_SPEAKER_ENABLED | CASSETTE_MOTOR_ENABLED)
MCFG_CASSETTE_INTERFACE("galaxy_cass")
MCFG_SOFTWARE_LIST_ADD("cass_list","galaxy")
/* internal ram */
RAM(config, RAM_TAG).set_default_size("6K").set_extra_options("2K,22K,38K,54K");
MACHINE_CONFIG_END
MACHINE_CONFIG_START(galaxy_state::galaxyp)
/* basic machine hardware */
MCFG_DEVICE_ADD("maincpu", Z80, XTAL / 2)
MCFG_DEVICE_PROGRAM_MAP(galaxyp_mem)
MCFG_DEVICE_IO_MAP(galaxyp_io)
MCFG_DEVICE_VBLANK_INT_DRIVER("screen", galaxy_state, galaxy_interrupt)
MCFG_DEVICE_IRQ_ACKNOWLEDGE_DRIVER(galaxy_state,galaxy_irq_callback)
MCFG_SCREEN_ADD("screen", RASTER)
MCFG_SCREEN_REFRESH_RATE(50)
MCFG_SCREEN_PALETTE("palette")
MCFG_MACHINE_RESET_OVERRIDE(galaxy_state, galaxyp )
/* video hardware */
MCFG_SCREEN_SIZE(384, 208)
MCFG_SCREEN_VISIBLE_AREA(0, 384-1, 0, 208-1)
MCFG_SCREEN_UPDATE_DRIVER(galaxy_state, screen_update_galaxy)
MCFG_PALETTE_ADD_MONOCHROME("palette")
/* snapshot */
MCFG_SNAPSHOT_ADD("snapshot", galaxy_state, galaxy, "gal", 0)
/* sound hardware */
SPEAKER(config, "mono").front_center();
MCFG_DEVICE_ADD("ay8910", AY8910, XTAL/4) // FIXME: really no output routes for this AY?
WAVE(config, "wave", "cassette").add_route(ALL_OUTPUTS, "mono", 0.25);
MCFG_CASSETTE_ADD( "cassette" )
MCFG_CASSETTE_FORMATS(gtp_cassette_formats)
MCFG_CASSETTE_DEFAULT_STATE(CASSETTE_STOPPED | CASSETTE_SPEAKER_ENABLED | CASSETTE_MOTOR_ENABLED)
MCFG_CASSETTE_INTERFACE("galaxy_cass")
MCFG_SOFTWARE_LIST_ADD("cass_list","galaxy")
/* internal ram */
RAM(config, RAM_TAG).set_default_size("38K");
MACHINE_CONFIG_END
ROM_START (galaxy)
ROM_REGION (0x10000, "maincpu", ROMREGION_ERASEFF)
ROM_LOAD ("galrom1.bin", 0x0000, 0x1000, CRC(dc970a32) SHA1(dfc92163654a756b70f5a446daf49d7534f4c739))
ROM_LOAD_OPTIONAL ("galrom2.bin", 0x1000, 0x1000, CRC(5dc5a100) SHA1(5d5ab4313a2d0effe7572bb129193b64cab002c1))
ROM_REGION(0x0800, "gfx1",0)
ROM_LOAD ("galchr.bin", 0x0000, 0x0800, CRC(5c3b5bb5) SHA1(19429a61dc5e55ddec3242a8f695e06dd7961f88))
ROM_END
ROM_START (galaxyp)
ROM_REGION (0x10000, "maincpu", ROMREGION_ERASEFF)
ROM_LOAD ("galrom1.bin", 0x0000, 0x1000, CRC(dc970a32) SHA1(dfc92163654a756b70f5a446daf49d7534f4c739))
ROM_LOAD ("galrom2.bin", 0x1000, 0x1000, CRC(5dc5a100) SHA1(5d5ab4313a2d0effe7572bb129193b64cab002c1))
ROM_LOAD ("galplus.bin", 0xe000, 0x1000, CRC(d4cfab14) SHA1(b507b9026844eeb757547679907394aa42055eee))
ROM_REGION(0x0800, "gfx1",0)
ROM_LOAD ("galchr.bin", 0x0000, 0x0800, CRC(5c3b5bb5) SHA1(19429a61dc5e55ddec3242a8f695e06dd7961f88))
ROM_END
/* YEAR NAME PARENT COMPAT MACHINE INPUT CLASS INIT COMPANY FULLNAME */
COMP( 1983, galaxy, 0, 0, galaxy, galaxy, galaxy_state, init_galaxy, "Voja Antonic / Elektronika inzenjering", "Galaksija", 0)
COMP( 1985, galaxyp, galaxy, 0, galaxyp, galaxyp, galaxy_state, init_galaxyp, "Nenad Dunjic", "Galaksija plus", 0)

69
Galaksija_MiST/galaxy.h Normal file
View File

@ -0,0 +1,69 @@
// license:BSD-3-Clause
// copyright-holders:Krzysztof Strzecha, Miodrag Milanovic
/*****************************************************************************
*
* includes/galaxy.h
*
****************************************************************************/
#ifndef MAME_INCLUDES_GALAXY_H
#define MAME_INCLUDES_GALAXY_H
#include "imagedev/snapquik.h"
#include "imagedev/cassette.h"
#include "machine/ram.h"
#include "screen.h"
class galaxy_state : public driver_device
{
public:
galaxy_state(const machine_config &mconfig, device_type type, const char *tag)
: driver_device(mconfig, type, tag)
, m_maincpu(*this, "maincpu")
, m_screen(*this, "screen")
, m_cassette(*this, "cassette")
, m_ram(*this, RAM_TAG)
, m_region_gfx1(*this, "gfx1") {}
void galaxy(machine_config &config);
void galaxyp(machine_config &config);
void init_galaxy();
void init_galaxyp();
private:
DECLARE_READ8_MEMBER(galaxy_keyboard_r);
DECLARE_WRITE8_MEMBER(galaxy_latch_w);
virtual void video_start() override;
DECLARE_MACHINE_RESET(galaxy);
DECLARE_MACHINE_RESET(galaxyp);
uint32_t screen_update_galaxy(screen_device &screen, bitmap_ind16 &bitmap, const rectangle &cliprect);
INTERRUPT_GEN_MEMBER(galaxy_interrupt);
TIMER_CALLBACK_MEMBER(gal_video);
IRQ_CALLBACK_MEMBER(galaxy_irq_callback);
void galaxy_set_timer();
void galaxy_setup_snapshot (const uint8_t * data, uint32_t size);
DECLARE_SNAPSHOT_LOAD_MEMBER( galaxy );
void galaxy_mem(address_map &map);
void galaxyp_io(address_map &map);
void galaxyp_mem(address_map &map);
required_device<cpu_device> m_maincpu;
required_device<screen_device> m_screen;
required_device<cassette_image_device> m_cassette;
required_device<ram_device> m_ram;
required_memory_region m_region_gfx1;
ioport_port *m_io_ports[8];
int m_interrupts_enabled;
uint8_t m_latch_value;
uint32_t m_gal_cnt;
uint8_t m_code;
uint8_t m_first;
uint32_t m_start_addr;
emu_timer *m_gal_video_timer;
bitmap_ind16 m_bitmap;
};
#endif // MAME_INCLUDES_GALAXY_H

View File

@ -0,0 +1,136 @@
module Galaksija_MiST(
input CLOCK_27,
output [5:0] VGA_R,
output [5:0] VGA_G,
output [5:0] VGA_B,
output VGA_HS,
output VGA_VS,
output LED,
output AUDIO_L,
output AUDIO_R,
input SPI_SCK,
output SPI_DO,
input SPI_DI,
input SPI_SS2,
input SPI_SS3,
input CONF_DATA0/*,
output [12:0] SDRAM_A,
inout [15:0] SDRAM_DQ,
output SDRAM_DQML,
output SDRAM_DQMH,
output SDRAM_nWE,
output SDRAM_nCAS,
output SDRAM_nRAS,
output SDRAM_nCS,
output [1:0] SDRAM_BA,
output SDRAM_CLK,
output SDRAM_CKE*/
);
`include "build_id.v"
localparam CONF_STR = {
"Galaksija;;",
// "F,GAL,Load Program;",
"O23,Scandoubler Fx,None,HQ2x,CRT 25%,CRT 50%;",
"T9,Reset;",
"V,v1.00.",`BUILD_DATE
};
wire clk_1p7, clk_25, clk_6p25;
wire ps2_kbd_clk, ps2_kbd_data;
wire [2:0] r, g;
wire [1:0] b;
wire hs, vs;
wire [1:0] buttons, switches;
wire ypbpr;
wire forced_scandoubler;
wire [31:0] status;
wire [7:0] audio;
pll pll (
.inclk0 ( CLOCK_27 ),
.c0 ( clk_1p7 ),
.c1 ( clk_25 ),
.c2 ( clk_6p25 )
);
mist_io #(
.STRLEN($size(CONF_STR)>>3))
user_io (
.clk_sys(clk_25),
.CONF_DATA0(CONF_DATA0),
.SPI_SCK(SPI_SCK),
.SPI_DI(SPI_DI),
.SPI_DO(SPI_DO),
.SPI_SS2(SPI_SS2),
.conf_str(CONF_STR),
.ypbpr(ypbpr),
.status(status),
.scandoubler_disable(forced_scandoubler),
.buttons(buttons),
.switches(switches),
.ps2_kbd_clk(ps2_kbd_clk),
.ps2_kbd_data(ps2_kbd_data)/*,
.joystick_0(joystick_0),
.joystick_1(joystick_1),
.ioctl_wr(ioctl_wr),
.ioctl_index(ioctl_index),
.ioctl_download(ioctl_download),
.ioctl_addr(ioctl_addr),
.ioctl_dout(ioctl_dout)*/
);
video_mixer #(
.LINE_LENGTH(320),
.HALF_DEPTH(0))
video_mixer (
.clk_sys ( clk_25 ),
.ce_pix ( clk_6p25 ),
.ce_pix_actual ( clk_6p25 ),
.SPI_SCK ( SPI_SCK ),
.SPI_SS3 ( SPI_SS3 ),
.SPI_DI ( SPI_DI ),
.R ( {r,r}),
.G ( {g,g}),
.B ( {2'b0,b,b}),
.HSync ( hs ),
.VSync ( vs ),
.VGA_R ( VGA_R ),
.VGA_G ( VGA_G ),
.VGA_B ( VGA_B ),
.VGA_VS ( VGA_VS ),
.VGA_HS ( VGA_HS ),
.scanlines (forced_scandoubler ? 2'b00 : {status[3:2] == 3, status[3:2] == 2}),
.scandoubler_disable(1'b1),//forced_scandoubler),
.hq2x (status[3:2]==1),
.ypbpr ( ypbpr ),
.ypbpr_full ( 1 ),
.line_start ( 0 ),
.mono ( 0 )
);
galaksija_top galaksija_top (
.clk(clk_25),
.a_en(clk_1p7),
.pixclk(clk_25),
.reset_n(~(status[0] | status[9] | buttons[1])),
.PS2_DATA(ps2_kbd_data),
.PS2_CLK(ps2_kbd_clk),
.audio(audio),
.LCD_DAT({b,g,r}),//todo
.LCD_HS(hs),
.LCD_VS(vs)
);
dac #(
.msbi_g(7))
dac (
.clk_i(clk_25),
.res_n_i(1'b1),
.dac_i(audio),
.dac_o(AUDIO_L)
);
assign AUDIO_R = AUDIO_L;
endmodule

View File

@ -0,0 +1,308 @@
// ports are not identical to the actual AY chip - no need for that.
// Also the parallel ports are not very useful, so they are not connected
module ay8910(rst_n,clk,clk_en,asel,wr_n,cs_n,din,dout,A,B,C,audio);
input rst_n;
input clk; // 28 MHz clock from the system
input clk_en; // 1.7 (?) clock to run the sound timing
input asel;
input wr_n;
input cs_n;
input [7:0] din;
output [7:0] dout;
output [7:0] A;
output [7:0] B;
output [7:0] C;
output [7:0] audio;
/////////////////////////////////////////////////////////////////////////////
// Write Register
/////////////////////////////////////////////////////////////////////////////
reg [3:0] addr;
// registers
reg [11:0] period_a,period_b,period_c;
reg [4:0] period_n;
reg [7:0] reg_en;
reg [4:0] vol_a,vol_b,vol_c;
reg [15:0] period_e;
reg [3:0] shape_e;
reg [7:0] pa_r,pb_r;
wire pb_od = reg_en[7];
wire pa_od = reg_en[6];
wire na = reg_en[5];
wire nb = reg_en[4];
wire nc = reg_en[3];
wire ena = reg_en[2];
wire enb = reg_en[1];
wire enc = reg_en[0];
always @(posedge clk)
if(~rst_n) begin
vol_a <= 0;
vol_b <= 0;
vol_c <= 0;
end else
if(~wr_n && ~cs_n) begin
if(asel)
begin
// address write
addr <= din[3:0];
end else begin
// register write
case(addr)
0:period_a[ 7:0] <= din;
1:period_a[11:8] <= din[3:0];
2:period_b[ 7:0] <= din;
3:period_b[11:8] <= din[3:0];
4:period_c[ 7:0] <= din;
5:period_c[11:8] <= din[3:0];
6:period_n[ 4:0] <= din[4:0];
7:reg_en <= din;
8:vol_a <= din[4:0];
9:vol_b <= din[4:0];
10:vol_c <= din[4:0];
11:period_e[7:0] <= din;
12:period_e[15:8] <= din;
13:shape_e <= din[3:0];
14:pa_r <= din;
15:pb_r <= din;
endcase
end
end
/////////////////////////////////////////////////////////////////////////////
// Read Register
/////////////////////////////////////////////////////////////////////////////
assign dout = addr==4'h0 ? period_a[7:0] :
addr==4'h1 ? {4'h0,period_a[11:0]} :
addr==4'h2 ? period_b[7:0] :
addr==4'h3 ? {4'h0,period_b[11:0]} :
addr==4'h4 ? period_c[7:0] :
addr==4'h5 ? {4'h0,period_c[11:0]} :
addr==4'h6 ? {3'h0,period_n} :
addr==4'h7 ? reg_en :
addr==4'h8 ? {3'h0,vol_a} :
addr==4'h9 ? {3'h0,vol_b} :
addr==4'ha ? {3'h0,vol_c} :
addr==4'hb ? period_e[7:0] :
addr==4'hc ? period_e[15:8] :
addr==4'hd ? {4'h0,shape_e} : 8'hff;
/////////////////////////////////////////////////////////////////////////////
// PSG
/////////////////////////////////////////////////////////////////////////////
//
// toneA 12bit | 12bit
// toneB 12bit | 12bit
// toneC 12bit | 12bit
// env 15bit | 15bit
//
reg [2:0] pris;
reg [11:0] cnt_a,cnt_b,cnt_c;
reg out_a,out_b,out_c;
always @(posedge clk)
if(clk_en) begin
pris <= pris + 1;
if(pris==0)
begin
// tone generator
cnt_a <= cnt_a + 1;
if(cnt_a==period_a)
begin
out_a <= ~out_a;
cnt_a <= 0;
end
cnt_b <= cnt_b + 1;
if(cnt_b==period_b)
begin
out_b <= ~out_b;
cnt_b <= 0;
end
cnt_c <= cnt_c + 1;
if(cnt_c==period_c)
begin
out_c <= ~out_c;
cnt_c <= 0;
end
end
end
/////////////////////////////////////////////////////////////////////////////
// envelope generator
/////////////////////////////////////////////////////////////////////////////
reg [15:0] env_cnt;
reg [3:0] env_phase;
reg env_start;
reg env_en;
reg env_inv;
// write eshape
wire env_clr = (addr==13) & ~cs_n & ~wr_n;
// bit3 = turn reset , 0=on , 1=off
// bit2 = start , 0=up , 1=down(inv)
// bit1 = turn invert, 0=tggle , 1=fix
// bit0 = turn repeat, 0=off, 1=on
wire next_no_reset = shape_e[3];
wire start_no_inv = shape_e[2];
wire next_toggle = shape_e[1];
wire next_repeat = shape_e[0];
// envelope volume output
wire [3:0] vol_e = env_phase ^ {4{env_inv}};
//
always @(posedge clk or posedge env_clr)
begin
if(env_clr) env_start <= 1'b1;
else if(clk_en) env_start <= 1'b0;
end
always @(posedge clk or negedge rst_n)
begin
if(~rst_n)
begin
env_en <= 1'b0;
end else
if(clk_en)begin
// start trigger
if(env_start)
begin
env_cnt <= 0;
env_phase <= 0;
env_inv <= ~start_no_inv;
env_en <= 1'b1;
end
// count
if(pris==0 && env_en)
begin
// phase up
env_cnt <= env_cnt + 1;
if(env_cnt==period_e)
begin
env_cnt <= 0;
env_phase <= env_phase+1;
// turn over
if(env_phase==15)
begin
if(~next_no_reset)
begin
env_inv <= (env_inv ^ next_toggle) & next_no_reset;
env_en <= next_repeat & next_no_reset;
end
end
end
end
end
end
/////////////////////////////////////////////////////////////////////////////
// noise generator
/////////////////////////////////////////////////////////////////////////////
reg [16:0] shift_n;
reg [4:0] cnt_n;
always @(posedge clk or negedge rst_n)
begin
if(~rst_n)
begin
shift_n <= 17'b00000000000000001;
end else if((pris==0) &&(clk_en))
begin
cnt_n <= cnt_n +1;
if(cnt_n == period_n)
begin
cnt_n <= 0;
shift_n <= {shift_n[0]^shift_n[3],shift_n[16:1]};
end
end
end
wire out_n = shift_n[0];
/////////////////////////////////////////////////////////////////////////////
// volume table 3db / step
/////////////////////////////////////////////////////////////////////////////
function [7:0] vol_tbl;
input [4:0] vol;
input [3:0] vole;
input out;
begin
if(~out)
vol_tbl = 0;
else case(vol[4]?vole:vol[3:0])
15:vol_tbl = 255;
14:vol_tbl = 180;
13:vol_tbl = 127;
12:vol_tbl = 90;
11:vol_tbl = 64;
10:vol_tbl = 45;
9:vol_tbl = 32;
8:vol_tbl = 22;
7:vol_tbl = 16;
6:vol_tbl = 11;
5:vol_tbl = 8;
4:vol_tbl = 5;
3:vol_tbl = 4;
2:vol_tbl = 3;
1:vol_tbl = 2;
0:vol_tbl = 0; //1;
endcase
end
endfunction
/////////////////////////////////////////////////////////////////////////////
// output
/////////////////////////////////////////////////////////////////////////////
assign A = vol_tbl(vol_a,vol_e,(out_a | ena) & (out_n | na) );
assign B = vol_tbl(vol_b,vol_e,(out_b | enb) & (out_n | nb) );
assign C = vol_tbl(vol_c,vol_e,(out_c | enc) & (out_n | nc) );
assign audio = {"00",A} + {"00",B} + {"00",C};//todo gehstock
endmodule

View File

@ -0,0 +1,35 @@
# ================================================================================
#
# Build ID Verilog Module Script
# Jeff Wiencrot - 8/1/2011
#
# Generates a Verilog module that contains a timestamp,
# from the current build. These values are available from the build_date, build_time,
# physical_address, and host_name output ports of the build_id module in the build_id.v
# Verilog source file.
#
# ================================================================================
proc generateBuildID_Verilog {} {
# Get the timestamp (see: http://www.altera.com/support/examples/tcl/tcl-date-time-stamp.html)
set buildDate [ clock format [ clock seconds ] -format %y%m%d ]
set buildTime [ clock format [ clock seconds ] -format %H%M%S ]
# Create a Verilog file for output
set outputFileName "sys/build_id.v"
set outputFile [open $outputFileName "w"]
# Output the Verilog source
puts $outputFile "`define BUILD_DATE \"$buildDate\""
puts $outputFile "`define BUILD_TIME \"$buildTime\""
close $outputFile
# Send confirmation message to the Messages window
post_message "Generated build identification Verilog module: [pwd]/$outputFileName"
post_message "Date: $buildDate"
post_message "Time: $buildTime"
}
# Comment out this line to prevent the process from automatically executing when the file is sourced:
generateBuildID_Verilog

View File

@ -0,0 +1,2 @@
`define BUILD_DATE "180816"
`define BUILD_TIME "200421"

View File

@ -0,0 +1,71 @@
-------------------------------------------------------------------------------
--
-- Delta-Sigma DAC
--
-- $Id: dac.vhd,v 1.1 2005/10/25 21:09:42 arnim Exp $
--
-- Refer to Xilinx Application Note XAPP154.
--
-- This DAC requires an external RC low-pass filter:
--
-- dac_o 0---XXXXX---+---0 analog audio
-- 3k3 |
-- === 4n7
-- |
-- GND
--
-------------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
entity dac is
generic (
msbi_g : integer := 7
);
port (
clk_i : in std_logic;
res_n_i : in std_logic;
dac_i : in std_logic_vector(msbi_g downto 0);
dac_o : out std_logic
);
end dac;
library ieee;
use ieee.numeric_std.all;
architecture rtl of dac is
signal DACout_q : std_logic;
signal DeltaAdder_s,
SigmaAdder_s,
SigmaLatch_q,
DeltaB_s : unsigned(msbi_g+2 downto 0);
begin
DeltaB_s(msbi_g+2 downto msbi_g+1) <= SigmaLatch_q(msbi_g+2) &
SigmaLatch_q(msbi_g+2);
DeltaB_s(msbi_g downto 0) <= (others => '0');
DeltaAdder_s <= unsigned('0' & '0' & dac_i) + DeltaB_s;
SigmaAdder_s <= DeltaAdder_s + SigmaLatch_q;
seq: process (clk_i, res_n_i)
begin
if res_n_i = '0' then
SigmaLatch_q <= to_unsigned(2**(msbi_g+1), SigmaLatch_q'length);
DACout_q <= '0';
elsif clk_i'event and clk_i = '1' then
SigmaLatch_q <= SigmaAdder_s;
DACout_q <= SigmaLatch_q(msbi_g+2);
end if;
end process seq;
dac_o <= DACout_q;
end rtl;

View File

@ -0,0 +1,131 @@
LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY altera_mf;
USE altera_mf.all;
ENTITY dpram IS
GENERIC
(
init_file : string := "";
--numwords_a : natural;
widthad_a : natural;
width_a : natural := 8;
outdata_reg_a : string := "UNREGISTERED";
outdata_reg_b : string := "UNREGISTERED"
);
PORT
(
address_a : IN STD_LOGIC_VECTOR (widthad_a-1 DOWNTO 0);
address_b : IN STD_LOGIC_VECTOR (widthad_a-1 DOWNTO 0);
clock_a : IN STD_LOGIC ;
clock_b : IN STD_LOGIC ;
data_a : IN STD_LOGIC_VECTOR (width_a-1 DOWNTO 0);
data_b : IN STD_LOGIC_VECTOR (width_a-1 DOWNTO 0);
wren_a : IN STD_LOGIC := '1';
wren_b : IN STD_LOGIC := '1';
q_a : OUT STD_LOGIC_VECTOR (width_a-1 DOWNTO 0);
q_b : OUT STD_LOGIC_VECTOR (width_a-1 DOWNTO 0)
);
END dpram;
ARCHITECTURE SYN OF dpram IS
SIGNAL sub_wire0 : STD_LOGIC_VECTOR (width_a-1 DOWNTO 0);
SIGNAL sub_wire1 : STD_LOGIC_VECTOR (width_a-1 DOWNTO 0);
COMPONENT altsyncram
GENERIC (
address_reg_b : STRING;
clock_enable_input_a : STRING;
clock_enable_input_b : STRING;
clock_enable_output_a : STRING;
clock_enable_output_b : STRING;
indata_reg_b : STRING;
init_file : STRING;
intended_device_family : STRING;
lpm_type : STRING;
numwords_a : NATURAL;
numwords_b : NATURAL;
operation_mode : STRING;
outdata_aclr_a : STRING;
outdata_aclr_b : STRING;
outdata_reg_a : STRING;
outdata_reg_b : STRING;
power_up_uninitialized : STRING;
read_during_write_mode_port_a : STRING;
read_during_write_mode_port_b : STRING;
widthad_a : NATURAL;
widthad_b : NATURAL;
width_a : NATURAL;
width_b : NATURAL;
width_byteena_a : NATURAL;
width_byteena_b : NATURAL;
wrcontrol_wraddress_reg_b : STRING
);
PORT (
wren_a : IN STD_LOGIC ;
clock0 : IN STD_LOGIC ;
wren_b : IN STD_LOGIC ;
clock1 : IN STD_LOGIC ;
address_a : IN STD_LOGIC_VECTOR (widthad_a-1 DOWNTO 0);
address_b : IN STD_LOGIC_VECTOR (widthad_a-1 DOWNTO 0);
q_a : OUT STD_LOGIC_VECTOR (width_a-1 DOWNTO 0);
q_b : OUT STD_LOGIC_VECTOR (width_a-1 DOWNTO 0);
data_a : IN STD_LOGIC_VECTOR (width_a-1 DOWNTO 0);
data_b : IN STD_LOGIC_VECTOR (width_a-1 DOWNTO 0)
);
END COMPONENT;
BEGIN
q_a <= sub_wire0(width_a-1 DOWNTO 0);
q_b <= sub_wire1(width_a-1 DOWNTO 0);
altsyncram_component : altsyncram
GENERIC MAP (
address_reg_b => "CLOCK1",
clock_enable_input_a => "BYPASS",
clock_enable_input_b => "BYPASS",
clock_enable_output_a => "BYPASS",
clock_enable_output_b => "BYPASS",
indata_reg_b => "CLOCK1",
init_file => init_file,
intended_device_family => "Cyclone III",
lpm_type => "altsyncram",
numwords_a => 2**widthad_a,
numwords_b => 2**widthad_a,
operation_mode => "BIDIR_DUAL_PORT",
outdata_aclr_a => "NONE",
outdata_aclr_b => "NONE",
outdata_reg_a => outdata_reg_a,
outdata_reg_b => outdata_reg_a,
power_up_uninitialized => "FALSE",
read_during_write_mode_port_a => "NEW_DATA_NO_NBE_READ",
read_during_write_mode_port_b => "NEW_DATA_NO_NBE_READ",
widthad_a => widthad_a,
widthad_b => widthad_a,
width_a => width_a,
width_b => width_a,
width_byteena_a => 1,
width_byteena_b => 1,
wrcontrol_wraddress_reg_b => "CLOCK1"
)
PORT MAP (
wren_a => wren_a,
clock0 => clock_a,
wren_b => wren_b,
clock1 => clock_b,
address_a => address_a,
address_b => address_b,
data_a => data_a,
data_b => data_b,
q_a => sub_wire0,
q_b => sub_wire1
);
END SYN;

View File

@ -0,0 +1,16 @@
module font_rom(
input clk,
input [10:0] addr,
output reg [7:0] data_out
);
reg [7:0] store[0:2047] /* verilator public_flat */;
initial
begin
$readmemh("galchr.mem", store);
end
always @(posedge clk)
data_out <= store[addr];
endmodule

454
Galaksija_MiST/rtl/hq2x.sv Normal file
View File

@ -0,0 +1,454 @@
//
//
// Copyright (c) 2012-2013 Ludvig Strigeus
// Copyright (c) 2017 Sorgelig
//
// This program is GPL Licensed. See COPYING for the full license.
//
//
////////////////////////////////////////////////////////////////////////////////////////////////////////
// synopsys translate_off
`timescale 1 ps / 1 ps
// synopsys translate_on
`define BITS_TO_FIT(N) ( \
N <= 2 ? 0 : \
N <= 4 ? 1 : \
N <= 8 ? 2 : \
N <= 16 ? 3 : \
N <= 32 ? 4 : \
N <= 64 ? 5 : \
N <= 128 ? 6 : \
N <= 256 ? 7 : \
N <= 512 ? 8 : \
N <=1024 ? 9 : 10 )
module hq2x_in #(parameter LENGTH, parameter DWIDTH)
(
input clk,
input [AWIDTH:0] rdaddr,
input rdbuf,
output[DWIDTH:0] q,
input [AWIDTH:0] wraddr,
input wrbuf,
input [DWIDTH:0] data,
input wren
);
localparam AWIDTH = `BITS_TO_FIT(LENGTH);
wire [DWIDTH:0] out[2];
assign q = out[rdbuf];
hq2x_buf #(.NUMWORDS(LENGTH), .AWIDTH(AWIDTH), .DWIDTH(DWIDTH)) buf0(clk,data,rdaddr,wraddr,wren && (wrbuf == 0),out[0]);
hq2x_buf #(.NUMWORDS(LENGTH), .AWIDTH(AWIDTH), .DWIDTH(DWIDTH)) buf1(clk,data,rdaddr,wraddr,wren && (wrbuf == 1),out[1]);
endmodule
module hq2x_out #(parameter LENGTH, parameter DWIDTH)
(
input clk,
input [AWIDTH:0] rdaddr,
input [1:0] rdbuf,
output[DWIDTH:0] q,
input [AWIDTH:0] wraddr,
input [1:0] wrbuf,
input [DWIDTH:0] data,
input wren
);
localparam AWIDTH = `BITS_TO_FIT(LENGTH*2);
wire [DWIDTH:0] out[4];
assign q = out[rdbuf];
hq2x_buf #(.NUMWORDS(LENGTH*2), .AWIDTH(AWIDTH), .DWIDTH(DWIDTH)) buf0(clk,data,rdaddr,wraddr,wren && (wrbuf == 0),out[0]);
hq2x_buf #(.NUMWORDS(LENGTH*2), .AWIDTH(AWIDTH), .DWIDTH(DWIDTH)) buf1(clk,data,rdaddr,wraddr,wren && (wrbuf == 1),out[1]);
hq2x_buf #(.NUMWORDS(LENGTH*2), .AWIDTH(AWIDTH), .DWIDTH(DWIDTH)) buf2(clk,data,rdaddr,wraddr,wren && (wrbuf == 2),out[2]);
hq2x_buf #(.NUMWORDS(LENGTH*2), .AWIDTH(AWIDTH), .DWIDTH(DWIDTH)) buf3(clk,data,rdaddr,wraddr,wren && (wrbuf == 3),out[3]);
endmodule
module hq2x_buf #(parameter NUMWORDS, parameter AWIDTH, parameter DWIDTH)
(
input clock,
input [DWIDTH:0] data,
input [AWIDTH:0] rdaddress,
input [AWIDTH:0] wraddress,
input wren,
output [DWIDTH:0] q
);
altsyncram altsyncram_component (
.address_a (wraddress),
.clock0 (clock),
.data_a (data),
.wren_a (wren),
.address_b (rdaddress),
.q_b(q),
.aclr0 (1'b0),
.aclr1 (1'b0),
.addressstall_a (1'b0),
.addressstall_b (1'b0),
.byteena_a (1'b1),
.byteena_b (1'b1),
.clock1 (1'b1),
.clocken0 (1'b1),
.clocken1 (1'b1),
.clocken2 (1'b1),
.clocken3 (1'b1),
.data_b ({(DWIDTH+1){1'b1}}),
.eccstatus (),
.q_a (),
.rden_a (1'b1),
.rden_b (1'b1),
.wren_b (1'b0));
defparam
altsyncram_component.address_aclr_b = "NONE",
altsyncram_component.address_reg_b = "CLOCK0",
altsyncram_component.clock_enable_input_a = "BYPASS",
altsyncram_component.clock_enable_input_b = "BYPASS",
altsyncram_component.clock_enable_output_b = "BYPASS",
altsyncram_component.intended_device_family = "Cyclone III",
altsyncram_component.lpm_type = "altsyncram",
altsyncram_component.numwords_a = NUMWORDS,
altsyncram_component.numwords_b = NUMWORDS,
altsyncram_component.operation_mode = "DUAL_PORT",
altsyncram_component.outdata_aclr_b = "NONE",
altsyncram_component.outdata_reg_b = "UNREGISTERED",
altsyncram_component.power_up_uninitialized = "FALSE",
altsyncram_component.read_during_write_mode_mixed_ports = "DONT_CARE",
altsyncram_component.widthad_a = AWIDTH+1,
altsyncram_component.widthad_b = AWIDTH+1,
altsyncram_component.width_a = DWIDTH+1,
altsyncram_component.width_b = DWIDTH+1,
altsyncram_component.width_byteena_a = 1;
endmodule
////////////////////////////////////////////////////////////////////////////////////////////////////////
module DiffCheck
(
input [17:0] rgb1,
input [17:0] rgb2,
output result
);
wire [5:0] r = rgb1[5:1] - rgb2[5:1];
wire [5:0] g = rgb1[11:7] - rgb2[11:7];
wire [5:0] b = rgb1[17:13] - rgb2[17:13];
wire [6:0] t = $signed(r) + $signed(b);
wire [6:0] gx = {g[5], g};
wire [7:0] y = $signed(t) + $signed(gx);
wire [6:0] u = $signed(r) - $signed(b);
wire [7:0] v = $signed({g, 1'b0}) - $signed(t);
// if y is inside (-24..24)
wire y_inside = (y < 8'h18 || y >= 8'he8);
// if u is inside (-4, 4)
wire u_inside = (u < 7'h4 || u >= 7'h7c);
// if v is inside (-6, 6)
wire v_inside = (v < 8'h6 || v >= 8'hfA);
assign result = !(y_inside && u_inside && v_inside);
endmodule
module InnerBlend
(
input [8:0] Op,
input [5:0] A,
input [5:0] B,
input [5:0] C,
output [5:0] O
);
function [8:0] mul6x3;
input [5:0] op1;
input [2:0] op2;
begin
mul6x3 = 9'd0;
if(op2[0]) mul6x3 = mul6x3 + op1;
if(op2[1]) mul6x3 = mul6x3 + {op1, 1'b0};
if(op2[2]) mul6x3 = mul6x3 + {op1, 2'b00};
end
endfunction
wire OpOnes = Op[4];
wire [8:0] Amul = mul6x3(A, Op[7:5]);
wire [8:0] Bmul = mul6x3(B, {Op[3:2], 1'b0});
wire [8:0] Cmul = mul6x3(C, {Op[1:0], 1'b0});
wire [8:0] At = Amul;
wire [8:0] Bt = (OpOnes == 0) ? Bmul : {3'b0, B};
wire [8:0] Ct = (OpOnes == 0) ? Cmul : {3'b0, C};
wire [9:0] Res = {At, 1'b0} + Bt + Ct;
assign O = Op[8] ? A : Res[9:4];
endmodule
module Blend
(
input [5:0] rule,
input disable_hq2x,
input [17:0] E,
input [17:0] A,
input [17:0] B,
input [17:0] D,
input [17:0] F,
input [17:0] H,
output [17:0] Result
);
reg [1:0] input_ctrl;
reg [8:0] op;
localparam BLEND0 = 9'b1_xxx_x_xx_xx; // 0: A
localparam BLEND1 = 9'b0_110_0_10_00; // 1: (A * 12 + B * 4) >> 4
localparam BLEND2 = 9'b0_100_0_10_10; // 2: (A * 8 + B * 4 + C * 4) >> 4
localparam BLEND3 = 9'b0_101_0_10_01; // 3: (A * 10 + B * 4 + C * 2) >> 4
localparam BLEND4 = 9'b0_110_0_01_01; // 4: (A * 12 + B * 2 + C * 2) >> 4
localparam BLEND5 = 9'b0_010_0_11_11; // 5: (A * 4 + (B + C) * 6) >> 4
localparam BLEND6 = 9'b0_111_1_xx_xx; // 6: (A * 14 + B + C) >> 4
localparam AB = 2'b00;
localparam AD = 2'b01;
localparam DB = 2'b10;
localparam BD = 2'b11;
wire is_diff;
DiffCheck diff_checker(rule[1] ? B : H, rule[0] ? D : F, is_diff);
always @* begin
case({!is_diff, rule[5:2]})
1,17: {op, input_ctrl} = {BLEND1, AB};
2,18: {op, input_ctrl} = {BLEND1, DB};
3,19: {op, input_ctrl} = {BLEND1, BD};
4,20: {op, input_ctrl} = {BLEND2, DB};
5,21: {op, input_ctrl} = {BLEND2, AB};
6,22: {op, input_ctrl} = {BLEND2, AD};
8: {op, input_ctrl} = {BLEND0, 2'bxx};
9: {op, input_ctrl} = {BLEND0, 2'bxx};
10: {op, input_ctrl} = {BLEND0, 2'bxx};
11: {op, input_ctrl} = {BLEND1, AB};
12: {op, input_ctrl} = {BLEND1, AB};
13: {op, input_ctrl} = {BLEND1, AB};
14: {op, input_ctrl} = {BLEND1, DB};
15: {op, input_ctrl} = {BLEND1, BD};
24: {op, input_ctrl} = {BLEND2, DB};
25: {op, input_ctrl} = {BLEND5, DB};
26: {op, input_ctrl} = {BLEND6, DB};
27: {op, input_ctrl} = {BLEND2, DB};
28: {op, input_ctrl} = {BLEND4, DB};
29: {op, input_ctrl} = {BLEND5, DB};
30: {op, input_ctrl} = {BLEND3, BD};
31: {op, input_ctrl} = {BLEND3, DB};
default: {op, input_ctrl} = 11'bx;
endcase
// Setting op[8] effectively disables HQ2X because blend will always return E.
if (disable_hq2x) op[8] = 1;
end
// Generate inputs to the inner blender. Valid combinations.
// 00: E A B
// 01: E A D
// 10: E D B
// 11: E B D
wire [17:0] Input1 = E;
wire [17:0] Input2 = !input_ctrl[1] ? A :
!input_ctrl[0] ? D : B;
wire [17:0] Input3 = !input_ctrl[0] ? B : D;
InnerBlend inner_blend1(op, Input1[5:0], Input2[5:0], Input3[5:0], Result[5:0]);
InnerBlend inner_blend2(op, Input1[11:6], Input2[11:6], Input3[11:6], Result[11:6]);
InnerBlend inner_blend3(op, Input1[17:12], Input2[17:12], Input3[17:12], Result[17:12]);
endmodule
////////////////////////////////////////////////////////////////////////////////////////////////////
module Hq2x #(parameter LENGTH, parameter HALF_DEPTH)
(
input clk,
input ce_x4,
input [DWIDTH:0] inputpixel,
input mono,
input disable_hq2x,
input reset_frame,
input reset_line,
input [1:0] read_y,
input [AWIDTH+1:0] read_x,
output [DWIDTH:0] outpixel
);
localparam AWIDTH = `BITS_TO_FIT(LENGTH);
localparam DWIDTH = HALF_DEPTH ? 8 : 17;
wire [5:0] hqTable[256] = '{
19, 19, 26, 11, 19, 19, 26, 11, 23, 15, 47, 35, 23, 15, 55, 39,
19, 19, 26, 58, 19, 19, 26, 58, 23, 15, 35, 35, 23, 15, 7, 35,
19, 19, 26, 11, 19, 19, 26, 11, 23, 15, 55, 39, 23, 15, 51, 43,
19, 19, 26, 58, 19, 19, 26, 58, 23, 15, 51, 35, 23, 15, 7, 43,
19, 19, 26, 11, 19, 19, 26, 11, 23, 61, 35, 35, 23, 61, 51, 35,
19, 19, 26, 11, 19, 19, 26, 11, 23, 15, 51, 35, 23, 15, 51, 35,
19, 19, 26, 11, 19, 19, 26, 11, 23, 61, 7, 35, 23, 61, 7, 43,
19, 19, 26, 11, 19, 19, 26, 58, 23, 15, 51, 35, 23, 61, 7, 43,
19, 19, 26, 11, 19, 19, 26, 11, 23, 15, 47, 35, 23, 15, 55, 39,
19, 19, 26, 11, 19, 19, 26, 11, 23, 15, 51, 35, 23, 15, 51, 35,
19, 19, 26, 11, 19, 19, 26, 11, 23, 15, 55, 39, 23, 15, 51, 43,
19, 19, 26, 11, 19, 19, 26, 11, 23, 15, 51, 39, 23, 15, 7, 43,
19, 19, 26, 11, 19, 19, 26, 11, 23, 15, 51, 35, 23, 15, 51, 39,
19, 19, 26, 11, 19, 19, 26, 11, 23, 15, 51, 35, 23, 15, 7, 35,
19, 19, 26, 11, 19, 19, 26, 11, 23, 15, 51, 35, 23, 15, 7, 43,
19, 19, 26, 11, 19, 19, 26, 11, 23, 15, 7, 35, 23, 15, 7, 43
};
reg [17:0] Prev0, Prev1, Prev2, Curr0, Curr1, Next0, Next1, Next2;
reg [17:0] A, B, D, F, G, H;
reg [7:0] pattern, nextpatt;
reg [1:0] i;
reg [7:0] y;
wire curbuf = y[0];
reg prevbuf = 0;
wire iobuf = !curbuf;
wire diff0, diff1;
DiffCheck diffcheck0(Curr1, (i == 0) ? Prev0 : (i == 1) ? Curr0 : (i == 2) ? Prev2 : Next1, diff0);
DiffCheck diffcheck1(Curr1, (i == 0) ? Prev1 : (i == 1) ? Next0 : (i == 2) ? Curr2 : Next2, diff1);
wire [7:0] new_pattern = {diff1, diff0, pattern[7:2]};
wire [17:0] X = (i == 0) ? A : (i == 1) ? Prev1 : (i == 2) ? Next1 : G;
wire [17:0] blend_result;
Blend blender(hqTable[nextpatt], disable_hq2x, Curr0, X, B, D, F, H, blend_result);
reg Curr2_addr1;
reg [AWIDTH:0] Curr2_addr2;
wire [17:0] Curr2 = HALF_DEPTH ? h2rgb(Curr2tmp) : Curr2tmp;
wire [DWIDTH:0] Curr2tmp;
reg [AWIDTH:0] wrin_addr2;
reg [DWIDTH:0] wrpix;
reg wrin_en;
function [17:0] h2rgb;
input [8:0] v;
begin
h2rgb = mono ? {v[5:3],v[2:0], v[5:3],v[2:0], v[5:3],v[2:0]} : {v[8:6],v[8:6],v[5:3],v[5:3],v[2:0],v[2:0]};
end
endfunction
function [8:0] rgb2h;
input [17:0] v;
begin
rgb2h = mono ? {3'b000, v[17:15], v[14:12]} : {v[17:15], v[11:9], v[5:3]};
end
endfunction
hq2x_in #(.LENGTH(LENGTH), .DWIDTH(DWIDTH)) hq2x_in
(
.clk(clk),
.rdaddr(Curr2_addr2),
.rdbuf(Curr2_addr1),
.q(Curr2tmp),
.wraddr(wrin_addr2),
.wrbuf(iobuf),
.data(wrpix),
.wren(wrin_en)
);
reg [1:0] wrout_addr1;
reg [AWIDTH+1:0] wrout_addr2;
reg wrout_en;
reg [DWIDTH:0] wrdata;
hq2x_out #(.LENGTH(LENGTH), .DWIDTH(DWIDTH)) hq2x_out
(
.clk(clk),
.rdaddr(read_x),
.rdbuf(read_y),
.q(outpixel),
.wraddr(wrout_addr2),
.wrbuf(wrout_addr1),
.data(wrdata),
.wren(wrout_en)
);
always @(posedge clk) begin
reg [AWIDTH:0] offs;
reg old_reset_line;
reg old_reset_frame;
wrout_en <= 0;
wrin_en <= 0;
if(ce_x4) begin
pattern <= new_pattern;
if(~&offs) begin
if (i == 0) begin
Curr2_addr1 <= prevbuf;
Curr2_addr2 <= offs;
end
if (i == 1) begin
Prev2 <= Curr2;
Curr2_addr1 <= curbuf;
Curr2_addr2 <= offs;
end
if (i == 2) begin
Next2 <= HALF_DEPTH ? h2rgb(inputpixel) : inputpixel;
wrpix <= inputpixel;
wrin_addr2 <= offs;
wrin_en <= 1;
end
if (i == 3) begin
offs <= offs + 1'd1;
end
if(HALF_DEPTH) wrdata <= rgb2h(blend_result);
else wrdata <= blend_result;
wrout_addr1 <= {curbuf, i[1]};
wrout_addr2 <= {offs, i[1]^i[0]};
wrout_en <= 1;
end
if(i==3) begin
nextpatt <= {new_pattern[7:6], new_pattern[3], new_pattern[5], new_pattern[2], new_pattern[4], new_pattern[1:0]};
{A, G} <= {Prev0, Next0};
{B, F, H, D} <= {Prev1, Curr2, Next1, Curr0};
{Prev0, Prev1} <= {Prev1, Prev2};
{Curr0, Curr1} <= {Curr1, Curr2};
{Next0, Next1} <= {Next1, Next2};
end else begin
nextpatt <= {nextpatt[5], nextpatt[3], nextpatt[0], nextpatt[6], nextpatt[1], nextpatt[7], nextpatt[4], nextpatt[2]};
{B, F, H, D} <= {F, H, D, B};
end
i <= i + 1'b1;
if(old_reset_line && ~reset_line) begin
old_reset_frame <= reset_frame;
offs <= 0;
i <= 0;
y <= y + 1'd1;
prevbuf <= curbuf;
if(old_reset_frame & ~reset_frame) begin
y <= 0;
prevbuf <= 0;
end
end
old_reset_line <= reset_line;
end
end
endmodule // Hq2x

View File

@ -0,0 +1,496 @@
//
// mist_io.v
//
// mist_io for the MiST board
// http://code.google.com/p/mist-board/
//
// Copyright (c) 2014 Till Harbaum <till@harbaum.org>
// Copyright (c) 2015-2017 Sorgelig
//
// This source file is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This source file is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
///////////////////////////////////////////////////////////////////////
//
// Use buffer to access SD card. It's time-critical part.
// Made module synchroneous with 2 clock domains: clk_sys and SPI_SCK
// (Sorgelig)
//
// for synchronous projects default value for PS2DIV is fine for any frequency of system clock.
// clk_ps2 = clk_sys/(PS2DIV*2)
//
module mist_io #(parameter STRLEN=0, parameter PS2DIV=100)
(
// parameter STRLEN and the actual length of conf_str have to match
input [(8*STRLEN)-1:0] conf_str,
// Global clock. It should be around 100MHz (higher is better).
input clk_sys,
// Global SPI clock from ARM. 24MHz
input SPI_SCK,
input CONF_DATA0,
input SPI_SS2,
output SPI_DO,
input SPI_DI,
output reg [7:0] joystick_0,
output reg [7:0] joystick_1,
output reg [15:0] joystick_analog_0,
output reg [15:0] joystick_analog_1,
output [1:0] buttons,
output [1:0] switches,
output scandoubler_disable,
output ypbpr,
output reg [31:0] status,
// SD config
input sd_conf,
input sd_sdhc,
output [1:0] img_mounted, // signaling that new image has been mounted
output reg [31:0] img_size, // size of image in bytes
// SD block level access
input [31:0] sd_lba,
input [1:0] sd_rd,
input [1:0] sd_wr,
output reg sd_ack,
output reg sd_ack_conf,
// SD byte level access. Signals for 2-PORT altsyncram.
output reg [8:0] sd_buff_addr,
output reg [7:0] sd_buff_dout,
input [7:0] sd_buff_din,
output reg sd_buff_wr,
// ps2 keyboard emulation
output ps2_kbd_clk,
output reg ps2_kbd_data,
output ps2_mouse_clk,
output reg ps2_mouse_data,
// ps2 alternative interface.
// [8] - extended, [9] - pressed, [10] - toggles with every press/release
output reg [10:0] ps2_key = 0,
// [24] - toggles with every event
output reg [24:0] ps2_mouse = 0,
// ARM -> FPGA download
input ioctl_ce,
input ioctl_wait,
output reg ioctl_download = 0, // signal indicating an active download
output reg [7:0] ioctl_index, // menu index used to upload the file
output reg ioctl_wr = 0,
output reg [13:0] ioctl_addr,
output reg [7:0] ioctl_dout
);
reg [7:0] but_sw;
reg [2:0] stick_idx;
reg [1:0] mount_strobe = 0;
assign img_mounted = mount_strobe;
assign buttons = but_sw[1:0];
assign switches = but_sw[3:2];
assign scandoubler_disable = but_sw[4];
assign ypbpr = but_sw[5];
// this variant of user_io is for 8 bit cores (type == a4) only
wire [7:0] core_type = 8'ha4;
// command byte read by the io controller
wire drive_sel = sd_rd[1] | sd_wr[1];
wire [7:0] sd_cmd = { 4'h6, sd_conf, sd_sdhc, sd_wr[drive_sel], sd_rd[drive_sel] };
reg [7:0] cmd;
reg [2:0] bit_cnt; // counts bits 0-7 0-7 ...
reg [9:0] byte_cnt; // counts bytes
reg spi_do;
assign SPI_DO = CONF_DATA0 ? 1'bZ : spi_do;
reg [7:0] spi_data_out;
// SPI transmitter
always@(negedge SPI_SCK) spi_do <= spi_data_out[~bit_cnt];
reg [7:0] spi_data_in;
reg spi_data_ready = 0;
// SPI receiver
always@(posedge SPI_SCK or posedge CONF_DATA0) begin
reg [6:0] sbuf;
reg [31:0] sd_lba_r;
reg drive_sel_r;
if(CONF_DATA0) begin
bit_cnt <= 0;
byte_cnt <= 0;
spi_data_out <= core_type;
end
else
begin
bit_cnt <= bit_cnt + 1'd1;
sbuf <= {sbuf[5:0], SPI_DI};
// finished reading command byte
if(bit_cnt == 7) begin
if(!byte_cnt) cmd <= {sbuf, SPI_DI};
spi_data_in <= {sbuf, SPI_DI};
spi_data_ready <= ~spi_data_ready;
if(~&byte_cnt) byte_cnt <= byte_cnt + 8'd1;
spi_data_out <= 0;
case({(!byte_cnt) ? {sbuf, SPI_DI} : cmd})
// reading config string
8'h14: if(byte_cnt < STRLEN) spi_data_out <= conf_str[(STRLEN - byte_cnt - 1)<<3 +:8];
// reading sd card status
8'h16: if(byte_cnt == 0) begin
spi_data_out <= sd_cmd;
sd_lba_r <= sd_lba;
drive_sel_r <= drive_sel;
end else if (byte_cnt == 1) begin
spi_data_out <= drive_sel_r;
end else if(byte_cnt < 6) spi_data_out <= sd_lba_r[(5-byte_cnt)<<3 +:8];
// reading sd card write data
8'h18: spi_data_out <= sd_buff_din;
endcase
end
end
end
reg [31:0] ps2_key_raw = 0;
wire pressed = (ps2_key_raw[15:8] != 8'hf0);
wire extended = (~pressed ? (ps2_key_raw[23:16] == 8'he0) : (ps2_key_raw[15:8] == 8'he0));
// transfer to clk_sys domain
always@(posedge clk_sys) begin
reg old_ss1, old_ss2;
reg old_ready1, old_ready2;
reg [2:0] b_wr;
reg got_ps2 = 0;
old_ss1 <= CONF_DATA0;
old_ss2 <= old_ss1;
old_ready1 <= spi_data_ready;
old_ready2 <= old_ready1;
sd_buff_wr <= b_wr[0];
if(b_wr[2] && (~&sd_buff_addr)) sd_buff_addr <= sd_buff_addr + 1'b1;
b_wr <= (b_wr<<1);
if(old_ss2) begin
got_ps2 <= 0;
sd_ack <= 0;
sd_ack_conf <= 0;
sd_buff_addr <= 0;
if(got_ps2) begin
if(cmd == 4) ps2_mouse[24] <= ~ps2_mouse[24];
if(cmd == 5) begin
ps2_key <= {~ps2_key[10], pressed, extended, ps2_key_raw[7:0]};
if(ps2_key_raw == 'hE012E07C) ps2_key[9:0] <= 'h37C; // prnscr pressed
if(ps2_key_raw == 'h7CE0F012) ps2_key[9:0] <= 'h17C; // prnscr released
if(ps2_key_raw == 'hF014F077) ps2_key[9:0] <= 'h377; // pause pressed
end
end
end
else
if(old_ready2 ^ old_ready1) begin
if(cmd == 8'h18 && ~&sd_buff_addr) sd_buff_addr <= sd_buff_addr + 1'b1;
if(byte_cnt < 2) begin
if (cmd == 8'h19) sd_ack_conf <= 1;
if((cmd == 8'h17) || (cmd == 8'h18)) sd_ack <= 1;
mount_strobe <= 0;
if(cmd == 5) ps2_key_raw <= 0;
end else begin
case(cmd)
// buttons and switches
8'h01: but_sw <= spi_data_in;
8'h02: joystick_0 <= spi_data_in;
8'h03: joystick_1 <= spi_data_in;
// store incoming ps2 mouse bytes
8'h04: begin
got_ps2 <= 1;
case(byte_cnt)
2: ps2_mouse[7:0] <= spi_data_in;
3: ps2_mouse[15:8] <= spi_data_in;
4: ps2_mouse[23:16] <= spi_data_in;
endcase
ps2_mouse_fifo[ps2_mouse_wptr] <= spi_data_in;
ps2_mouse_wptr <= ps2_mouse_wptr + 1'd1;
end
// store incoming ps2 keyboard bytes
8'h05: begin
got_ps2 <= 1;
ps2_key_raw[31:0] <= {ps2_key_raw[23:0], spi_data_in};
ps2_kbd_fifo[ps2_kbd_wptr] <= spi_data_in;
ps2_kbd_wptr <= ps2_kbd_wptr + 1'd1;
end
8'h15: status[7:0] <= spi_data_in;
// send SD config IO -> FPGA
// flag that download begins
// sd card knows data is config if sd_dout_strobe is asserted
// with sd_ack still being inactive (low)
8'h19,
// send sector IO -> FPGA
// flag that download begins
8'h17: begin
sd_buff_dout <= spi_data_in;
b_wr <= 1;
end
// joystick analog
8'h1a: begin
// first byte is joystick index
if(byte_cnt == 2) stick_idx <= spi_data_in[2:0];
else if(byte_cnt == 3) begin
// second byte is x axis
if(stick_idx == 0) joystick_analog_0[15:8] <= spi_data_in;
else if(stick_idx == 1) joystick_analog_1[15:8] <= spi_data_in;
end else if(byte_cnt == 4) begin
// third byte is y axis
if(stick_idx == 0) joystick_analog_0[7:0] <= spi_data_in;
else if(stick_idx == 1) joystick_analog_1[7:0] <= spi_data_in;
end
end
// notify image selection
8'h1c: mount_strobe[spi_data_in[0]] <= 1;
// send image info
8'h1d: if(byte_cnt<6) img_size[(byte_cnt-2)<<3 +:8] <= spi_data_in;
// status, 32bit version
8'h1e: if(byte_cnt<6) status[(byte_cnt-2)<<3 +:8] <= spi_data_in;
default: ;
endcase
end
end
end
/////////////////////////////// PS2 ///////////////////////////////
// 8 byte fifos to store ps2 bytes
localparam PS2_FIFO_BITS = 3;
reg clk_ps2;
always @(negedge clk_sys) begin
integer cnt;
cnt <= cnt + 1'd1;
if(cnt == PS2DIV) begin
clk_ps2 <= ~clk_ps2;
cnt <= 0;
end
end
// keyboard
reg [7:0] ps2_kbd_fifo[1<<PS2_FIFO_BITS];
reg [PS2_FIFO_BITS-1:0] ps2_kbd_wptr;
reg [PS2_FIFO_BITS-1:0] ps2_kbd_rptr;
// ps2 transmitter state machine
reg [3:0] ps2_kbd_tx_state;
reg [7:0] ps2_kbd_tx_byte;
reg ps2_kbd_parity;
assign ps2_kbd_clk = clk_ps2 || (ps2_kbd_tx_state == 0);
// ps2 transmitter
// Takes a byte from the FIFO and sends it in a ps2 compliant serial format.
reg ps2_kbd_r_inc;
always@(posedge clk_sys) begin
reg old_clk;
old_clk <= clk_ps2;
if(~old_clk & clk_ps2) begin
ps2_kbd_r_inc <= 0;
if(ps2_kbd_r_inc) ps2_kbd_rptr <= ps2_kbd_rptr + 1'd1;
// transmitter is idle?
if(ps2_kbd_tx_state == 0) begin
// data in fifo present?
if(ps2_kbd_wptr != ps2_kbd_rptr) begin
// load tx register from fifo
ps2_kbd_tx_byte <= ps2_kbd_fifo[ps2_kbd_rptr];
ps2_kbd_r_inc <= 1;
// reset parity
ps2_kbd_parity <= 1;
// start transmitter
ps2_kbd_tx_state <= 1;
// put start bit on data line
ps2_kbd_data <= 0; // start bit is 0
end
end else begin
// transmission of 8 data bits
if((ps2_kbd_tx_state >= 1)&&(ps2_kbd_tx_state < 9)) begin
ps2_kbd_data <= ps2_kbd_tx_byte[0]; // data bits
ps2_kbd_tx_byte[6:0] <= ps2_kbd_tx_byte[7:1]; // shift down
if(ps2_kbd_tx_byte[0])
ps2_kbd_parity <= !ps2_kbd_parity;
end
// transmission of parity
if(ps2_kbd_tx_state == 9) ps2_kbd_data <= ps2_kbd_parity;
// transmission of stop bit
if(ps2_kbd_tx_state == 10) ps2_kbd_data <= 1; // stop bit is 1
// advance state machine
if(ps2_kbd_tx_state < 11) ps2_kbd_tx_state <= ps2_kbd_tx_state + 1'd1;
else ps2_kbd_tx_state <= 0;
end
end
end
// mouse
reg [7:0] ps2_mouse_fifo[1<<PS2_FIFO_BITS];
reg [PS2_FIFO_BITS-1:0] ps2_mouse_wptr;
reg [PS2_FIFO_BITS-1:0] ps2_mouse_rptr;
// ps2 transmitter state machine
reg [3:0] ps2_mouse_tx_state;
reg [7:0] ps2_mouse_tx_byte;
reg ps2_mouse_parity;
assign ps2_mouse_clk = clk_ps2 || (ps2_mouse_tx_state == 0);
// ps2 transmitter
// Takes a byte from the FIFO and sends it in a ps2 compliant serial format.
reg ps2_mouse_r_inc;
always@(posedge clk_sys) begin
reg old_clk;
old_clk <= clk_ps2;
if(~old_clk & clk_ps2) begin
ps2_mouse_r_inc <= 0;
if(ps2_mouse_r_inc) ps2_mouse_rptr <= ps2_mouse_rptr + 1'd1;
// transmitter is idle?
if(ps2_mouse_tx_state == 0) begin
// data in fifo present?
if(ps2_mouse_wptr != ps2_mouse_rptr) begin
// load tx register from fifo
ps2_mouse_tx_byte <= ps2_mouse_fifo[ps2_mouse_rptr];
ps2_mouse_r_inc <= 1;
// reset parity
ps2_mouse_parity <= 1;
// start transmitter
ps2_mouse_tx_state <= 1;
// put start bit on data line
ps2_mouse_data <= 0; // start bit is 0
end
end else begin
// transmission of 8 data bits
if((ps2_mouse_tx_state >= 1)&&(ps2_mouse_tx_state < 9)) begin
ps2_mouse_data <= ps2_mouse_tx_byte[0]; // data bits
ps2_mouse_tx_byte[6:0] <= ps2_mouse_tx_byte[7:1]; // shift down
if(ps2_mouse_tx_byte[0])
ps2_mouse_parity <= !ps2_mouse_parity;
end
// transmission of parity
if(ps2_mouse_tx_state == 9) ps2_mouse_data <= ps2_mouse_parity;
// transmission of stop bit
if(ps2_mouse_tx_state == 10) ps2_mouse_data <= 1; // stop bit is 1
// advance state machine
if(ps2_mouse_tx_state < 11) ps2_mouse_tx_state <= ps2_mouse_tx_state + 1'd1;
else ps2_mouse_tx_state <= 0;
end
end
end
/////////////////////////////// DOWNLOADING ///////////////////////////////
localparam UIO_FILE_TX = 8'h53;
localparam UIO_FILE_TX_DAT = 8'h54;
localparam UIO_FILE_INDEX = 8'h55;
// data_io has its own SPI interface to the io controller
always@(posedge SPI_SCK, posedge SPI_SS2) begin
reg [6:0] sbuf;
reg [7:0] cmd;
reg [4:0] cnt;
reg [13:0] addr;
if(SPI_SS2) cnt <= 0;
else begin
// don't shift in last bit. It is evaluated directly
// when writing to ram
if(cnt != 15) sbuf <= { sbuf[5:0], SPI_DI};
// count 0-7 8-15 8-15 ...
if(cnt < 15) cnt <= cnt + 1'd1;
else cnt <= 8;
// finished command byte
if(cnt == 7) cmd <= {sbuf, SPI_DI};
// prepare/end transmission
if((cmd == UIO_FILE_TX) && (cnt == 15)) begin
// prepare
if(SPI_DI) begin
// addr <= ioctl_index ? 14'd9 : 14'd0; //.p files loaded at $4009, ROM is at 0
addr <= 14'd0;
ioctl_download <= 1;
end else begin
ioctl_addr <= addr;
ioctl_download <= 0;
end
end
// command 0x54: UIO_FILE_TX
if((cmd == UIO_FILE_TX_DAT) && (cnt == 15)) begin
ioctl_addr <= addr;
ioctl_dout <= {sbuf, SPI_DI};
addr <= addr + 1'd1;
ioctl_wr <= 1;
end else
ioctl_wr <= 0;
// expose file (menu) index
if((cmd == UIO_FILE_INDEX) && (cnt == 15)) ioctl_index <= {sbuf, SPI_DI};
end
end
endmodule

179
Galaksija_MiST/rtl/osd.v Normal file
View File

@ -0,0 +1,179 @@
// A simple OSD implementation. Can be hooked up between a cores
// VGA output and the physical VGA pins
module osd (
// OSDs pixel clock, should be synchronous to cores pixel clock to
// avoid jitter.
input clk_sys,
// SPI interface
input SPI_SCK,
input SPI_SS3,
input SPI_DI,
// VGA signals coming from core
input [5:0] R_in,
input [5:0] G_in,
input [5:0] B_in,
input HSync,
input VSync,
// VGA signals going to video connector
output [5:0] R_out,
output [5:0] G_out,
output [5:0] B_out
);
parameter OSD_X_OFFSET = 10'd0;
parameter OSD_Y_OFFSET = 10'd0;
parameter OSD_COLOR = 3'd0;
localparam OSD_WIDTH = 10'd256;
localparam OSD_HEIGHT = 10'd128;
// *********************************************************************************
// spi client
// *********************************************************************************
// this core supports only the display related OSD commands
// of the minimig
reg osd_enable;
(* ramstyle = "no_rw_check" *) reg [7:0] osd_buffer[2047:0]; // the OSD buffer itself
// the OSD has its own SPI interface to the io controller
always@(posedge SPI_SCK, posedge SPI_SS3) begin
reg [4:0] cnt;
reg [10:0] bcnt;
reg [7:0] sbuf;
reg [7:0] cmd;
if(SPI_SS3) begin
cnt <= 0;
bcnt <= 0;
end else begin
sbuf <= {sbuf[6:0], SPI_DI};
// 0:7 is command, rest payload
if(cnt < 15) cnt <= cnt + 1'd1;
else cnt <= 8;
if(cnt == 7) begin
cmd <= {sbuf[6:0], SPI_DI};
// lower three command bits are line address
bcnt <= {sbuf[1:0], SPI_DI, 8'h00};
// command 0x40: OSDCMDENABLE, OSDCMDDISABLE
if(sbuf[6:3] == 4'b0100) osd_enable <= SPI_DI;
end
// command 0x20: OSDCMDWRITE
if((cmd[7:3] == 5'b00100) && (cnt == 15)) begin
osd_buffer[bcnt] <= {sbuf[6:0], SPI_DI};
bcnt <= bcnt + 1'd1;
end
end
end
// *********************************************************************************
// video timing and sync polarity anaylsis
// *********************************************************************************
// horizontal counter
reg [9:0] h_cnt;
reg [9:0] hs_low, hs_high;
wire hs_pol = hs_high < hs_low;
wire [9:0] dsp_width = hs_pol ? hs_low : hs_high;
// vertical counter
reg [9:0] v_cnt;
reg [9:0] vs_low, vs_high;
wire vs_pol = vs_high < vs_low;
wire [9:0] dsp_height = vs_pol ? vs_low : vs_high;
wire doublescan = (dsp_height>350);
reg ce_pix;
always @(negedge clk_sys) begin
integer cnt = 0;
integer pixsz, pixcnt;
reg hs;
cnt <= cnt + 1;
hs <= HSync;
pixcnt <= pixcnt + 1;
if(pixcnt == pixsz) pixcnt <= 0;
ce_pix <= !pixcnt;
if(hs && ~HSync) begin
cnt <= 0;
pixsz <= (cnt >> 9) - 1;
pixcnt <= 0;
ce_pix <= 1;
end
end
always @(posedge clk_sys) begin
reg hsD, hsD2;
reg vsD, vsD2;
if(ce_pix) begin
// bring hsync into local clock domain
hsD <= HSync;
hsD2 <= hsD;
// falling edge of HSync
if(!hsD && hsD2) begin
h_cnt <= 0;
hs_high <= h_cnt;
end
// rising edge of HSync
else if(hsD && !hsD2) begin
h_cnt <= 0;
hs_low <= h_cnt;
v_cnt <= v_cnt + 1'd1;
end else begin
h_cnt <= h_cnt + 1'd1;
end
vsD <= VSync;
vsD2 <= vsD;
// falling edge of VSync
if(!vsD && vsD2) begin
v_cnt <= 0;
vs_high <= v_cnt;
end
// rising edge of VSync
else if(vsD && !vsD2) begin
v_cnt <= 0;
vs_low <= v_cnt;
end
end
end
// area in which OSD is being displayed
wire [9:0] h_osd_start = ((dsp_width - OSD_WIDTH)>> 1) + OSD_X_OFFSET;
wire [9:0] h_osd_end = h_osd_start + OSD_WIDTH;
wire [9:0] v_osd_start = ((dsp_height- (OSD_HEIGHT<<doublescan))>> 1) + OSD_Y_OFFSET;
wire [9:0] v_osd_end = v_osd_start + (OSD_HEIGHT<<doublescan);
wire [9:0] osd_hcnt = h_cnt - h_osd_start + 1'd1; // one pixel offset for osd_byte register
wire [9:0] osd_vcnt = v_cnt - v_osd_start;
wire osd_de = osd_enable &&
(HSync != hs_pol) && (h_cnt >= h_osd_start) && (h_cnt < h_osd_end) &&
(VSync != vs_pol) && (v_cnt >= v_osd_start) && (v_cnt < v_osd_end);
reg [7:0] osd_byte;
always @(posedge clk_sys) if(ce_pix) osd_byte <= osd_buffer[{doublescan ? osd_vcnt[7:5] : osd_vcnt[6:4], osd_hcnt[7:0]}];
wire osd_pixel = osd_byte[doublescan ? osd_vcnt[4:2] : osd_vcnt[3:1]];
assign R_out = !osd_de ? R_in : {osd_pixel, osd_pixel, OSD_COLOR[2], R_in[5:3]};
assign G_out = !osd_de ? G_in : {osd_pixel, osd_pixel, OSD_COLOR[1], G_in[5:3]};
assign B_out = !osd_de ? B_in : {osd_pixel, osd_pixel, OSD_COLOR[0], B_in[5:3]};
endmodule

357
Galaksija_MiST/rtl/pll.v Normal file
View File

@ -0,0 +1,357 @@
// megafunction wizard: %ALTPLL%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: altpll
// ============================================================
// File Name: pll.v
// Megafunction Name(s):
// altpll
//
// Simulation Library Files(s):
// altera_mf
// ============================================================
// ************************************************************
// THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
//
// 13.0.1 Build 232 06/12/2013 SP 1 SJ Full Version
// ************************************************************
//Copyright (C) 1991-2013 Altera Corporation
//Your use of Altera Corporation's design tools, logic functions
//and other software and tools, and its AMPP partner logic
//functions, and any output files from any of the foregoing
//(including device programming or simulation files), and any
//associated documentation or information are expressly subject
//to the terms and conditions of the Altera Program License
//Subscription Agreement, Altera MegaCore Function License
//Agreement, or other applicable license agreement, including,
//without limitation, that your use is for the sole purpose of
//programming logic devices manufactured by Altera and sold by
//Altera or its authorized distributors. Please refer to the
//applicable agreement for further details.
// synopsys translate_off
`timescale 1 ps / 1 ps
// synopsys translate_on
module pll (
inclk0,
c0,
c1,
c2);
input inclk0;
output c0;
output c1;
output c2;
wire [4:0] sub_wire0;
wire [0:0] sub_wire6 = 1'h0;
wire [2:2] sub_wire3 = sub_wire0[2:2];
wire [0:0] sub_wire2 = sub_wire0[0:0];
wire [1:1] sub_wire1 = sub_wire0[1:1];
wire c1 = sub_wire1;
wire c0 = sub_wire2;
wire c2 = sub_wire3;
wire sub_wire4 = inclk0;
wire [1:0] sub_wire5 = {sub_wire6, sub_wire4};
altpll altpll_component (
.inclk (sub_wire5),
.clk (sub_wire0),
.activeclock (),
.areset (1'b0),
.clkbad (),
.clkena ({6{1'b1}}),
.clkloss (),
.clkswitch (1'b0),
.configupdate (1'b0),
.enable0 (),
.enable1 (),
.extclk (),
.extclkena ({4{1'b1}}),
.fbin (1'b1),
.fbmimicbidir (),
.fbout (),
.fref (),
.icdrclk (),
.locked (),
.pfdena (1'b1),
.phasecounterselect ({4{1'b1}}),
.phasedone (),
.phasestep (1'b1),
.phaseupdown (1'b1),
.pllena (1'b1),
.scanaclr (1'b0),
.scanclk (1'b0),
.scanclkena (1'b1),
.scandata (1'b0),
.scandataout (),
.scandone (),
.scanread (1'b0),
.scanwrite (1'b0),
.sclkout0 (),
.sclkout1 (),
.vcooverrange (),
.vcounderrange ());
defparam
altpll_component.bandwidth_type = "AUTO",
altpll_component.clk0_divide_by = 1000,
altpll_component.clk0_duty_cycle = 50,
altpll_component.clk0_multiply_by = 63,
altpll_component.clk0_phase_shift = "0",
altpll_component.clk1_divide_by = 27,
altpll_component.clk1_duty_cycle = 50,
altpll_component.clk1_multiply_by = 25,
altpll_component.clk1_phase_shift = "0",
altpll_component.clk2_divide_by = 108,
altpll_component.clk2_duty_cycle = 50,
altpll_component.clk2_multiply_by = 25,
altpll_component.clk2_phase_shift = "0",
altpll_component.compensate_clock = "CLK0",
altpll_component.inclk0_input_frequency = 37037,
altpll_component.intended_device_family = "Cyclone III",
altpll_component.lpm_hint = "CBX_MODULE_PREFIX=pll",
altpll_component.lpm_type = "altpll",
altpll_component.operation_mode = "NORMAL",
altpll_component.pll_type = "AUTO",
altpll_component.port_activeclock = "PORT_UNUSED",
altpll_component.port_areset = "PORT_UNUSED",
altpll_component.port_clkbad0 = "PORT_UNUSED",
altpll_component.port_clkbad1 = "PORT_UNUSED",
altpll_component.port_clkloss = "PORT_UNUSED",
altpll_component.port_clkswitch = "PORT_UNUSED",
altpll_component.port_configupdate = "PORT_UNUSED",
altpll_component.port_fbin = "PORT_UNUSED",
altpll_component.port_inclk0 = "PORT_USED",
altpll_component.port_inclk1 = "PORT_UNUSED",
altpll_component.port_locked = "PORT_UNUSED",
altpll_component.port_pfdena = "PORT_UNUSED",
altpll_component.port_phasecounterselect = "PORT_UNUSED",
altpll_component.port_phasedone = "PORT_UNUSED",
altpll_component.port_phasestep = "PORT_UNUSED",
altpll_component.port_phaseupdown = "PORT_UNUSED",
altpll_component.port_pllena = "PORT_UNUSED",
altpll_component.port_scanaclr = "PORT_UNUSED",
altpll_component.port_scanclk = "PORT_UNUSED",
altpll_component.port_scanclkena = "PORT_UNUSED",
altpll_component.port_scandata = "PORT_UNUSED",
altpll_component.port_scandataout = "PORT_UNUSED",
altpll_component.port_scandone = "PORT_UNUSED",
altpll_component.port_scanread = "PORT_UNUSED",
altpll_component.port_scanwrite = "PORT_UNUSED",
altpll_component.port_clk0 = "PORT_USED",
altpll_component.port_clk1 = "PORT_USED",
altpll_component.port_clk2 = "PORT_USED",
altpll_component.port_clk3 = "PORT_UNUSED",
altpll_component.port_clk4 = "PORT_UNUSED",
altpll_component.port_clk5 = "PORT_UNUSED",
altpll_component.port_clkena0 = "PORT_UNUSED",
altpll_component.port_clkena1 = "PORT_UNUSED",
altpll_component.port_clkena2 = "PORT_UNUSED",
altpll_component.port_clkena3 = "PORT_UNUSED",
altpll_component.port_clkena4 = "PORT_UNUSED",
altpll_component.port_clkena5 = "PORT_UNUSED",
altpll_component.port_extclk0 = "PORT_UNUSED",
altpll_component.port_extclk1 = "PORT_UNUSED",
altpll_component.port_extclk2 = "PORT_UNUSED",
altpll_component.port_extclk3 = "PORT_UNUSED",
altpll_component.width_clock = 5;
endmodule
// ============================================================
// CNX file retrieval info
// ============================================================
// Retrieval info: PRIVATE: ACTIVECLK_CHECK STRING "0"
// Retrieval info: PRIVATE: BANDWIDTH STRING "1.000"
// Retrieval info: PRIVATE: BANDWIDTH_FEATURE_ENABLED STRING "1"
// Retrieval info: PRIVATE: BANDWIDTH_FREQ_UNIT STRING "MHz"
// Retrieval info: PRIVATE: BANDWIDTH_PRESET STRING "Low"
// Retrieval info: PRIVATE: BANDWIDTH_USE_AUTO STRING "1"
// Retrieval info: PRIVATE: BANDWIDTH_USE_PRESET STRING "0"
// Retrieval info: PRIVATE: CLKBAD_SWITCHOVER_CHECK STRING "0"
// Retrieval info: PRIVATE: CLKLOSS_CHECK STRING "0"
// Retrieval info: PRIVATE: CLKSWITCH_CHECK STRING "0"
// Retrieval info: PRIVATE: CNX_NO_COMPENSATE_RADIO STRING "0"
// Retrieval info: PRIVATE: CREATE_CLKBAD_CHECK STRING "0"
// Retrieval info: PRIVATE: CREATE_INCLK1_CHECK STRING "0"
// Retrieval info: PRIVATE: CUR_DEDICATED_CLK STRING "c0"
// Retrieval info: PRIVATE: CUR_FBIN_CLK STRING "c0"
// Retrieval info: PRIVATE: DEVICE_SPEED_GRADE STRING "8"
// Retrieval info: PRIVATE: DIV_FACTOR0 NUMERIC "1000"
// Retrieval info: PRIVATE: DIV_FACTOR1 NUMERIC "27"
// Retrieval info: PRIVATE: DIV_FACTOR2 NUMERIC "108"
// Retrieval info: PRIVATE: DUTY_CYCLE0 STRING "50.00000000"
// Retrieval info: PRIVATE: DUTY_CYCLE1 STRING "50.00000000"
// Retrieval info: PRIVATE: DUTY_CYCLE2 STRING "50.00000000"
// Retrieval info: PRIVATE: EFF_OUTPUT_FREQ_VALUE0 STRING "1.701000"
// Retrieval info: PRIVATE: EFF_OUTPUT_FREQ_VALUE1 STRING "25.000000"
// Retrieval info: PRIVATE: EFF_OUTPUT_FREQ_VALUE2 STRING "6.250000"
// Retrieval info: PRIVATE: EXPLICIT_SWITCHOVER_COUNTER STRING "0"
// Retrieval info: PRIVATE: EXT_FEEDBACK_RADIO STRING "0"
// Retrieval info: PRIVATE: GLOCKED_COUNTER_EDIT_CHANGED STRING "1"
// Retrieval info: PRIVATE: GLOCKED_FEATURE_ENABLED STRING "0"
// Retrieval info: PRIVATE: GLOCKED_MODE_CHECK STRING "0"
// Retrieval info: PRIVATE: GLOCK_COUNTER_EDIT NUMERIC "1048575"
// Retrieval info: PRIVATE: HAS_MANUAL_SWITCHOVER STRING "1"
// Retrieval info: PRIVATE: INCLK0_FREQ_EDIT STRING "27.000"
// Retrieval info: PRIVATE: INCLK0_FREQ_UNIT_COMBO STRING "MHz"
// Retrieval info: PRIVATE: INCLK1_FREQ_EDIT STRING "100.000"
// Retrieval info: PRIVATE: INCLK1_FREQ_EDIT_CHANGED STRING "1"
// Retrieval info: PRIVATE: INCLK1_FREQ_UNIT_CHANGED STRING "1"
// Retrieval info: PRIVATE: INCLK1_FREQ_UNIT_COMBO STRING "MHz"
// Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone III"
// Retrieval info: PRIVATE: INT_FEEDBACK__MODE_RADIO STRING "1"
// Retrieval info: PRIVATE: LOCKED_OUTPUT_CHECK STRING "0"
// Retrieval info: PRIVATE: LONG_SCAN_RADIO STRING "1"
// Retrieval info: PRIVATE: LVDS_MODE_DATA_RATE STRING "Not Available"
// Retrieval info: PRIVATE: LVDS_MODE_DATA_RATE_DIRTY NUMERIC "0"
// Retrieval info: PRIVATE: LVDS_PHASE_SHIFT_UNIT0 STRING "deg"
// Retrieval info: PRIVATE: LVDS_PHASE_SHIFT_UNIT1 STRING "ps"
// Retrieval info: PRIVATE: LVDS_PHASE_SHIFT_UNIT2 STRING "ps"
// Retrieval info: PRIVATE: MIG_DEVICE_SPEED_GRADE STRING "Any"
// Retrieval info: PRIVATE: MIRROR_CLK0 STRING "0"
// Retrieval info: PRIVATE: MIRROR_CLK1 STRING "0"
// Retrieval info: PRIVATE: MIRROR_CLK2 STRING "0"
// Retrieval info: PRIVATE: MULT_FACTOR0 NUMERIC "63"
// Retrieval info: PRIVATE: MULT_FACTOR1 NUMERIC "25"
// Retrieval info: PRIVATE: MULT_FACTOR2 NUMERIC "25"
// Retrieval info: PRIVATE: NORMAL_MODE_RADIO STRING "1"
// Retrieval info: PRIVATE: OUTPUT_FREQ0 STRING "1.70000000"
// Retrieval info: PRIVATE: OUTPUT_FREQ1 STRING "25.00000000"
// Retrieval info: PRIVATE: OUTPUT_FREQ2 STRING "6.25000000"
// Retrieval info: PRIVATE: OUTPUT_FREQ_MODE0 STRING "0"
// Retrieval info: PRIVATE: OUTPUT_FREQ_MODE1 STRING "0"
// Retrieval info: PRIVATE: OUTPUT_FREQ_MODE2 STRING "0"
// Retrieval info: PRIVATE: OUTPUT_FREQ_UNIT0 STRING "MHz"
// Retrieval info: PRIVATE: OUTPUT_FREQ_UNIT1 STRING "MHz"
// Retrieval info: PRIVATE: OUTPUT_FREQ_UNIT2 STRING "MHz"
// Retrieval info: PRIVATE: PHASE_RECONFIG_FEATURE_ENABLED STRING "1"
// Retrieval info: PRIVATE: PHASE_RECONFIG_INPUTS_CHECK STRING "0"
// Retrieval info: PRIVATE: PHASE_SHIFT0 STRING "0.00000000"
// Retrieval info: PRIVATE: PHASE_SHIFT1 STRING "0.00000000"
// Retrieval info: PRIVATE: PHASE_SHIFT2 STRING "0.00000000"
// Retrieval info: PRIVATE: PHASE_SHIFT_STEP_ENABLED_CHECK STRING "0"
// Retrieval info: PRIVATE: PHASE_SHIFT_UNIT0 STRING "deg"
// Retrieval info: PRIVATE: PHASE_SHIFT_UNIT1 STRING "deg"
// Retrieval info: PRIVATE: PHASE_SHIFT_UNIT2 STRING "deg"
// Retrieval info: PRIVATE: PLL_ADVANCED_PARAM_CHECK STRING "0"
// Retrieval info: PRIVATE: PLL_ARESET_CHECK STRING "0"
// Retrieval info: PRIVATE: PLL_AUTOPLL_CHECK NUMERIC "1"
// Retrieval info: PRIVATE: PLL_ENHPLL_CHECK NUMERIC "0"
// Retrieval info: PRIVATE: PLL_FASTPLL_CHECK NUMERIC "0"
// Retrieval info: PRIVATE: PLL_FBMIMIC_CHECK STRING "0"
// Retrieval info: PRIVATE: PLL_LVDS_PLL_CHECK NUMERIC "0"
// Retrieval info: PRIVATE: PLL_PFDENA_CHECK STRING "0"
// Retrieval info: PRIVATE: PLL_TARGET_HARCOPY_CHECK NUMERIC "0"
// Retrieval info: PRIVATE: PRIMARY_CLK_COMBO STRING "inclk0"
// Retrieval info: PRIVATE: RECONFIG_FILE STRING "pll.mif"
// Retrieval info: PRIVATE: SACN_INPUTS_CHECK STRING "0"
// Retrieval info: PRIVATE: SCAN_FEATURE_ENABLED STRING "1"
// Retrieval info: PRIVATE: SELF_RESET_LOCK_LOSS STRING "0"
// Retrieval info: PRIVATE: SHORT_SCAN_RADIO STRING "0"
// Retrieval info: PRIVATE: SPREAD_FEATURE_ENABLED STRING "0"
// Retrieval info: PRIVATE: SPREAD_FREQ STRING "50.000"
// Retrieval info: PRIVATE: SPREAD_FREQ_UNIT STRING "KHz"
// Retrieval info: PRIVATE: SPREAD_PERCENT STRING "0.000"
// Retrieval info: PRIVATE: SPREAD_USE STRING "0"
// Retrieval info: PRIVATE: SRC_SYNCH_COMP_RADIO STRING "0"
// Retrieval info: PRIVATE: STICKY_CLK0 STRING "1"
// Retrieval info: PRIVATE: STICKY_CLK1 STRING "1"
// Retrieval info: PRIVATE: STICKY_CLK2 STRING "1"
// Retrieval info: PRIVATE: SWITCHOVER_COUNT_EDIT NUMERIC "1"
// Retrieval info: PRIVATE: SWITCHOVER_FEATURE_ENABLED STRING "1"
// Retrieval info: PRIVATE: SYNTH_WRAPPER_GEN_POSTFIX STRING "0"
// Retrieval info: PRIVATE: USE_CLK0 STRING "1"
// Retrieval info: PRIVATE: USE_CLK1 STRING "1"
// Retrieval info: PRIVATE: USE_CLK2 STRING "1"
// Retrieval info: PRIVATE: USE_CLKENA0 STRING "0"
// Retrieval info: PRIVATE: USE_CLKENA1 STRING "0"
// Retrieval info: PRIVATE: USE_CLKENA2 STRING "0"
// Retrieval info: PRIVATE: USE_MIL_SPEED_GRADE NUMERIC "0"
// Retrieval info: PRIVATE: ZERO_DELAY_RADIO STRING "0"
// Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all
// Retrieval info: CONSTANT: BANDWIDTH_TYPE STRING "AUTO"
// Retrieval info: CONSTANT: CLK0_DIVIDE_BY NUMERIC "1000"
// Retrieval info: CONSTANT: CLK0_DUTY_CYCLE NUMERIC "50"
// Retrieval info: CONSTANT: CLK0_MULTIPLY_BY NUMERIC "63"
// Retrieval info: CONSTANT: CLK0_PHASE_SHIFT STRING "0"
// Retrieval info: CONSTANT: CLK1_DIVIDE_BY NUMERIC "27"
// Retrieval info: CONSTANT: CLK1_DUTY_CYCLE NUMERIC "50"
// Retrieval info: CONSTANT: CLK1_MULTIPLY_BY NUMERIC "25"
// Retrieval info: CONSTANT: CLK1_PHASE_SHIFT STRING "0"
// Retrieval info: CONSTANT: CLK2_DIVIDE_BY NUMERIC "108"
// Retrieval info: CONSTANT: CLK2_DUTY_CYCLE NUMERIC "50"
// Retrieval info: CONSTANT: CLK2_MULTIPLY_BY NUMERIC "25"
// Retrieval info: CONSTANT: CLK2_PHASE_SHIFT STRING "0"
// Retrieval info: CONSTANT: COMPENSATE_CLOCK STRING "CLK0"
// Retrieval info: CONSTANT: INCLK0_INPUT_FREQUENCY NUMERIC "37037"
// Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone III"
// Retrieval info: CONSTANT: LPM_TYPE STRING "altpll"
// Retrieval info: CONSTANT: OPERATION_MODE STRING "NORMAL"
// Retrieval info: CONSTANT: PLL_TYPE STRING "AUTO"
// Retrieval info: CONSTANT: PORT_ACTIVECLOCK STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_ARESET STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_CLKBAD0 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_CLKBAD1 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_CLKLOSS STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_CLKSWITCH STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_CONFIGUPDATE STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_FBIN STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_INCLK0 STRING "PORT_USED"
// Retrieval info: CONSTANT: PORT_INCLK1 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_LOCKED STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_PFDENA STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_PHASECOUNTERSELECT STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_PHASEDONE STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_PHASESTEP STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_PHASEUPDOWN STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_PLLENA STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_SCANACLR STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_SCANCLK STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_SCANCLKENA STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_SCANDATA STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_SCANDATAOUT STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_SCANDONE STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_SCANREAD STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_SCANWRITE STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_clk0 STRING "PORT_USED"
// Retrieval info: CONSTANT: PORT_clk1 STRING "PORT_USED"
// Retrieval info: CONSTANT: PORT_clk2 STRING "PORT_USED"
// Retrieval info: CONSTANT: PORT_clk3 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_clk4 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_clk5 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_clkena0 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_clkena1 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_clkena2 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_clkena3 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_clkena4 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_clkena5 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_extclk0 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_extclk1 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_extclk2 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: PORT_extclk3 STRING "PORT_UNUSED"
// Retrieval info: CONSTANT: WIDTH_CLOCK NUMERIC "5"
// Retrieval info: USED_PORT: @clk 0 0 5 0 OUTPUT_CLK_EXT VCC "@clk[4..0]"
// Retrieval info: USED_PORT: c0 0 0 0 0 OUTPUT_CLK_EXT VCC "c0"
// Retrieval info: USED_PORT: c1 0 0 0 0 OUTPUT_CLK_EXT VCC "c1"
// Retrieval info: USED_PORT: c2 0 0 0 0 OUTPUT_CLK_EXT VCC "c2"
// Retrieval info: USED_PORT: inclk0 0 0 0 0 INPUT_CLK_EXT GND "inclk0"
// Retrieval info: CONNECT: @inclk 0 0 1 1 GND 0 0 0 0
// Retrieval info: CONNECT: @inclk 0 0 1 0 inclk0 0 0 0 0
// Retrieval info: CONNECT: c0 0 0 0 0 @clk 0 0 1 0
// Retrieval info: CONNECT: c1 0 0 0 0 @clk 0 0 1 1
// Retrieval info: CONNECT: c2 0 0 0 0 @clk 0 0 1 2
// Retrieval info: GEN_FILE: TYPE_NORMAL pll.v TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL pll.ppf TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL pll.inc FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL pll.cmp FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL pll.bsf FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL pll_inst.v FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL pll_bb.v FALSE
// Retrieval info: LIB_FILE: altera_mf
// Retrieval info: CBX_MODULE_PREFIX: ON

View File

@ -0,0 +1,183 @@
//
// scandoubler.v
//
// Copyright (c) 2015 Till Harbaum <till@harbaum.org>
// Copyright (c) 2017 Sorgelig
//
// This source file is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This source file is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// TODO: Delay vsync one line
module scandoubler #(parameter LENGTH, parameter HALF_DEPTH)
(
// system interface
input clk_sys,
input ce_pix,
input ce_pix_actual,
input hq2x,
// shifter video interface
input hs_in,
input vs_in,
input line_start,
input [DWIDTH:0] r_in,
input [DWIDTH:0] g_in,
input [DWIDTH:0] b_in,
input mono,
// output interface
output reg hs_out,
output vs_out,
output [DWIDTH:0] r_out,
output [DWIDTH:0] g_out,
output [DWIDTH:0] b_out
);
localparam DWIDTH = HALF_DEPTH ? 2 : 5;
assign vs_out = vs_in;
reg [2:0] phase;
reg [2:0] ce_div;
reg [7:0] pix_len = 0;
wire [7:0] pl = pix_len + 1'b1;
reg ce_x1, ce_x4;
reg req_line_reset;
wire ls_in = hs_in | line_start;
always @(negedge clk_sys) begin
reg old_ce;
reg [2:0] ce_cnt;
reg [7:0] pixsz2, pixsz4 = 0;
old_ce <= ce_pix;
if(~&pix_len) pix_len <= pix_len + 1'd1;
ce_x4 <= 0;
ce_x1 <= 0;
// use such odd comparison to place c_x4 evenly if master clock isn't multiple 4.
if((pl == pixsz4) || (pl == pixsz2) || (pl == (pixsz2+pixsz4))) begin
phase <= phase + 1'd1;
ce_x4 <= 1;
end
if(~old_ce & ce_pix) begin
pixsz2 <= {1'b0, pl[7:1]};
pixsz4 <= {2'b00, pl[7:2]};
ce_x1 <= 1;
ce_x4 <= 1;
pix_len <= 0;
phase <= phase + 1'd1;
ce_cnt <= ce_cnt + 1'd1;
if(ce_pix_actual) begin
phase <= 0;
ce_div <= ce_cnt + 1'd1;
ce_cnt <= 0;
req_line_reset <= 0;
end
if(ls_in) req_line_reset <= 1;
end
end
reg ce_sd;
always @(*) begin
case(ce_div)
2: ce_sd = !phase[0];
4: ce_sd = !phase[1:0];
default: ce_sd <= 1;
endcase
end
localparam AWIDTH = `BITS_TO_FIT(LENGTH);
Hq2x #(.LENGTH(LENGTH), .HALF_DEPTH(HALF_DEPTH)) Hq2x
(
.clk(clk_sys),
.ce_x4(ce_x4 & ce_sd),
.inputpixel({b_in,g_in,r_in}),
.mono(mono),
.disable_hq2x(~hq2x),
.reset_frame(vs_in),
.reset_line(req_line_reset),
.read_y(sd_line),
.read_x(sd_h_actual),
.outpixel({b_out,g_out,r_out})
);
reg [10:0] sd_h_actual;
always @(*) begin
case(ce_div)
2: sd_h_actual = sd_h[10:1];
4: sd_h_actual = sd_h[10:2];
default: sd_h_actual = sd_h;
endcase
end
reg [10:0] sd_h;
reg [1:0] sd_line;
always @(posedge clk_sys) begin
reg [11:0] hs_max,hs_rise,hs_ls;
reg [10:0] hcnt;
reg [11:0] sd_hcnt;
reg hs, hs2, vs, ls;
if(ce_x1) begin
hs <= hs_in;
ls <= ls_in;
if(ls && !ls_in) hs_ls <= {hcnt,1'b1};
// falling edge of hsync indicates start of line
if(hs && !hs_in) begin
hs_max <= {hcnt,1'b1};
hcnt <= 0;
if(ls && !ls_in) hs_ls <= {10'd0,1'b1};
end else begin
hcnt <= hcnt + 1'd1;
end
// save position of rising edge
if(!hs && hs_in) hs_rise <= {hcnt,1'b1};
vs <= vs_in;
if(vs && ~vs_in) sd_line <= 0;
end
if(ce_x4) begin
hs2 <= hs_in;
// output counter synchronous to input and at twice the rate
sd_hcnt <= sd_hcnt + 1'd1;
sd_h <= sd_h + 1'd1;
if(hs2 && !hs_in) sd_hcnt <= hs_max;
if(sd_hcnt == hs_max) sd_hcnt <= 0;
// replicate horizontal sync at twice the speed
if(sd_hcnt == hs_max) hs_out <= 0;
if(sd_hcnt == hs_rise) hs_out <= 1;
if(sd_hcnt == hs_ls) sd_h <= 0;
if(sd_hcnt == hs_ls) sd_line <= sd_line + 1'd1;
end
end
endmodule

View File

@ -0,0 +1,90 @@
LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY altera_mf;
USE altera_mf.all;
ENTITY spram IS
GENERIC
(
init_file : string := "";
widthad_a : natural;
width_a : natural := 8;
outdata_reg_a : string := "UNREGISTERED"
);
PORT
(
address : IN STD_LOGIC_VECTOR (widthad_a-1 DOWNTO 0);
clock : IN STD_LOGIC ;
data : IN STD_LOGIC_VECTOR (width_a-1 DOWNTO 0);
wren : IN STD_LOGIC ;
q : OUT STD_LOGIC_VECTOR (width_a-1 DOWNTO 0)
);
END spram;
ARCHITECTURE SYN OF spram IS
SIGNAL sub_wire0 : STD_LOGIC_VECTOR (width_a-1 DOWNTO 0);
COMPONENT altsyncram
GENERIC (
clock_enable_input_a : STRING;
clock_enable_output_a : STRING;
init_file : STRING;
intended_device_family : STRING;
lpm_hint : STRING;
lpm_type : STRING;
numwords_a : NATURAL;
operation_mode : STRING;
outdata_aclr_a : STRING;
outdata_reg_a : STRING;
power_up_uninitialized : STRING;
read_during_write_mode_port_a : STRING;
widthad_a : NATURAL;
width_a : NATURAL;
width_byteena_a : NATURAL
);
PORT (
wren_a : IN STD_LOGIC ;
clock0 : IN STD_LOGIC ;
address_a : IN STD_LOGIC_VECTOR (widthad_a-1 DOWNTO 0);
q_a : OUT STD_LOGIC_VECTOR (width_a-1 DOWNTO 0);
data_a : IN STD_LOGIC_VECTOR (width_a-1 DOWNTO 0)
);
END COMPONENT;
BEGIN
q <= sub_wire0(width_a-1 DOWNTO 0);
altsyncram_component : altsyncram
GENERIC MAP (
clock_enable_input_a => "BYPASS",
clock_enable_output_a => "BYPASS",
init_file => init_file,
intended_device_family => "Cyclone III",
lpm_hint => "ENABLE_RUNTIME_MOD=NO",
lpm_type => "altsyncram",
numwords_a => 2**widthad_a,
operation_mode => "SINGLE_PORT",
outdata_aclr_a => "NONE",
outdata_reg_a => outdata_reg_a,
power_up_uninitialized => "FALSE",
read_during_write_mode_port_a => "NEW_DATA_NO_NBE_READ",
widthad_a => widthad_a,
width_a => width_a,
width_byteena_a => 1
)
PORT MAP (
wren_a => wren,
clock0 => clock,
address_a => address,
data_a => data,
q_a => sub_wire0
);
END SYN;

View File

@ -0,0 +1,82 @@
LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY altera_mf;
USE altera_mf.all;
ENTITY sprom IS
GENERIC
(
init_file : string := "";
widthad_a : natural;
width_a : natural := 8;
outdata_reg_a : string := "UNREGISTERED"
);
PORT
(
address : IN STD_LOGIC_VECTOR (widthad_a-1 DOWNTO 0);
clock : IN STD_LOGIC ;
q : OUT STD_LOGIC_VECTOR (width_a-1 DOWNTO 0)
);
END sprom;
ARCHITECTURE SYN OF sprom IS
SIGNAL sub_wire0 : STD_LOGIC_VECTOR (width_a-1 DOWNTO 0);
COMPONENT altsyncram
GENERIC (
address_aclr_a : STRING;
clock_enable_input_a : STRING;
clock_enable_output_a : STRING;
init_file : STRING;
intended_device_family : STRING;
lpm_hint : STRING;
lpm_type : STRING;
numwords_a : NATURAL;
operation_mode : STRING;
outdata_aclr_a : STRING;
outdata_reg_a : STRING;
widthad_a : NATURAL;
width_a : NATURAL;
width_byteena_a : NATURAL
);
PORT (
clock0 : IN STD_LOGIC ;
address_a : IN STD_LOGIC_VECTOR (widthad_a-1 DOWNTO 0);
q_a : OUT STD_LOGIC_VECTOR (width_a-1 DOWNTO 0)
);
END COMPONENT;
BEGIN
q <= sub_wire0(width_a-1 DOWNTO 0);
altsyncram_component : altsyncram
GENERIC MAP (
address_aclr_a => "NONE",
clock_enable_input_a => "BYPASS",
clock_enable_output_a => "BYPASS",
init_file => init_file,
intended_device_family => "Cyclone III",
lpm_hint => "ENABLE_RUNTIME_MOD=NO",
lpm_type => "altsyncram",
numwords_a => 2**widthad_a,
operation_mode => "ROM",
outdata_aclr_a => "NONE",
outdata_reg_a => outdata_reg_a,
widthad_a => widthad_a,
width_a => width_a,
width_byteena_a => 1
)
PORT MAP (
clock0 => clock,
address_a => address,
q_a => sub_wire0
);
END SYN;

View File

@ -0,0 +1,200 @@
------------------------------------------------------------------------
-- vga_controller_640_60.vhd
------------------------------------------------------------------------
-- Author : Ulrich Zolt
-- Copyright 2006 Digilent, Inc.
------------------------------------------------------------------------
-- Software version : Xilinx ISE 7.1.04i
-- WebPack
-- Device : 3s200ft256-4
------------------------------------------------------------------------
-- This file contains the logic to generate the synchronization signals,
-- horizontal and vertical pixel counter and video disable signal
-- for the 640x480@60Hz resolution.
------------------------------------------------------------------------
-- Behavioral description
------------------------------------------------------------------------
-- Please read the following article on the web regarding the
-- vga video timings:
-- http://www.epanorama.net/documents/pc/vga_timing.html
-- This module generates the video synch pulses for the monitor to
-- enter 640x480@60Hz resolution state. It also provides horizontal
-- and vertical counters for the currently displayed pixel and a blank
-- signal that is active when the pixel is not inside the visible screen
-- and the color outputs should be reset to 0.
-- timing diagram for the horizontal synch signal (HS)
-- 0 648 744 800 (pixels)
-- -------------------------|______|-----------------
-- timing diagram for the vertical synch signal (VS)
-- 0 482 484 525 (lines)
-- -----------------------------------|______|-------
-- The blank signal is delayed one pixel clock period (40ns) from where
-- the pixel leaves the visible screen, according to the counters, to
-- account for the pixel pipeline delay. This delay happens because
-- it takes time from when the counters indicate current pixel should
-- be displayed to when the color data actually arrives at the monitor
-- pins (memory read delays, synchronization delays).
------------------------------------------------------------------------
-- Port definitions
------------------------------------------------------------------------
-- rst - global reset signal
-- pixel_clk - input pin, from dcm_25MHz
-- - the clock signal generated by a DCM that has
-- - a frequency of 25MHz.
-- HS - output pin, to monitor
-- - horizontal synch pulse
-- VS - output pin, to monitor
-- - vertical synch pulse
-- hcount - output pin, 11 bits, to clients
-- - horizontal count of the currently displayed
-- - pixel (even if not in visible area)
-- vcount - output pin, 11 bits, to clients
-- - vertical count of the currently active video
-- - line (even if not in visible area)
-- blank - output pin, to clients
-- - active when pixel is not in visible area.
------------------------------------------------------------------------
-- Revision History:
-- 09/18/2006(UlrichZ): created
------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- the vga_controller_640_60 entity declaration
-- read above for behavioral description and port definitions.
entity vga_controller_640_60 is
port(
rst : in std_logic;
pixel_clk : in std_logic;
HS : out std_logic;
VS : out std_logic;
hcount : out std_logic_vector(10 downto 0);
vcount : out std_logic_vector(10 downto 0);
blank : out std_logic
);
end vga_controller_640_60;
architecture Behavioral of vga_controller_640_60 is
------------------------------------------------------------------------
-- CONSTANTS
------------------------------------------------------------------------
-- maximum value for the horizontal pixel counter
constant HMAX : std_logic_vector(10 downto 0) := "01100100000"; -- 800
-- maximum value for the vertical pixel counter
constant VMAX : std_logic_vector(10 downto 0) := "01000001101"; -- 525
-- total number of visible columns
constant HLINES: std_logic_vector(10 downto 0) := "01010000000"; -- 640
-- value for the horizontal counter where front porch ends
constant HFP : std_logic_vector(10 downto 0) := "01010001000"; -- 648
-- value for the horizontal counter where the synch pulse ends
constant HSP : std_logic_vector(10 downto 0) := "01011101000"; -- 744
-- total number of visible lines
constant VLINES: std_logic_vector(10 downto 0) := "00111100000"; -- 480
-- value for the vertical counter where the front porch ends
constant VFP : std_logic_vector(10 downto 0) := "00111100010"; -- 482
-- value for the vertical counter where the synch pulse ends
constant VSP : std_logic_vector(10 downto 0) := "00111100100"; -- 484
-- polarity of the horizontal and vertical synch pulse
-- only one polarity used, because for this resolution they coincide.
constant SPP : std_logic := '0';
------------------------------------------------------------------------
-- SIGNALS
------------------------------------------------------------------------
-- horizontal and vertical counters
signal hcounter : std_logic_vector(10 downto 0) := (others => '0');
signal vcounter : std_logic_vector(10 downto 0) := (others => '0');
-- active when inside visible screen area.
signal video_enable: std_logic;
begin
-- output horizontal and vertical counters
hcount <= hcounter;
vcount <= vcounter;
-- blank is active when outside screen visible area
-- color output should be blacked (put on 0) when blank in active
-- blank is delayed one pixel clock period from the video_enable
-- signal to account for the pixel pipeline delay.
blank <= not video_enable when rising_edge(pixel_clk);
-- increment horizontal counter at pixel_clk rate
-- until HMAX is reached, then reset and keep counting
h_count: process(pixel_clk)
begin
if(rising_edge(pixel_clk)) then
if(rst = '1') then
hcounter <= (others => '0');
elsif(hcounter = HMAX) then
hcounter <= (others => '0');
else
hcounter <= hcounter + 1;
end if;
end if;
end process h_count;
-- increment vertical counter when one line is finished
-- (horizontal counter reached HMAX)
-- until VMAX is reached, then reset and keep counting
v_count: process(pixel_clk)
begin
if(rising_edge(pixel_clk)) then
if(rst = '1') then
vcounter <= (others => '0');
elsif(hcounter = HMAX) then
if(vcounter = VMAX) then
vcounter <= (others => '0');
else
vcounter <= vcounter + 1;
end if;
end if;
end if;
end process v_count;
-- generate horizontal synch pulse
-- when horizontal counter is between where the
-- front porch ends and the synch pulse ends.
-- The HS is active (with polarity SPP) for a total of 96 pixels.
do_hs: process(pixel_clk)
begin
if(rising_edge(pixel_clk)) then
if(hcounter >= HFP and hcounter < HSP) then
HS <= SPP;
else
HS <= not SPP;
end if;
end if;
end process do_hs;
-- generate vertical synch pulse
-- when vertical counter is between where the
-- front porch ends and the synch pulse ends.
-- The VS is active (with polarity SPP) for a total of 2 video lines
-- = 2*HMAX = 1600 pixels.
do_vs: process(pixel_clk)
begin
if(rising_edge(pixel_clk)) then
if(vcounter >= VFP and vcounter < VSP) then
VS <= SPP;
else
VS <= not SPP;
end if;
end if;
end process do_vs;
-- enable video output when pixel is in visible area
video_enable <= '1' when (hcounter < HLINES and vcounter < VLINES) else '0';
end Behavioral;

View File

@ -0,0 +1,242 @@
//
//
// Copyright (c) 2017 Sorgelig
//
// This program is GPL Licensed. See COPYING for the full license.
//
//
////////////////////////////////////////////////////////////////////////////////////////////////////////
`timescale 1ns / 1ps
//
// LINE_LENGTH: Length of display line in pixels
// Usually it's length from HSync to HSync.
// May be less if line_start is used.
//
// HALF_DEPTH: If =1 then color dept is 3 bits per component
// For half depth 6 bits monochrome is available with
// mono signal enabled and color = {G, R}
module video_mixer
#(
parameter LINE_LENGTH = 768,
parameter HALF_DEPTH = 0,
parameter OSD_COLOR = 3'd4,
parameter OSD_X_OFFSET = 10'd0,
parameter OSD_Y_OFFSET = 10'd0
)
(
// master clock
// it should be multiple by (ce_pix*4).
input clk_sys,
// Pixel clock or clock_enable (both are accepted).
input ce_pix,
// Some systems have multiple resolutions.
// ce_pix_actual should match ce_pix where every second or fourth pulse is enabled,
// thus half or qurter resolutions can be used without brake video sync while switching resolutions.
// For fixed single resolution (or when video sync stability isn't required) ce_pix_actual = ce_pix.
input ce_pix_actual,
// OSD SPI interface
input SPI_SCK,
input SPI_SS3,
input SPI_DI,
// scanlines (00-none 01-25% 10-50% 11-75%)
input [1:0] scanlines,
// 0 = HVSync 31KHz, 1 = CSync 15KHz
input scandoubler_disable,
// High quality 2x scaling
input hq2x,
// YPbPr always uses composite sync
input ypbpr,
// 0 = 16-240 range. 1 = 0-255 range. (only for YPbPr color space)
input ypbpr_full,
// color
input [DWIDTH:0] R,
input [DWIDTH:0] G,
input [DWIDTH:0] B,
// Monochrome mode (for HALF_DEPTH only)
input mono,
// interlace sync. Positive pulses.
input HSync,
input VSync,
// Falling of this signal means start of informative part of line.
// It can be horizontal blank signal.
// This signal can be used to reduce amount of required FPGA RAM for HQ2x scan doubler
// If FPGA RAM is not an issue, then simply set it to 0 for whole line processing.
// Keep in mind: due to algo first and last pixels of line should be black to avoid side artefacts.
// Thus, if blank signal is used to reduce the line, make sure to feed at least one black (or paper) pixel
// before first informative pixel.
input line_start,
// MiST video output signals
output [5:0] VGA_R,
output [5:0] VGA_G,
output [5:0] VGA_B,
output VGA_VS,
output VGA_HS
);
localparam DWIDTH = HALF_DEPTH ? 2 : 5;
wire [DWIDTH:0] R_sd;
wire [DWIDTH:0] G_sd;
wire [DWIDTH:0] B_sd;
wire hs_sd, vs_sd;
scandoubler #(.LENGTH(LINE_LENGTH), .HALF_DEPTH(HALF_DEPTH)) scandoubler
(
.*,
.hs_in(HSync),
.vs_in(VSync),
.r_in(R),
.g_in(G),
.b_in(B),
.hs_out(hs_sd),
.vs_out(vs_sd),
.r_out(R_sd),
.g_out(G_sd),
.b_out(B_sd)
);
wire [DWIDTH:0] rt = (scandoubler_disable ? R : R_sd);
wire [DWIDTH:0] gt = (scandoubler_disable ? G : G_sd);
wire [DWIDTH:0] bt = (scandoubler_disable ? B : B_sd);
generate
if(HALF_DEPTH) begin
wire [5:0] r = mono ? {gt,rt} : {rt,rt};
wire [5:0] g = mono ? {gt,rt} : {gt,gt};
wire [5:0] b = mono ? {gt,rt} : {bt,bt};
end else begin
wire [5:0] r = rt;
wire [5:0] g = gt;
wire [5:0] b = bt;
end
endgenerate
wire hs = (scandoubler_disable ? HSync : hs_sd);
wire vs = (scandoubler_disable ? VSync : vs_sd);
reg scanline = 0;
always @(posedge clk_sys) begin
reg old_hs, old_vs;
old_hs <= hs;
old_vs <= vs;
if(old_hs && ~hs) scanline <= ~scanline;
if(old_vs && ~vs) scanline <= 0;
end
wire [5:0] r_out, g_out, b_out;
always @(*) begin
case(scanlines & {scanline, scanline})
1: begin // reduce 25% = 1/2 + 1/4
r_out = {1'b0, r[5:1]} + {2'b00, r[5:2]};
g_out = {1'b0, g[5:1]} + {2'b00, g[5:2]};
b_out = {1'b0, b[5:1]} + {2'b00, b[5:2]};
end
2: begin // reduce 50% = 1/2
r_out = {1'b0, r[5:1]};
g_out = {1'b0, g[5:1]};
b_out = {1'b0, b[5:1]};
end
3: begin // reduce 75% = 1/4
r_out = {2'b00, r[5:2]};
g_out = {2'b00, g[5:2]};
b_out = {2'b00, b[5:2]};
end
default: begin
r_out = r;
g_out = g;
b_out = b;
end
endcase
end
wire [5:0] red, green, blue;
osd #(OSD_X_OFFSET, OSD_Y_OFFSET, OSD_COLOR) osd
(
.*,
.R_in(r_out),
.G_in(g_out),
.B_in(b_out),
.HSync(hs),
.VSync(vs),
.R_out(red),
.G_out(green),
.B_out(blue)
);
wire [5:0] yuv_full[225] = '{
6'd0, 6'd0, 6'd0, 6'd0, 6'd1, 6'd1, 6'd1, 6'd1,
6'd2, 6'd2, 6'd2, 6'd3, 6'd3, 6'd3, 6'd3, 6'd4,
6'd4, 6'd4, 6'd5, 6'd5, 6'd5, 6'd5, 6'd6, 6'd6,
6'd6, 6'd7, 6'd7, 6'd7, 6'd7, 6'd8, 6'd8, 6'd8,
6'd9, 6'd9, 6'd9, 6'd9, 6'd10, 6'd10, 6'd10, 6'd11,
6'd11, 6'd11, 6'd11, 6'd12, 6'd12, 6'd12, 6'd13, 6'd13,
6'd13, 6'd13, 6'd14, 6'd14, 6'd14, 6'd15, 6'd15, 6'd15,
6'd15, 6'd16, 6'd16, 6'd16, 6'd17, 6'd17, 6'd17, 6'd17,
6'd18, 6'd18, 6'd18, 6'd19, 6'd19, 6'd19, 6'd19, 6'd20,
6'd20, 6'd20, 6'd21, 6'd21, 6'd21, 6'd21, 6'd22, 6'd22,
6'd22, 6'd23, 6'd23, 6'd23, 6'd23, 6'd24, 6'd24, 6'd24,
6'd25, 6'd25, 6'd25, 6'd25, 6'd26, 6'd26, 6'd26, 6'd27,
6'd27, 6'd27, 6'd27, 6'd28, 6'd28, 6'd28, 6'd29, 6'd29,
6'd29, 6'd29, 6'd30, 6'd30, 6'd30, 6'd31, 6'd31, 6'd31,
6'd31, 6'd32, 6'd32, 6'd32, 6'd33, 6'd33, 6'd33, 6'd33,
6'd34, 6'd34, 6'd34, 6'd35, 6'd35, 6'd35, 6'd35, 6'd36,
6'd36, 6'd36, 6'd36, 6'd37, 6'd37, 6'd37, 6'd38, 6'd38,
6'd38, 6'd38, 6'd39, 6'd39, 6'd39, 6'd40, 6'd40, 6'd40,
6'd40, 6'd41, 6'd41, 6'd41, 6'd42, 6'd42, 6'd42, 6'd42,
6'd43, 6'd43, 6'd43, 6'd44, 6'd44, 6'd44, 6'd44, 6'd45,
6'd45, 6'd45, 6'd46, 6'd46, 6'd46, 6'd46, 6'd47, 6'd47,
6'd47, 6'd48, 6'd48, 6'd48, 6'd48, 6'd49, 6'd49, 6'd49,
6'd50, 6'd50, 6'd50, 6'd50, 6'd51, 6'd51, 6'd51, 6'd52,
6'd52, 6'd52, 6'd52, 6'd53, 6'd53, 6'd53, 6'd54, 6'd54,
6'd54, 6'd54, 6'd55, 6'd55, 6'd55, 6'd56, 6'd56, 6'd56,
6'd56, 6'd57, 6'd57, 6'd57, 6'd58, 6'd58, 6'd58, 6'd58,
6'd59, 6'd59, 6'd59, 6'd60, 6'd60, 6'd60, 6'd60, 6'd61,
6'd61, 6'd61, 6'd62, 6'd62, 6'd62, 6'd62, 6'd63, 6'd63,
6'd63
};
// http://marsee101.blog19.fc2.com/blog-entry-2311.html
// Y = 16 + 0.257*R + 0.504*G + 0.098*B (Y = 0.299*R + 0.587*G + 0.114*B)
// Pb = 128 - 0.148*R - 0.291*G + 0.439*B (Pb = -0.169*R - 0.331*G + 0.500*B)
// Pr = 128 + 0.439*R - 0.368*G - 0.071*B (Pr = 0.500*R - 0.419*G - 0.081*B)
wire [18:0] y_8 = 19'd04096 + ({red, 8'd0} + {red, 3'd0}) + ({green, 9'd0} + {green, 2'd0}) + ({blue, 6'd0} + {blue, 5'd0} + {blue, 2'd0});
wire [18:0] pb_8 = 19'd32768 - ({red, 7'd0} + {red, 4'd0} + {red, 3'd0}) - ({green, 8'd0} + {green, 5'd0} + {green, 3'd0}) + ({blue, 8'd0} + {blue, 7'd0} + {blue, 6'd0});
wire [18:0] pr_8 = 19'd32768 + ({red, 8'd0} + {red, 7'd0} + {red, 6'd0}) - ({green, 8'd0} + {green, 6'd0} + {green, 5'd0} + {green, 4'd0} + {green, 3'd0}) - ({blue, 6'd0} + {blue , 3'd0});
wire [7:0] y = ( y_8[17:8] < 16) ? 8'd16 : ( y_8[17:8] > 235) ? 8'd235 : y_8[15:8];
wire [7:0] pb = (pb_8[17:8] < 16) ? 8'd16 : (pb_8[17:8] > 240) ? 8'd240 : pb_8[15:8];
wire [7:0] pr = (pr_8[17:8] < 16) ? 8'd16 : (pr_8[17:8] > 240) ? 8'd240 : pr_8[15:8];
assign VGA_R = ypbpr ? (ypbpr_full ? yuv_full[pr-8'd16] : pr[7:2]) : red;
assign VGA_G = ypbpr ? (ypbpr_full ? yuv_full[y -8'd16] : y[7:2]) : green;
assign VGA_B = ypbpr ? (ypbpr_full ? yuv_full[pb-8'd16] : pb[7:2]) : blue;
assign VGA_VS = (scandoubler_disable | ypbpr) ? 1'b1 : ~vs_sd;
assign VGA_HS = scandoubler_disable ? ~(HSync ^ VSync) : ypbpr ? ~(hs_sd ^ vs_sd) : ~hs_sd;
endmodule