1
0
mirror of https://github.com/Gehstock/Mist_FPGA.git synced 2026-01-14 23:45:48 +00:00

Use Common Sound Unit

This commit is contained in:
Marcel 2020-06-01 17:13:05 +02:00
parent 8fd67e4a2f
commit ec05d014fb
3 changed files with 16 additions and 720 deletions

View File

@ -40,7 +40,7 @@
# Project-Wide Assignments
# ========================
set_global_assignment -name ORIGINAL_QUARTUS_VERSION 16.1.2
set_global_assignment -name LAST_QUARTUS_VERSION "13.1 SP4.26"
set_global_assignment -name LAST_QUARTUS_VERSION 13.1
set_global_assignment -name PROJECT_CREATION_TIME_DATE "01:53:30 APRIL 20, 2017"
set_global_assignment -name PROJECT_OUTPUT_DIRECTORY output_files
set_global_assignment -name NUM_PARALLEL_PROCESSORS ALL
@ -229,8 +229,6 @@ set_global_assignment -name VHDL_FILE rtl/p8_palette.vhd
set_global_assignment -name VHDL_FILE rtl/p9_audio_cpu.vhd
set_global_assignment -name VHDL_FILE rtl/p10_psgs.vhd
set_global_assignment -name VHDL_FILE rtl/sprite_buff.vhd
set_global_assignment -name VHDL_FILE rtl/YM2149_linmix.vhd
set_global_assignment -name QIP_FILE ../../../common/CPU/T80/T80.qip
set_global_assignment -name VHDL_FILE rtl/rom/ROM_8R.vhd
set_global_assignment -name VHDL_FILE rtl/rom/ROM_8N.vhd
set_global_assignment -name VHDL_FILE rtl/rom/ROM_8L.vhd
@ -250,4 +248,7 @@ set_global_assignment -name VHDL_FILE rtl/rom/ROM_1J.vhd
set_global_assignment -name SYSTEMVERILOG_FILE rtl/sdram.sv
set_global_assignment -name VERILOG_FILE rtl/pll.v
set_global_assignment -name QIP_FILE ../../../common/mist/mist.qip
set_global_assignment -name VHDL_FILE ../../../common/Sound/ym2149/YM2149.vhd
set_global_assignment -name VHDL_FILE ../../../common/Sound/ym2149/vol_table_array.vhd
set_global_assignment -name QIP_FILE ../../../common/CPU/T80/T80.qip
set_instance_assignment -name PARTITION_HIERARCHY root_partition -to | -section_id Top

View File

@ -1,714 +0,0 @@
--
-- A simulation model of YM2149 (AY-3-8910 with bells on)
-- Copyright (c) MikeJ - Jan 2005
--
-- All rights reserved
--
-- Redistribution and use in source and synthezised forms, with or without
-- modification, are permitted provided that the following conditions are met:
--
-- Redistributions of source code must retain the above copyright notice,
-- this list of conditions and the following disclaimer.
--
-- Redistributions in synthesized form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in the
-- documentation and/or other materials provided with the distribution.
--
-- Neither the name of the author nor the names of other contributors may
-- be used to endorse or promote products derived from this software without
-- specific prior written permission.
--
-- THIS CODE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
-- THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-- PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE
-- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-- POSSIBILITY OF SUCH DAMAGE.
--
-- You are responsible for any legal issues arising from your use of this code.
--
-- The latest version of this file can be found at: www.fpgaarcade.com
--
-- Email support@fpgaarcade.com
--
-- Revision list
--
-- version 001 initial release
-- version 002 Bomb Jack customizations
-- commented out ports IOA and IOB
-- added support for IOA register to internally control master volume of all 3 audio channels
--
-- Clues from MAME sound driver and Kazuhiro TSUJIKAWA
--
-- These are the measured outputs from a real chip for a single Isolated channel into a 1K load (V)
-- vol 15 .. 0
-- 3.27 2.995 2.741 2.588 2.452 2.372 2.301 2.258 2.220 2.198 2.178 2.166 2.155 2.148 2.141 2.132
-- As the envelope volume is 5 bit, I have fitted a curve to the not quite log shape in order
-- to produced all the required values.
-- (The first part of the curve is a bit steeper and the last bit is more linear than expected)
--
-- NOTE, this component uses LINEAR mixing of the three analogue channels, and is only
-- accurate for designs where the outputs are buffered and not simply wired together.
-- The ouput level is more complex in that case and requires a larger table.
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity YM2149 is
port (
-- data bus
I_DA : in std_logic_vector(7 downto 0);
O_DA : out std_logic_vector(7 downto 0);
-- O_DA_OE_L : out std_logic;
-- control
I_A9_L : in std_logic;
I_A8 : in std_logic;
I_BDIR : in std_logic;
I_BC2 : in std_logic;
I_BC1 : in std_logic;
I_SEL_L : in std_logic;
O_AUDIO : out std_logic_vector(7 downto 0) := (others => '0');
I_CHEN : in std_logic_vector(2 downto 0) := (others => '0');
-- port a
-- I_IOA : in std_logic_vector(7 downto 0);
-- O_IOA : out std_logic_vector(7 downto 0);
-- O_IOA_OE_L : out std_logic;
-- port b
-- I_IOB : in std_logic_vector(7 downto 0);
-- O_IOB : out std_logic_vector(7 downto 0);
-- O_IOB_OE_L : out std_logic;
ENA : in std_logic; -- clock enable for higher speed operation
RESET_L : in std_logic;
CLK : in std_logic -- note 6 Mhz
);
end;
architecture RTL of YM2149 is
type array_16x8 is array (0 to 15) of std_logic_vector(7 downto 0);
type array_3x12 is array (1 to 3) of std_logic_vector(11 downto 0);
signal cnt_div : std_logic_vector(3 downto 0) := (others => '0');
signal noise_div : std_logic := '0';
signal ena_div : std_logic;
signal ena_div_noise : std_logic;
signal poly17 : std_logic_vector(16 downto 0) := (others => '0');
-- registers
signal addr : std_logic_vector(7 downto 0);
signal busctrl_addr : std_logic;
signal busctrl_we : std_logic;
signal busctrl_re : std_logic;
signal reg : array_16x8 := (others => (others => '0'));
signal env_reset : std_logic := '1';
-- signal ioa_inreg : std_logic_vector(7 downto 0);
-- signal iob_inreg : std_logic_vector(7 downto 0);
signal noise_gen_cnt : std_logic_vector(4 downto 0);
signal noise_gen_op : std_logic;
signal tone_gen_cnt : array_3x12 := (others => (others => '0'));
signal tone_gen_op : std_logic_vector(3 downto 1) := (others => '0');
signal env_gen_cnt : std_logic_vector(15 downto 0);
signal env_ena : std_logic;
signal env_hold : std_logic;
signal env_inc : std_logic;
signal env_vol : std_logic_vector(4 downto 0);
signal tone_ena_l : std_logic;
signal tone_src : std_logic;
signal noise_ena_l : std_logic;
signal chan_vol : std_logic_vector(6 downto 0);
signal dac_amp : std_logic_vector(7 downto 0);
signal audio_mix : std_logic_vector(9 downto 0);
signal audio_final : std_logic_vector(9 downto 0);
-- psg, bdir, bc2, bc1
type BUS_STATE_TYPE is ( nop0,AD0,nop1,RD,AD1,nop2,WR,AD2);
begin
-- cpu i/f
p_busdecode : process(I_BDIR, I_BC2, I_BC1, addr, I_A9_L, I_A8)
variable cs : std_logic;
variable sel : std_logic_vector(2 downto 0);
begin
-- BDIR BC2 BC1 MODE
-- 0 0 0 inactive
-- 0 0 1 address
-- 0 1 0 inactive
-- 0 1 1 read
-- 1 0 0 address
-- 1 0 1 inactive
-- 1 1 0 write
-- 1 1 1 read
busctrl_addr <= '0';
busctrl_we <= '0';
busctrl_re <= '0';
cs := '0';
if (I_A9_L = '0') and (I_A8 = '1') and (addr(7 downto 4) = "0000") then
cs := '1';
end if;
sel := (I_BDIR & I_BC2 & I_BC1);
case sel is
when "000" => null;
when "001" => busctrl_addr <= '1';
when "010" => null;
when "011" => busctrl_re <= cs;
when "100" => busctrl_addr <= '1';
when "101" => null;
when "110" => busctrl_we <= cs;
when "111" => busctrl_addr <= '1';
when others => null;
end case;
end process;
-- p_oe : process(busctrl_re)
-- begin
-- -- if we are emulating a real chip, maybe clock this to fake up the tristate typ delay of 100ns
-- O_DA_OE_L <= not (busctrl_re);
-- end process;
--
-- CLOCKED
--
p_waddr : process(RESET_L, CLK)
begin
-- looks like registers are latches in real chip, but the address is caught at the end of the address state.
if (RESET_L = '0') then
addr <= (others => '0');
elsif rising_edge(CLK) then
if (ENA = '1') then
if (busctrl_addr = '1') then
addr <= I_DA;
end if;
end if;
end if;
end process;
p_wdata : process(RESET_L, CLK)
begin
if (RESET_L = '0') then
reg <= (others => (others => '0'));
env_reset <= '1';
elsif rising_edge(CLK) then
if (ENA = '1') then
env_reset <= '0';
if (busctrl_we = '1') then
case addr(3 downto 0) is
when x"0" => reg(0) <= I_DA;
when x"1" => reg(1) <= I_DA;
when x"2" => reg(2) <= I_DA;
when x"3" => reg(3) <= I_DA;
when x"4" => reg(4) <= I_DA;
when x"5" => reg(5) <= I_DA;
when x"6" => reg(6) <= I_DA;
when x"7" => reg(7) <= I_DA;
when x"8" => reg(8) <= I_DA;
when x"9" => reg(9) <= I_DA;
when x"A" => reg(10) <= I_DA;
when x"B" => reg(11) <= I_DA;
when x"C" => reg(12) <= I_DA;
when x"D" => reg(13) <= I_DA; env_reset <= '1';
when x"E" => reg(14) <= I_DA;
when x"F" => reg(15) <= I_DA;
when others => null;
end case;
end if;
end if;
end if;
end process;
p_rdata : process(busctrl_re, addr, reg) --, ioa_inreg, iob_inreg)
begin
O_DA <= (others => '0'); -- 'X'
if (busctrl_re = '1') then -- not necessary, but useful for putting 'X's in the simulator
case addr(3 downto 0) is
when x"0" => O_DA <= reg(0);
when x"1" => O_DA <= reg(1);
when x"2" => O_DA <= reg(2);
when x"3" => O_DA <= reg(3);
when x"4" => O_DA <= reg(4);
when x"5" => O_DA <= reg(5);
when x"6" => O_DA <= reg(6);
when x"7" => O_DA <= reg(7);
when x"8" => O_DA <= reg(8);
when x"9" => O_DA <= reg(9);
when x"A" => O_DA <= reg(10);
when x"B" => O_DA <= reg(11);
when x"C" => O_DA <= reg(12);
when x"D" => O_DA <= reg(13);
when x"E" =>
-- if (reg(7)(6) = '0') then -- input
-- O_DA <= ioa_inreg;
-- else
O_DA <= reg(14); -- read output reg
-- end if;
when x"F" =>
-- if (Reg(7)(7) = '0') then
-- O_DA <= iob_inreg;
-- else
O_DA <= reg(15);
-- end if;
when others => null;
end case;
end if;
end process;
--
p_divider : process
begin
wait until rising_edge(CLK);
-- / 8 when SEL is high and /16 when SEL is low
if (ENA = '1') then
ena_div <= '0';
ena_div_noise <= '0';
if (cnt_div = "0000") then
cnt_div <= (not I_SEL_L) & "111";
ena_div <= '1';
noise_div <= not noise_div;
if (noise_div = '1') then
ena_div_noise <= '1';
end if;
else
cnt_div <= cnt_div - "1";
end if;
end if;
end process;
p_noise_gen : process
variable noise_gen_comp : std_logic_vector(4 downto 0);
variable poly17_zero : std_logic;
begin
wait until rising_edge(CLK);
if (reg(6)(4 downto 0) = "00000") then
noise_gen_comp := (others => '0');
else
noise_gen_comp := (reg(6)(4 downto 0) - "1");
end if;
poly17_zero := '0';
if (poly17 = "00000000000000000") then poly17_zero := '1'; end if;
if (ENA = '1') then
if (ena_div_noise = '1') then -- divider ena
if (noise_gen_cnt >= noise_gen_comp) then
noise_gen_cnt <= (others => '0');
poly17 <= (poly17(0) xor poly17(2) xor poly17_zero) & poly17(16 downto 1);
else
noise_gen_cnt <= (noise_gen_cnt + "1");
end if;
end if;
end if;
end process;
noise_gen_op <= poly17(0);
p_tone_gens : process
variable tone_gen_freq : array_3x12;
variable tone_gen_comp : array_3x12;
begin
wait until rising_edge(CLK);
-- looks like real chips count up - we need to get the Exact behaviour ..
tone_gen_freq(1) := reg(1)(3 downto 0) & reg(0);
tone_gen_freq(2) := reg(3)(3 downto 0) & reg(2);
tone_gen_freq(3) := reg(5)(3 downto 0) & reg(4);
-- period 0 = period 1
for i in 1 to 3 loop
if (tone_gen_freq(i) = x"000") then
tone_gen_comp(i) := (others => '0');
else
tone_gen_comp(i) := (tone_gen_freq(i) - "1");
end if;
end loop;
if (ENA = '1') then
for i in 1 to 3 loop
if (ena_div = '1') then -- divider ena
if (tone_gen_cnt(i) >= tone_gen_comp(i)) then
tone_gen_cnt(i) <= (others => '0');
tone_gen_op(i) <= not tone_gen_op(i);
else
tone_gen_cnt(i) <= (tone_gen_cnt(i) + "1");
end if;
end if;
end loop;
end if;
end process;
p_envelope_freq : process
variable env_gen_freq : std_logic_vector(15 downto 0);
variable env_gen_comp : std_logic_vector(15 downto 0);
begin
wait until rising_edge(CLK);
env_gen_freq := reg(12) & reg(11);
-- envelope freqs 1 and 0 are the same.
if (env_gen_freq = x"0000") then
env_gen_comp := (others => '0');
else
env_gen_comp := (env_gen_freq - "1");
end if;
if (ENA = '1') then
env_ena <= '0';
if (ena_div = '1') then -- divider ena
if (env_gen_cnt >= env_gen_comp) then
env_gen_cnt <= (others => '0');
env_ena <= '1';
else
env_gen_cnt <= (env_gen_cnt + "1");
end if;
end if;
end if;
end process;
p_envelope_shape : process(env_reset, reg, CLK)
variable is_bot : boolean;
variable is_bot_p1 : boolean;
variable is_top_m1 : boolean;
variable is_top : boolean;
begin
-- envelope shapes
-- C AtAlH
-- 0 0 x x \___
--
-- 0 1 x x /___
--
-- 1 0 0 0 \\\\
--
-- 1 0 0 1 \___
--
-- 1 0 1 0 \/\/
-- ___
-- 1 0 1 1 \
--
-- 1 1 0 0 ////
-- ___
-- 1 1 0 1 /
--
-- 1 1 1 0 /\/\
--
-- 1 1 1 1 /___
if (env_reset = '1') then
-- load initial state
if (reg(13)(2) = '0') then -- attack
env_vol <= (others => '1');
env_inc <= '0'; -- -1
else
env_vol <= (others => '0');
env_inc <= '1'; -- +1
end if;
env_hold <= '0';
elsif rising_edge(CLK) then
is_bot := (env_vol = "00000");
is_bot_p1 := (env_vol = "00001");
is_top_m1 := (env_vol = "11110");
is_top := (env_vol = "11111");
if (ENA = '1') then
if (env_ena = '1') then
if (env_hold = '0') then
if (env_inc = '1') then
env_vol <= (env_vol + "00001");
else
env_vol <= (env_vol + "11111");
end if;
end if;
-- envelope shape control.
if (reg(13)(3) = '0') then
if (env_inc = '0') then -- down
if is_bot_p1 then env_hold <= '1'; end if;
else
if is_top then env_hold <= '1'; end if;
end if;
else
if (reg(13)(0) = '1') then -- hold = 1
if (env_inc = '0') then -- down
if (reg(13)(1) = '1') then -- alt
if is_bot then env_hold <= '1'; end if;
else
if is_bot_p1 then env_hold <= '1'; end if;
end if;
else
if (reg(13)(1) = '1') then -- alt
if is_top then env_hold <= '1'; end if;
else
if is_top_m1 then env_hold <= '1'; end if;
end if;
end if;
elsif (reg(13)(1) = '1') then -- alternate
if (env_inc = '0') then -- down
if is_bot_p1 then env_hold <= '1'; end if;
if is_bot then env_hold <= '0'; env_inc <= '1'; end if;
else
if is_top_m1 then env_hold <= '1'; end if;
if is_top then env_hold <= '0'; env_inc <= '0'; end if;
end if;
end if;
end if;
end if;
end if;
end if;
end process;
p_chan_mixer : process(cnt_div, reg, tone_gen_op)
begin
tone_ena_l <= '1';
noise_ena_l <= '1';
tone_src <= '1';
chan_vol <= (others => '0');
case cnt_div(1 downto 0) is
when "00" => -- chan A
tone_ena_l <= reg(7)(0);
noise_ena_l <= reg(7)(3);
tone_src <= tone_gen_op(1);
-- chan_vol <= "11" & reg(8)(4 downto 0);
chan_vol <= reg(14)(1 downto 0) & reg(8)(4 downto 0);
when "01" => -- chan B
tone_ena_l <= reg(7)(1);
noise_ena_l <= reg(7)(4);
tone_src <= tone_gen_op(2);
-- chan_vol <= "11" & reg(9)(4 downto 0);
chan_vol <= reg(14)(3 downto 2) & reg(9)(4 downto 0);
when "10" => -- chan C
tone_ena_l <= reg(7)(2);
noise_ena_l <= reg(7)(5);
tone_src <= tone_gen_op(3);
-- chan_vol <= "11" & reg(10)(4 downto 0);
chan_vol <= reg(14)(5 downto 4) & reg(10)(4 downto 0);
when "11" => null; -- tone gen outputs become valid on this clock
when others => null;
end case;
end process;
p_op_mixer : process
variable chan_mixed : std_logic;
variable chan_amp : std_logic_vector(6 downto 0);
begin
wait until rising_edge(CLK);
if (ENA = '1') then
-- chan_mixed := (tone_ena_l or tone_src) and (noise_ena_l or noise_gen_op);
chan_mixed := ( (not tone_ena_l) and tone_src ) or ( (not noise_ena_l) and noise_gen_op );
chan_amp := (others => '0');
if (chan_mixed = '1') then
if (chan_vol(4) = '0') then
if (chan_vol(3 downto 0) = "0000") then -- nothing is easy ! make sure quiet is quiet
chan_amp := (others => '0');
else
chan_amp := chan_vol(6 downto 5) & chan_vol(3 downto 0) & '1'; -- make sure level 31 (env) = level 15 (tone)
end if;
else
chan_amp := chan_vol(6 downto 5) & env_vol(4 downto 0);
end if;
end if;
-- volume tables that take into account the amplification factor set
-- by the IOA register 14 high/low bits through the external op-amps
dac_amp <= x"00";
case chan_amp is
-- x1.8 table
when "1111111" => dac_amp <= x"FF";
when "1111110" => dac_amp <= x"D9";
when "1111101" => dac_amp <= x"BA";
when "1111100" => dac_amp <= x"9F";
when "1111011" => dac_amp <= x"88";
when "1111010" => dac_amp <= x"74";
when "1111001" => dac_amp <= x"63";
when "1111000" => dac_amp <= x"54";
when "1110111" => dac_amp <= x"48";
when "1110110" => dac_amp <= x"3D";
when "1110101" => dac_amp <= x"34";
when "1110100" => dac_amp <= x"2C";
when "1110011" => dac_amp <= x"25";
when "1110010" => dac_amp <= x"1F";
when "1110001" => dac_amp <= x"1A";
when "1110000" => dac_amp <= x"16";
when "1101111" => dac_amp <= x"13";
when "1101110" => dac_amp <= x"10";
when "1101101" => dac_amp <= x"0D";
when "1101100" => dac_amp <= x"0B";
when "1101011" => dac_amp <= x"09";
when "1101010" => dac_amp <= x"08";
when "1101001" => dac_amp <= x"07";
when "1101000" => dac_amp <= x"06";
when "1100111" => dac_amp <= x"05";
when "1100110" => dac_amp <= x"04";
when "1100101" => dac_amp <= x"03";
when "1100100" => dac_amp <= x"03";
when "1100011" => dac_amp <= x"02";
when "1100010" => dac_amp <= x"02";
when "1100001" => dac_amp <= x"01";
when "1100000" => dac_amp <= x"00";
-- x1.3 table
when "1011111" => dac_amp <= x"B8";
when "1011110" => dac_amp <= x"9C";
when "1011101" => dac_amp <= x"86";
when "1011100" => dac_amp <= x"72";
when "1011011" => dac_amp <= x"62";
when "1011010" => dac_amp <= x"53";
when "1011001" => dac_amp <= x"47";
when "1011000" => dac_amp <= x"3C";
when "1010111" => dac_amp <= x"34";
when "1010110" => dac_amp <= x"2C";
when "1010101" => dac_amp <= x"25";
when "1010100" => dac_amp <= x"1F";
when "1010011" => dac_amp <= x"1A";
when "1010010" => dac_amp <= x"16";
when "1010001" => dac_amp <= x"12";
when "1010000" => dac_amp <= x"0F";
when "1001111" => dac_amp <= x"0D";
when "1001110" => dac_amp <= x"0B";
when "1001101" => dac_amp <= x"09";
when "1001100" => dac_amp <= x"07";
when "1001011" => dac_amp <= x"06";
when "1001010" => dac_amp <= x"05";
when "1001001" => dac_amp <= x"05";
when "1001000" => dac_amp <= x"04";
when "1000111" => dac_amp <= x"03";
when "1000110" => dac_amp <= x"02";
when "1000101" => dac_amp <= x"02";
when "1000100" => dac_amp <= x"02";
when "1000011" => dac_amp <= x"01";
when "1000010" => dac_amp <= x"01";
when "1000001" => dac_amp <= x"00";
when "1000000" => dac_amp <= x"00";
-- x0.8 table
when "0111111" => dac_amp <= x"71";
when "0111110" => dac_amp <= x"60";
when "0111101" => dac_amp <= x"52";
when "0111100" => dac_amp <= x"46";
when "0111011" => dac_amp <= x"3C";
when "0111010" => dac_amp <= x"33";
when "0111001" => dac_amp <= x"2C";
when "0111000" => dac_amp <= x"25";
when "0110111" => dac_amp <= x"20";
when "0110110" => dac_amp <= x"1B";
when "0110101" => dac_amp <= x"17";
when "0110100" => dac_amp <= x"13";
when "0110011" => dac_amp <= x"10";
when "0110010" => dac_amp <= x"0D";
when "0110001" => dac_amp <= x"0B";
when "0110000" => dac_amp <= x"09";
when "0101111" => dac_amp <= x"08";
when "0101110" => dac_amp <= x"07";
when "0101101" => dac_amp <= x"05";
when "0101100" => dac_amp <= x"04";
when "0101011" => dac_amp <= x"04";
when "0101010" => dac_amp <= x"03";
when "0101001" => dac_amp <= x"03";
when "0101000" => dac_amp <= x"02";
when "0100111" => dac_amp <= x"02";
when "0100110" => dac_amp <= x"01";
when "0100101" => dac_amp <= x"01";
when "0100100" => dac_amp <= x"01";
when "0100011" => dac_amp <= x"00";
when "0100010" => dac_amp <= x"00";
when "0100001" => dac_amp <= x"00";
when "0100000" => dac_amp <= x"00";
-- x0.3 table
when "0011111" => dac_amp <= x"2A";
when "0011110" => dac_amp <= x"24";
when "0011101" => dac_amp <= x"1E";
when "0011100" => dac_amp <= x"1A";
when "0011011" => dac_amp <= x"16";
when "0011010" => dac_amp <= x"13";
when "0011001" => dac_amp <= x"10";
when "0011000" => dac_amp <= x"0D";
when "0010111" => dac_amp <= x"0C";
when "0010110" => dac_amp <= x"0A";
when "0010101" => dac_amp <= x"08";
when "0010100" => dac_amp <= x"07";
when "0010011" => dac_amp <= x"06";
when "0010010" => dac_amp <= x"05";
when "0010001" => dac_amp <= x"04";
when "0010000" => dac_amp <= x"03";
when "0001111" => dac_amp <= x"03";
when "0001110" => dac_amp <= x"02";
when "0001101" => dac_amp <= x"02";
when "0001100" => dac_amp <= x"01";
when "0001011" => dac_amp <= x"01";
when "0001010" => dac_amp <= x"01";
when "0001001" => dac_amp <= x"01";
when "0001000" => dac_amp <= x"00";
when "0000111" => dac_amp <= x"00";
when "0000110" => dac_amp <= x"00";
when "0000101" => dac_amp <= x"00";
when "0000100" => dac_amp <= x"00";
when "0000011" => dac_amp <= x"00";
when "0000010" => dac_amp <= x"00";
when "0000001" => dac_amp <= x"00";
when "0000000" => dac_amp <= x"00";
when others => null;
end case;
if (cnt_div(1 downto 0) = "10") then
audio_mix <= (others => '0');
audio_final <= audio_mix;
else
case cnt_div(1 downto 0) is
when "01" =>
if I_CHEN(0)='1' then
audio_mix <= audio_mix + ("00" & dac_amp);
end if;
when "00" =>
if I_CHEN(1)='1' then
audio_mix <= audio_mix + ("00" & dac_amp);
end if;
when "11" =>
if I_CHEN(2)='1' then
audio_mix <= audio_mix + ("00" & dac_amp);
end if;
when others => null;
end case;
end if;
end if;
end process;
p_audio_output : process(RESET_L, CLK)
begin
if (RESET_L = '0') then
O_AUDIO <= (others => '0');
elsif rising_edge(CLK) then
if (ENA = '1') then
O_AUDIO <= audio_final(9 downto 2);
end if;
end if;
end process;
-- p_io_ports : process(reg)
-- begin
-- O_IOA <= reg(14);
-- O_IOA_OE_L <= not reg(7)(6);
-- O_IOB <= reg(15);
-- O_IOB_OE_L <= not reg(7)(7);
-- end process;
-- p_io_ports_inreg : process
-- begin
-- wait until rising_edge(CLK);
-- if (ENA = '1') then -- resync
-- ioa_inreg <= I_IOA;
-- iob_inreg <= I_IOB;
-- end if;
-- end process;
end architecture RTL;

View File

@ -110,8 +110,11 @@ begin
I_BDIR => s_5C1,
I_BC2 => s_5C10,
I_BC1 => s_5C13,
I_IOA => X"FF",
I_IOB => X"FF",
I_CHEN => I_CHEN(8 downto 6),
-- I_CHEN => I_CHEN(8 downto 6),
O_AUDIO => s_psg1_out
);
@ -131,8 +134,11 @@ begin
I_BDIR => s_5B1,
I_BC2 => s_5B10,
I_BC1 => s_5B13,
I_IOA => X"FF",
I_IOB => X"FF",
I_CHEN => I_CHEN(5 downto 3),
-- I_CHEN => I_CHEN(5 downto 3),
O_AUDIO => s_psg2_out
);
@ -152,8 +158,11 @@ begin
I_BDIR => s_5A1,
I_BC2 => s_5A10,
I_BC1 => s_5A13,
I_IOA => X"FF",
I_IOB => X"FF",
I_CHEN => I_CHEN(2 downto 0),
-- I_CHEN => I_CHEN(2 downto 0),
O_AUDIO => s_psg3_out
);