1
0
mirror of synced 2026-02-01 06:13:40 +00:00
Files
lisper.cpus-pdp8/cpu/pdp8.v
2007-01-03 12:30:19 +00:00

729 lines
13 KiB
Verilog

// PDP-8
// Based on descriptions in "Computer Engineering"
// Nov 2005 Brad Parker brad@heeltoe.com
// initial work; runs focal a bit
// Dec 2006
// cleaned up a little; now runs focal to prompt
// moved i/o out to pdp8_io.v
// added IF, DF, user mode
//
// TODO:
// fully implement extended memory (IF & DF), user mode (KT8/I)
// add df32/rf08
// 6000 pws ac <= switches
//
//
// Instruction format:
//
// 0 1 2 3 4 5 6 7 8 9 10 11
// 11 10 9 8 7 6 5 4 3 2 1 0
// |--op--|
// 0 and
// 1 tad
// 2 isz
// 3 dca
// 4 jms
// 5 jmp
// 6 iot
// 7 opr
// 11 10 9 8 7 6 5 4 3 2 1 0
// group 1
// 0
// |cla|clf| | |
// | | |cma cml| |
// |bsw 001 |
// |ral 010 |
// |rtl 011 |
// |rar 100 |
// |rtr 101 |
// | |iac
//
// 11 10 9 8 7 6 5 4 3 2 1 0
// group 2
// 1 0
// |sma|sza|snl|skp| |
// |cla|
// |osr|hlt
//
// group 3
// 11 10 9 8 7 6 5 4 3 2 1 0
// eae
// 1 1
// |cla|
// |mqa|sca|mql|
// |isn |
//
//
/*
cpu states
F0 fetch
F1 incr pc
F2 write
F3 dispatch
E0 read
E1 decode
E2 write
E3 load
or
D0 read
D1 wait
D2 write
D3 load
------
F0 fetch
check for interrupt
F1 incr pc
if opr
group 1 processing
group 2 processing
if iot
incr pc or skip (incr pc by 2)
F2 write
ma <= pc
F3 dispatch
if opr
group1 processing
if !opr && !iot
possible defer
D0
mb <= memory
D1
*/
// extended memory
//
// 62n1 cdf change data field; df <= mb[5:3]
// 62n2 cif change instruction field; if <= mb[5:3], after next jmp or jms
// 6214 rdf read df into ac[5:3]
// 6224 rif read if into ac[5:3]
// 6234 rib read sf into ac[5:0], which is {if,df}
// 6244 rmf restore memory field, sf => ib, df
// (remember that on interrupt, sf <= {if,df})
//
`include "pdp8_io.v"
module pdp8(clk, reset_n, switches);
input clk, reset_n;
input[11:0] switches;
// memory buffer, holds data, instructions
reg[11:0] mb;
// hold address of work in memory being accessed
reg[14:0] ma;
// accumulator & link
reg[11:0] ac;
reg l;
// MQ
reg [11:0] mq;
// program counter
reg[11:0] pc;
wire pc_incr, pc_skip;
// instruction register
reg[2:0] ir;
// extended memory - instruction field & data field
reg [2:0] IF;
reg [2:0] DF;
reg [2:0] IB;
reg [5:0] SF;
reg ib_pending;
// user mode
reg UB;
reg UF;
//
wire[11:0] memory_bus;
reg ram_we_n;
// processor state
reg[3:0] state, next_state;
reg run;
reg interrupt_enable;
reg interrupt_cycle;
reg interrupt_inhibit;
reg interrupt_skip;
reg interrupt;
reg user_interrupt;
reg io_pulse_1, io_pulse_2, io_pulse_4;
wire [11:0] io_data;
wire io_data_avail;
wire io_interrupt;
wire io_skip;
wire[5:0] io_select;
assign io_select = mb[8:3];
wire skip_condition;
wire fetch; // memory cycle to fetch instruction
wire deferred; // memory cycle to get address of operand
wire execute; // memory cycle to getch (store) operand and execute isn
assign {fetch, deferred, execute} =
(state[3:2] == 2'b00) ? 3'b100 :
(state[3:2] == 2'b01) ? 3'b010 :
(state[3:2] == 2'b10) ? 3'b001 :
3'b000 ;
wire and,tad,isz,dca,jms,jmp,iot,opr;
assign {and,tad,isz,dca,jms,jmp,iot,opr} =
(ir == 3'b000) ? 8'b10000000 :
(ir == 3'b001) ? 8'b01000000 :
(ir == 3'b010) ? 8'b00100000 :
(ir == 3'b011) ? 8'b00010000 :
(ir == 3'b100) ? 8'b00001000 :
(ir == 3'b101) ? 8'b00000100 :
(ir == 3'b110) ? 8'b00000010 :
8'b00000001 ;
//-------------
parameter F0 = 4'b0000;
parameter F1 = 4'b0001;
parameter F2 = 4'b0010;
parameter F3 = 4'b0011;
parameter D0 = 4'b0100;
parameter D1 = 4'b0101;
parameter D2 = 4'b0110;
parameter D3 = 4'b0111;
parameter E0 = 4'b1000;
parameter E1 = 4'b1001;
parameter E2 = 4'b1010;
parameter E3 = 4'b1011;
ram_4kx12 ram(
.A(ma),
.DI(mb),
.DO(memory_bus),
.CE_N(1'b0),
.WE_N(ram_we_n));
/*
* note: bit numbering is opposite that used in "Computer Engineering"
*
* F1
* if opr
* if MB[8] and !MB[0]
* begin
* if skip.conditions ^ MB[3]
* pc <= pc + 2
* if skip.conditions == MB[3]
* pc <= pc + 1 next
* if MB[7]
* ac <= 0
*/
assign skip_condition =
(mb[6] && ac[11]) ||
(mb[5] && ac == 0) ||
(mb[4] && l == 1);
assign pc_incr =
(opr & !mb[8]) ||
(opr && (mb[8] && !mb[0]) && (skip_condition == mb[3])) ||
iot ||
(!(opr || iot) && !interrupt_cycle);
assign pc_skip =
(opr && (mb[8] && !mb[0]) && (skip_condition ^ mb[3])) ||
(iot && (io_skip || interrupt_skip));
// (iot && mb[0] && io_skip);
pdp8_io io(.clk(clk), .reset_n(reset_n),
.iot(iot), .state(state), .pc(pc), .ac(ac), .mb(mb),
.io_select(io_select),
.io_data_out(io_data),
.io_data_avail(io_data_avail),
.io_interrupt(io_interrupt),
.io_skip(io_skip));
always @(reset_n)
if (reset_n == 0)
begin
pc <= 0;
ma <= 0;
mb <= 0;
ac <= 0;
mq <= 0;
l <= 0;
ir <= 0;
ram_we_n <= 1;
state <= 0;
next_state <= 0;
run <= 1;
interrupt_enable <= 0;
interrupt_cycle <= 0;
interrupt_inhibit <= 0;
interrupt_skip <= 0;
interrupt <= 0;
user_interrupt <= 0;
io_pulse_1 <= 0;
io_pulse_2 <= 0;
io_pulse_4 <= 0;
IF <= 0;
DF <= 0;
IB <= 0;
SF <= 0;
UF <= 0;
UB <= 0;
ib_pending <= 0;
end
initial
begin
ram_we_n = 1;
end
/*
* cpu state state machine
*
* clock next cpu state at rising edge of clock
*/
always @(posedge clk)
state <= #1 next_state;
always @(state)
begin
case (state)
// FETCH
F0:
begin
interrupt_skip <= 0;
if (interrupt && interrupt_enable &&
!interrupt_inhibit && !interrupt_cycle)
begin
$display("interrupt; %b %b %b",
interrupt, interrupt_enable, interrupt_cycle);
interrupt_cycle <= 1;
interrupt <= 0;
mb <= 12'o4000;
ir <= 3'o4;
SF <= {IF,DF};
IF <= #1 3'b000;
DF <= #1 3'b000;
end
else
begin
interrupt_cycle <= 0;
mb <= memory_bus;
ir <= memory_bus[11:9];
end
next_state <= F1;
end
F1:
begin
//$display("f1: io_skip %b", io_skip);
//$display("f1 - ma %o, mb %o, ir %o", ma, mb, ir);
if (opr)
begin
// group 1
if (!mb[8])
begin
// $display("f1/g1 - ma %o, mb %o, ac %o l %o", ma, mb, ac,l);
if (mb[7]) ac <= 0;
if (mb[6]) l <= 0;
if (mb[5]) ac <= ~ac;
if (mb[4]) l <= ~l;
end
// group 2
if (mb[8] & !mb[0])
begin
// $display("f1/g2 - ma %o, mb %o, sc %o, i %o s %o, ac %o l %o",
// ma, mb, skip_condition, pc_incr, pc_skip, ac, l);
if (mb[7])
ac <= 0;
end
// group 3
if (mb[8] & mb[0])
begin
if (mb[7]) ac <= 0;
end
end
if (iot)
begin
$display("iot %t, run %b, state %b, pc %o, ir %o, mb %o, io_select %o",
$time, run, state, pc, ir, mb, io_select);
if (mb[0]) io_pulse_1 <= 1;
if (mb[1]) io_pulse_2 <= 1;
if (mb[2]) io_pulse_4 <= 1;
case (io_select)
6'b000000: // ION, IOF
case (mb[2:0])
3'b001: interrupt_enable <= 1;
3'b010: interrupt_enable <= 0;
3'b011: if (interrupt_enable) interrupt_skip <= 1;
endcase // case(mb[2:0])
6'b010xxx: // CDF..RMF
begin
case (mb[2:0])
3'b001: DF <= mb[5:3]; // CDF
3'b010: // CIF
begin
IB <= mb[5:3];
ib_pending <= 1;
interrupt_inhibit <= 1;
end
3'b100:
case (io_select[2:0])
3'b001: ac <= { 6'b0, DF, 3'b0 }; // RDF
3'b010: ac <= { 6'b0, IF, 3'b0 }; // RIF
3'b011: ac <= { 6'b0, SF }; // RIB
3'b100: begin // RMF
IB <= SF[5:3];
DF <= SF[2:0];
end
endcase // case(io_select[2:0])
endcase // case(mb[2:0])
end
endcase
if (io_data_avail)
begin
ac <= io_data;
end
end
if (io_interrupt)
interrupt <= 1;
//$display("f1 io_skip %b skip %b, incr %b", io_skip, pc_skip, pc_incr);
if (pc_skip)
pc <= pc + 2;
else
if (pc_incr)
pc <= pc + 1;
next_state <= F2;
end
F2:
begin
io_pulse_1 <= 0;
io_pulse_2 <= 0;
io_pulse_4 <= 0;
if (opr)
begin
ma <= {IF,pc};
// group 3
if (mb[8] & mb[0])
begin
$display("f2/g3 - ma %o, mb %o, ac %o l %o", ma, mb, ac,l);
case ({mb[6:4]})
3'b001: mq <= ac;
3'b100: ac <= ac | mq;
// 3'b101: tmq <= mq;
3'b100: ac <= mq;
3'b101: ac <= mq;
endcase // case({mb[6:4]})
end // if (mb[8] & mb[0])
end // if (opr)
if (iot)
ma <= {IF,pc};
if (!(opr || iot))
begin
ma[6:0] <= mb[6:0];
if (!mb[7])
ma[11:7] <= 0;
end
next_state <= F3;
end
F3:
begin
if (opr)
begin
// group 1
if (!mb[8])
begin
if (mb[0]) // IAC
{l,ac} <= {l,ac} + 1'b1;
if (mb[3:1] == 3'b001) // BSW
{l,ac} <= {l,ac[5:0],ac[11:6]};
if (mb[3] && !mb[1]) // RAR
{l,ac} <= {ac[0],l,ac[11:1]};
if (mb[3] && mb[1]) // RTR
{l,ac} <= {ac[1:0],l,ac[11:2]};
if (mb[2] && !mb[1]) // RAL
{l,ac} <= {ac[11:0],l};
if (mb[2] && mb[1]) // RTL
{l,ac} <= {ac[10:0],l,ac[11]};
end
if (!UF)
begin
// group 2
if (mb[8] & !mb[0])
if (mb[2])
ac <= ac | switches;
if (mb[1])
run <= 0;
end
if (UF)
begin
// group 2 - user mode (halt & osr)
if (mb[8] & !mb[0])
if (mb[2])
user_interrupt <= 1;
if (mb[1])
user_interrupt <= 1;
end
// group 3
if (mb[8] & mb[0])
begin
if (mb[7:4] == 4'b1101) mq <= 0;
end
ir <= 0;
mb <= 0;
next_state <= F0;
end
if (iot)
begin
ir <= 0;
mb <= 0;
next_state <= F0;
end
if (!(opr || iot))
begin
if (!mb[8] & jmp)
begin
pc <= ma;
ir <= 0;
mb <= 0;
next_state <= F0;
end
if (mb[8])
begin
mb <= 0;
next_state <= D0; /* defer */
end
if (!mb[8] & !jmp)
begin
mb <= 0;
next_state <= E0;
end
end
end
// DEFER
D0:
begin
mb <= memory_bus;
next_state <= D1;
end
D1:
begin
// auto increment regs
if (ma[11:3] == 8'h01)
mb <= mb + 1;
next_state <= D2;
end
D2:
begin
// write back
if (ma[11:3] == 8'h01)
ram_we_n <= 0;
ma <= #1 {DF,mb};
next_state <= D3;
end
D3:
begin
ram_we_n <= 1;
if (jmp)
begin
pc <= mb;
ir <= 0;
mb <= 0;
next_state <= F0;
end
if (!jmp)
begin
mb <= 0;
next_state <= E0;
end
end
// EXECUTE
E0:
begin
mb <= memory_bus;
next_state <= E1;
end
E1:
begin
if (and)
;
if (isz)
begin
mb <= mb + 1;
if (mb == 12'b111111111111)
pc <= pc + 1;
end
if (dca)
mb <= ac;
if (jms)
mb <= pc;
next_state <= E2;
end
E2:
begin
if (isz || dca || jms)
ram_we_n <= 0;
if (~jms)
ma <= #1 {IF,pc};
if (jms)
ma <= #1 {ma[14:12], ma[11:0] + 1};
next_state <= E3;
end
E3:
begin
ram_we_n <= 1;
if (and)
ac <= ac & mb;
if (tad)
{l,ac} <= ac + mb;
//if (tad) $display("tad - mb %o, ac %o l %o", mb, ac, l);
if (dca)
ac <= 0;
if (jms)
pc <= ma;
ir <= 0;
next_state <= F0;
end
endcase
end
endmodule
/* 4kx12 static ram */
module ram_4kx12(A, DI, DO, CE_N, WE_N);
input[14:0] A;
input[11:0] DI;
input CE_N, WE_N;
output[11:0] DO;
reg[11:0] ram [0:32767];
integer i;
initial
begin
for (i = 0; i < 32768; i=i+1)
ram[i] = 12'b0;
ram[15'o0000] = 12'o5177;
ram[15'o0200] = 12'o7300;
ram[15'o0201] = 12'o1300;
ram[15'o0202] = 12'o1301;
ram[15'o0203] = 12'o3302;
ram[15'o0204] = 12'o7402;
ram[15'o0205] = 12'o5200;
`include "focal.v"
ram[15'o0000] = 12'o5404;
ram[15'o0004] = 12'o0200;
end
always @(negedge WE_N)
begin
if (CE_N == 0)
begin
$display("ram: write [%o] <- %o", A, DI);
ram[ A ] = DI;
end
end
//always @(A)
// begin
// $display("ram: ce %b, we %b [%o] -> %o", CE_N, WE_N, A, ram[A]);
// end
// assign DO = ram[ A ];
assign DO = (^A === 1'bX || A === 1'bz) ? ram[0] : ram[A];
endmodule