mirror of
https://github.com/livingcomputermuseum/UniBone.git
synced 2026-01-28 12:49:08 +00:00
Made RCT table size dynamic based on the drive type. The above allow RSTS/E to boot! Huzzah!
888 lines
28 KiB
C++
888 lines
28 KiB
C++
/*
|
|
uda.cpp: Implementation of the MSCP port (unibus interface).
|
|
|
|
This provides logic for the UDA50's SA and IP registers,
|
|
the four-step initialization handshake, DMA transfers to and
|
|
from the Unibus, and the command/response ring protocols.
|
|
|
|
At this time it acts as the port for an MSCP controller.
|
|
It would be trivial to extend this to TMSCP at a future date.
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "unibus.h"
|
|
#include "unibusadapter.hpp"
|
|
#include "unibusdevice.hpp"
|
|
#include "storagecontroller.hpp"
|
|
#include "mscp_drive.hpp"
|
|
#include "uda.hpp"
|
|
|
|
uda_c::uda_c() :
|
|
storagecontroller_c(),
|
|
_server(nullptr),
|
|
_ringBase(0),
|
|
_commandRingLength(0),
|
|
_responseRingLength(0),
|
|
_commandRingPointer(0),
|
|
_responseRingPointer(0),
|
|
_interruptVector(0),
|
|
_interruptEnable(false),
|
|
_purgeInterruptEnable(false),
|
|
_step1Value(0),
|
|
_initStep(InitializationStep::Uninitialized),
|
|
_next_step(false)
|
|
{
|
|
name.value = "uda";
|
|
type_name.value = "UDA50";
|
|
log_label = "uda";
|
|
|
|
default_base_addr = 0772150;
|
|
default_intr_vector = 0154;
|
|
default_intr_level = 5;
|
|
|
|
// The UDA50 controller has two registers.
|
|
register_count = 2;
|
|
|
|
IP_reg = &(this->registers[0]); // @ base addr
|
|
strcpy(IP_reg->name, "IP");
|
|
IP_reg->active_on_dati = true;
|
|
IP_reg->active_on_dato = true;
|
|
IP_reg->reset_value = 0;
|
|
IP_reg->writable_bits = 0xffff;
|
|
|
|
SA_reg = &(this->registers[1]); // @ base addr + 2
|
|
strcpy(SA_reg->name, "SA");
|
|
SA_reg->active_on_dati = false;
|
|
SA_reg->active_on_dato = true;
|
|
SA_reg->reset_value = 0;
|
|
SA_reg->writable_bits = 0xffff;
|
|
|
|
_server.reset(new mscp_server(this));
|
|
|
|
//
|
|
// Initialize drives. We support up to eight attached drives.
|
|
//
|
|
drivecount = 8;
|
|
for (uint32_t i=0; i<drivecount; i++)
|
|
{
|
|
mscp_drive_c *drive = new mscp_drive_c(this, i);
|
|
drive->unitno.value = i;
|
|
drive->name.value = name.value + std::to_string(i);
|
|
drive->log_label = drive->name.value;
|
|
drive->parent = this;
|
|
storagedrives.push_back(drive);
|
|
}
|
|
}
|
|
|
|
uda_c::~uda_c()
|
|
{
|
|
for(uint32_t i=0; i<drivecount; i++)
|
|
{
|
|
delete storagedrives[i];
|
|
}
|
|
|
|
storagedrives.clear();
|
|
}
|
|
|
|
void uda_c::Reset(void)
|
|
{
|
|
DEBUG("UDA reset");
|
|
|
|
_server->Reset();
|
|
|
|
_ringBase = 0;
|
|
_commandRingLength = 0;
|
|
_responseRingLength = 0;
|
|
_commandRingPointer = 0;
|
|
_responseRingPointer = 0;
|
|
_interruptVector = 0;
|
|
intr_vector.value = 0;
|
|
_interruptEnable = false;
|
|
_purgeInterruptEnable = false;
|
|
}
|
|
|
|
uint32_t uda_c::GetDriveCount(void)
|
|
{
|
|
return drivecount;
|
|
}
|
|
|
|
mscp_drive_c* uda_c::GetDrive(
|
|
uint32_t driveNumber)
|
|
{
|
|
assert(driveNumber < drivecount);
|
|
|
|
return dynamic_cast<mscp_drive_c*>(storagedrives[driveNumber]);
|
|
}
|
|
|
|
void uda_c::StateTransition(
|
|
InitializationStep nextStep)
|
|
{
|
|
pthread_mutex_lock(&on_after_register_access_mutex);
|
|
_initStep = nextStep;
|
|
_next_step = true;
|
|
pthread_cond_signal(&on_after_register_access_cond);
|
|
pthread_mutex_unlock(&on_after_register_access_mutex);
|
|
}
|
|
|
|
void uda_c::worker(void)
|
|
{
|
|
worker_init_realtime_priority(rt_device);
|
|
|
|
timeout_c timeout;
|
|
|
|
while (!worker_terminate)
|
|
{
|
|
//
|
|
// Wait to be awoken.
|
|
//
|
|
pthread_mutex_lock(&on_after_register_access_mutex);
|
|
while (!_next_step)
|
|
{
|
|
pthread_cond_wait(
|
|
&on_after_register_access_cond,
|
|
&on_after_register_access_mutex);
|
|
}
|
|
|
|
_next_step = false;
|
|
pthread_mutex_unlock(&on_after_register_access_mutex);
|
|
|
|
switch (_initStep)
|
|
{
|
|
case InitializationStep::Uninitialized:
|
|
DEBUG("Transition to Init state Uninitialized.");
|
|
// SA should already be zero but we'll be extra sure here.
|
|
update_SA(0x0);
|
|
|
|
// Reset the controller: This may take some time as we must
|
|
// wait for the MSCP server to wrap up its current workitem.
|
|
Reset();
|
|
StateTransition(InitializationStep::Step1);
|
|
break;
|
|
|
|
case InitializationStep::Step1:
|
|
// Wait 100uS, set SA.
|
|
timeout.wait_us(500);
|
|
|
|
DEBUG("Transition to Init state S1.");
|
|
//
|
|
// S1 is set, all other bits zero. This indicates that we
|
|
// support a host-settable interrupt vector, that we do not
|
|
// implement enhanced diagnostics, and that no errors have
|
|
// occurred.
|
|
//
|
|
update_SA(0x0800);
|
|
break;
|
|
|
|
case InitializationStep::Step2:
|
|
DEBUG("Transition to Init state S2.");
|
|
timeout.wait_us(500);
|
|
// update the SA read value for step 2:
|
|
// S2 is set, unibus port type (0), SA bits 15-8 written
|
|
// by the host in step 1.
|
|
update_SA(0x1000 | ((_step1Value >> 8) & 0xff));
|
|
Interrupt();
|
|
break;
|
|
|
|
case InitializationStep::Step3:
|
|
// Wait 100uS, set SA.
|
|
timeout.wait_us(500);
|
|
|
|
DEBUG("Transition to Init state S3.");
|
|
// Update the SA read value for step 3:
|
|
// S3 set, plus SA bits 7-0 written by the host in step 1.
|
|
update_SA(0x2000 | (_step1Value & 0xff));
|
|
Interrupt();
|
|
break;
|
|
|
|
case InitializationStep::Step4:
|
|
timeout.wait_us(100);
|
|
|
|
// Clear communications area, set SA
|
|
DEBUG("Clearing comm area at 0x%x. Purge header: %d", _ringBase, _purgeInterruptEnable);
|
|
DEBUG("resp 0x%x comm 0x%x", _responseRingLength, _commandRingLength);
|
|
|
|
{
|
|
int headerSize = _purgeInterruptEnable ? 8 : 4;
|
|
for(uint32_t i = 0;
|
|
i < (_responseRingLength + _commandRingLength) * sizeof(Descriptor) + headerSize;
|
|
i += 2)
|
|
{
|
|
DMAWriteWord(_ringBase + i - headerSize, 0x0);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Set the ownership bit on all descriptors in the response ring
|
|
// to indicate that the port owns them.
|
|
//
|
|
Descriptor blankDescriptor;
|
|
blankDescriptor.Word0.Word0 = 0;
|
|
blankDescriptor.Word1.Word1 = 0;
|
|
blankDescriptor.Word1.Fields.Ownership = 1;
|
|
|
|
for(uint32_t i = 0; i < _responseRingLength; i++)
|
|
{
|
|
DMAWrite(
|
|
GetResponseDescriptorAddress(i),
|
|
sizeof(Descriptor),
|
|
reinterpret_cast<uint8_t*>(&blankDescriptor));
|
|
}
|
|
|
|
DEBUG("Transition to Init state S4, comm area initialized.");
|
|
// Update the SA read value for step 4:
|
|
// Bits 7-0 indicating our control microcode version.
|
|
update_SA(0x4063); // UDA50 ID, makes RSTS happy
|
|
Interrupt();
|
|
break;
|
|
|
|
case InitializationStep::Complete:
|
|
DEBUG("Initialization complete.");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
uda_c::on_after_register_access(
|
|
unibusdevice_register_t *device_reg,
|
|
uint8_t unibus_control
|
|
)
|
|
{
|
|
switch (device_reg->index)
|
|
{
|
|
case 0: // IP
|
|
if (UNIBUS_CONTROL_DATO == unibus_control)
|
|
{
|
|
// "When written with any value, it causes a hard initialization
|
|
// of the port and the device controller."
|
|
DEBUG("Reset due to IP read");
|
|
StateTransition(InitializationStep::Uninitialized);
|
|
}
|
|
else
|
|
{
|
|
// "When read while the port is operating, it causes the controller
|
|
// to initiate polling..."
|
|
if (_initStep == InitializationStep::Complete)
|
|
{
|
|
DEBUG("Request to start polling.");
|
|
_server->InitPolling();
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 1: // SA - write only
|
|
uint16_t value = SA_reg->active_dato_flipflops;
|
|
|
|
switch (_initStep)
|
|
{
|
|
case InitializationStep::Uninitialized:
|
|
// Should not occur, we treat it like step1 here.
|
|
DEBUG("Write to SA in Uninitialized state.");
|
|
|
|
case InitializationStep::Step1:
|
|
// Host writes the following:
|
|
// 15 13 11 10 8 7 6 0
|
|
// +-+-+-----+-----+-+-------------+
|
|
// |1|W|c rng|r rng|I| int vector |
|
|
// | |R| lng | lng |E|(address / 4)|
|
|
// +-+-+-----+-----+-+-------------+
|
|
// WR = 1 tells the port to enter diagnostic wrap
|
|
// mode (which we ignore).
|
|
//
|
|
// c rng lng is the number of slots (32 bits each)
|
|
// in the command ring, expressed as a power of two.
|
|
//
|
|
// r rng lng is as above, but for the response ring.
|
|
//
|
|
// IE=1 means the host is requesting an interrupt
|
|
// at the end of the completion of init steps 1-3.
|
|
//
|
|
// int vector determines if interrupts will be generated
|
|
// by the port. If this field is non-zero, interupts will
|
|
// be generated during normal operation and, if IE=1,
|
|
// during initialization.
|
|
_step1Value = value;
|
|
|
|
intr_vector.value = _interruptVector = ((value & 0x7f) << 2);
|
|
_interruptEnable = !!(value & 0x80);
|
|
_responseRingLength = (1 << ((value & 0x700) >> 8));
|
|
_commandRingLength = (1 << ((value & 0x3800) >> 11));
|
|
|
|
DEBUG("Step1: 0x%x", value);
|
|
DEBUG("resp ring 0x%x", _responseRingLength);
|
|
DEBUG("cmd ring 0x%x", _commandRingLength);
|
|
DEBUG("vector 0x%x", _interruptVector);
|
|
DEBUG("ie %d", _interruptEnable);
|
|
|
|
// Move to step 2.
|
|
StateTransition(InitializationStep::Step2);
|
|
break;
|
|
|
|
case InitializationStep::Step2:
|
|
// Host writes the following:
|
|
// 15 1 0
|
|
// +-----------------------------+-+
|
|
// | ringbase low |P|
|
|
// | (address) |I|
|
|
// +-----------------------------+-+
|
|
// ringbase low is the low-order portion of word
|
|
// [ringbase+0] of the communications area. This is a
|
|
// 16-bit byte address whose low-order bit is zero implicitly.
|
|
//
|
|
_ringBase = value & 0xfffe;
|
|
_purgeInterruptEnable = !!(value & 0x1);
|
|
|
|
DEBUG("Step2: rb 0x%x pi %d", _ringBase, _purgeInterruptEnable);
|
|
// Move to step 3 and interrupt as necessary.
|
|
StateTransition(InitializationStep::Step3);
|
|
break;
|
|
|
|
case InitializationStep::Step3:
|
|
// Host writes the following:
|
|
// 15 0
|
|
// +-+-----------------------------+
|
|
// |P| ringbase hi |
|
|
// |P| (address) |
|
|
// +-+-----------------------------+
|
|
// PP = 1 means the host is requesting execution of
|
|
// purge and poll tests, which we ignore because we can.
|
|
//
|
|
// ringbase hi is the high-order portion of the address
|
|
// [ringbase+0].
|
|
_ringBase |= ((value & 0x7fff) << 16);
|
|
|
|
DEBUG("Step3: ringbase 0x%x", _ringBase);
|
|
// Move to step 4 and interrupt as necessary.
|
|
StateTransition(InitializationStep::Step4);
|
|
break;
|
|
|
|
case InitializationStep::Step4:
|
|
// Host writes the following:
|
|
// 15 8 7 1 0
|
|
// +---------------+-----------+-+-+
|
|
// | reserved | burst |L|G|
|
|
// | | |F|O|
|
|
// +---------------+-----------+-+-+
|
|
// burst is one less than the max. number of longwords
|
|
// the host is willing to allow per DMA transfer.
|
|
// If zero, the port uses its default burst count.
|
|
//
|
|
// LF=1 means that the host wants a "last fail" response
|
|
// packet when initialization is complete.
|
|
//
|
|
// GO=1 means that the controller should enter its functional
|
|
// microcode as soon as initialization completes.
|
|
//
|
|
// Note that if GO=0 when initialization completes, the port
|
|
// will continue to read SA until the host forces SA bit 0 to
|
|
// make the transition 0->1.
|
|
//
|
|
// There is no explicit interrupt at the end of Step 4.
|
|
//
|
|
// TODO: For now we ignore burst settings.
|
|
// We also ignore Last Fail report requests since we aren't
|
|
// supporting onboard diagnostics and there's nothing to
|
|
// report.
|
|
//
|
|
DEBUG("Step4: 0x%x", value);
|
|
if (value & 0x1)
|
|
{
|
|
//
|
|
// GO is set, move to the Complete state. The worker will
|
|
// start the controller running.
|
|
//
|
|
StateTransition(InitializationStep::Complete);
|
|
// The VMS bootstrap expects SA to be zero IMMEDIATELY
|
|
// after completion.
|
|
update_SA(0x0);
|
|
}
|
|
else
|
|
{
|
|
// GO unset, wait until it is.
|
|
}
|
|
break;
|
|
|
|
case InitializationStep::Complete:
|
|
// "When zeroed by the host during both initialization and normal
|
|
// operation, it signals the port that the host has successfully
|
|
// completed a bus adapter purge in response to a port-initiated
|
|
// purge request.
|
|
// We don't deal with bus adapter purges, yet.
|
|
break;
|
|
}
|
|
break;
|
|
|
|
}
|
|
}
|
|
|
|
void
|
|
uda_c::update_SA(uint16_t value)
|
|
{
|
|
set_register_dati_value(
|
|
SA_reg,
|
|
value,
|
|
"update_SA");
|
|
}
|
|
|
|
Message*
|
|
uda_c::GetNextCommand(void)
|
|
{
|
|
timeout_c timer;
|
|
|
|
// Grab the next descriptor being pointed to
|
|
uint32_t descriptorAddress =
|
|
GetCommandDescriptorAddress(_commandRingPointer);
|
|
|
|
DEBUG("Next descriptor (ring ptr 0x%x) address is o%o",
|
|
_commandRingPointer,
|
|
descriptorAddress);
|
|
|
|
|
|
std::unique_ptr<Descriptor> cmdDescriptor(
|
|
reinterpret_cast<Descriptor*>(
|
|
DMARead(
|
|
descriptorAddress,
|
|
sizeof(Descriptor),
|
|
sizeof(Descriptor))));
|
|
|
|
|
|
// TODO: if NULL is returned after retry assume a bus error and handle it appropriately.
|
|
assert(cmdDescriptor != nullptr);
|
|
|
|
// Check owner bit: if set, ownership has been passed to us, in which case
|
|
// we can attempt to pull the actual message from memory.
|
|
if (cmdDescriptor->Word1.Fields.Ownership)
|
|
{
|
|
bool doInterrupt = false;
|
|
|
|
uint32_t messageAddress =
|
|
cmdDescriptor->Word0.EnvelopeLow |
|
|
(cmdDescriptor->Word1.Fields.EnvelopeHigh << 16);
|
|
|
|
DEBUG("Next message address is o%o, flag %d",
|
|
messageAddress, cmdDescriptor->Word1.Fields.Flag);
|
|
|
|
//
|
|
// Grab the message length; this is at messageAddress - 4
|
|
//
|
|
bool success = false;
|
|
uint16_t messageLength =
|
|
DMAReadWord(
|
|
messageAddress - 4,
|
|
success);
|
|
|
|
//
|
|
// TODO: sanity check message length (what is the max length we
|
|
// can expect to see?)
|
|
//
|
|
std::unique_ptr<Message> cmdMessage(
|
|
reinterpret_cast<Message*>(
|
|
DMARead(
|
|
messageAddress - 4,
|
|
messageLength + 4,
|
|
sizeof(Message))));
|
|
|
|
//
|
|
// Handle Ring Transitions (from full to not-full) and associated
|
|
// interrupts.
|
|
// If the previous entry in the ring is owned by the Port then that indicates
|
|
// that the ring was previously full (i.e. the descriptor we're now returning
|
|
// is the first free entry.)
|
|
//
|
|
if (cmdDescriptor->Word1.Fields.Flag)
|
|
{
|
|
//
|
|
// Flag is set, host is requesting a transition interrupt.
|
|
// Check the previous entry in the ring.
|
|
//
|
|
if (_commandRingLength == 1)
|
|
{
|
|
// Degenerate case: If the ring is of size 1 we always interrupt.
|
|
doInterrupt = true;
|
|
}
|
|
else
|
|
{
|
|
uint32_t previousDescriptorAddress =
|
|
GetCommandDescriptorAddress(
|
|
(_commandRingPointer - 1) % _commandRingLength);
|
|
|
|
std::unique_ptr<Descriptor> previousDescriptor(
|
|
reinterpret_cast<Descriptor*>(
|
|
DMARead(
|
|
previousDescriptorAddress,
|
|
sizeof(Descriptor),
|
|
sizeof(Descriptor))));
|
|
|
|
if (previousDescriptor->Word1.Fields.Ownership)
|
|
{
|
|
// We own the previous descriptor, so the ring was previously
|
|
// full.
|
|
doInterrupt = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Message retrieved; reset the Owner bit of the command descriptor,
|
|
// set the Flag bit (to indicate that we've processed it)
|
|
// and return a pointer to the message.
|
|
//
|
|
cmdDescriptor->Word1.Fields.Ownership = 0;
|
|
cmdDescriptor->Word1.Fields.Flag = 1;
|
|
DMAWrite(
|
|
descriptorAddress,
|
|
sizeof(Descriptor),
|
|
reinterpret_cast<uint8_t*>(cmdDescriptor.get()));
|
|
|
|
//
|
|
// Move to the next descriptor in the ring for next time.
|
|
_commandRingPointer = (_commandRingPointer + 1) % _commandRingLength;
|
|
|
|
// Post an interrupt as necessary.
|
|
if (doInterrupt)
|
|
{
|
|
//
|
|
// Set ring base - 4 to non-zero to indicate a transition.
|
|
//
|
|
DMAWriteWord(
|
|
_ringBase - 4,
|
|
0x1);
|
|
|
|
//
|
|
// Raise the interrupt
|
|
//
|
|
Interrupt();
|
|
}
|
|
|
|
return cmdMessage.release();
|
|
}
|
|
|
|
DEBUG("No descriptor found. 0x%x 0x%x", cmdDescriptor->Word0.Word0, cmdDescriptor->Word1.Word1);
|
|
|
|
// No descriptor available.
|
|
return nullptr;
|
|
}
|
|
|
|
bool
|
|
uda_c::PostResponse(
|
|
Message* response
|
|
)
|
|
{
|
|
bool res = false;
|
|
|
|
// Grab the next descriptor.
|
|
uint32_t descriptorAddress = GetResponseDescriptorAddress(_responseRingPointer);
|
|
std::unique_ptr<Descriptor> cmdDescriptor(
|
|
reinterpret_cast<Descriptor*>(
|
|
DMARead(
|
|
descriptorAddress,
|
|
sizeof(Descriptor),
|
|
sizeof(Descriptor))));
|
|
|
|
// TODO: if NULL is returned assume a bus error and handle it appropriately.
|
|
|
|
//
|
|
// Check owner bit: if set, ownership has been passed to us, in which case
|
|
// we can use this descriptor and fill in the response buffer it points to.
|
|
// If not, we return false to indicate to the caller the need to try again later.
|
|
//
|
|
if (cmdDescriptor->Word1.Fields.Ownership)
|
|
{
|
|
bool doInterrupt = false;
|
|
|
|
uint32_t messageAddress =
|
|
cmdDescriptor->Word0.EnvelopeLow |
|
|
(cmdDescriptor->Word1.Fields.EnvelopeHigh << 16);
|
|
|
|
//
|
|
// Read the buffer length the host has allocated for this response;
|
|
// if it is shorter than the buffer we're writing then we will need to
|
|
// split the response into multiple responses.
|
|
//
|
|
// Message length is at messageAddress - 4 -- this is the size of the command
|
|
// not including the two header words.
|
|
//
|
|
bool success = false;
|
|
uint16_t messageLength =
|
|
DMAReadWord(
|
|
messageAddress - 4,
|
|
success);
|
|
|
|
DEBUG("response address o%o length o%o", messageAddress, response->MessageLength);
|
|
|
|
if (reinterpret_cast<uint16_t*>(response)[0] == 0)
|
|
{
|
|
ERROR("Writing zero length response!");
|
|
}
|
|
|
|
if (messageLength < response->MessageLength)
|
|
{
|
|
// TODO: A lot of bootstraps appear to set up response buffers of length 0...
|
|
ERROR("Response buffer %x > message length %x", response->MessageLength, messageLength);
|
|
}
|
|
// else
|
|
{
|
|
//
|
|
// This will fit; simply copy the response message over the top
|
|
// of the buffer allocated on the host -- this updates the header fields
|
|
// as necessary and provides the actual response data to the host.
|
|
//
|
|
DMAWrite(
|
|
messageAddress - 4,
|
|
response->MessageLength + 4,
|
|
reinterpret_cast<uint8_t*>(response));
|
|
}
|
|
|
|
//
|
|
// Check if a transition from empty to non-empty occurred, interrupt if requested.
|
|
//
|
|
// TODO: factor this code out as it's basically identical to the code in GetNextCommand.
|
|
//
|
|
// If the previous entry in the ring is owned by the Port then that indicates
|
|
// that the ring was previously empty (i.e. the descriptor we're now returning
|
|
// is the first entry returned to the ring by the Port.)
|
|
//
|
|
if (cmdDescriptor->Word1.Fields.Flag)
|
|
{
|
|
//
|
|
// Flag is set, host is requesting a transition interrupt.
|
|
// Check the previous entry in the ring.
|
|
//
|
|
if (_responseRingLength == 1)
|
|
{
|
|
// Degenerate case: If the ring is of size 1 we always interrupt.
|
|
doInterrupt = true;
|
|
}
|
|
else
|
|
{
|
|
uint32_t previousDescriptorAddress =
|
|
GetResponseDescriptorAddress(
|
|
(_responseRingPointer - 1) % _responseRingLength);
|
|
|
|
std::unique_ptr<Descriptor> previousDescriptor(
|
|
reinterpret_cast<Descriptor*>(
|
|
DMARead(
|
|
previousDescriptorAddress,
|
|
sizeof(Descriptor),
|
|
sizeof(Descriptor))));
|
|
|
|
if (previousDescriptor->Word1.Fields.Ownership)
|
|
{
|
|
// We own the previous descriptor, so the ring was previously
|
|
// full.
|
|
doInterrupt = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Message posted; reset the Owner bit of the response descriptor,
|
|
// and set the Flag bit (to indicate that we've processed it).
|
|
//
|
|
cmdDescriptor->Word1.Fields.Ownership = 0;
|
|
cmdDescriptor->Word1.Fields.Flag = 1;
|
|
DMAWrite(
|
|
descriptorAddress,
|
|
sizeof(Descriptor),
|
|
reinterpret_cast<uint8_t*>(cmdDescriptor.get()));
|
|
|
|
// Post an interrupt as necessary.
|
|
if (doInterrupt)
|
|
{
|
|
DEBUG("Response ring no longer empty, interrupting.");
|
|
//
|
|
// Set ring base - 2 to non-zero to indicate a transition.
|
|
//
|
|
DMAWriteWord(
|
|
_ringBase - 2,
|
|
0x1);
|
|
|
|
//
|
|
// Raise the interrupt
|
|
//
|
|
Interrupt();
|
|
}
|
|
|
|
res = true;
|
|
|
|
// Move to the next descriptor in the ring for next time.
|
|
_responseRingPointer = (_responseRingPointer + 1) % _responseRingLength;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
uint32_t
|
|
uda_c::GetControllerIdentifier()
|
|
{
|
|
// TODO: make this not hardcoded
|
|
// ID 0x12345678
|
|
return 0x12345678;
|
|
}
|
|
|
|
uint16_t
|
|
uda_c::GetControllerClassModel()
|
|
{
|
|
return 0x0102; // Class 1 (mass storage), model 2 (UDA50)
|
|
}
|
|
|
|
void
|
|
uda_c::Interrupt(void)
|
|
{
|
|
if (_interruptEnable && _interruptVector != 0)
|
|
{
|
|
interrupt();
|
|
}
|
|
}
|
|
|
|
void
|
|
uda_c::on_power_changed(void)
|
|
{
|
|
storagecontroller_c::on_power_changed();
|
|
|
|
if (power_down)
|
|
{
|
|
DEBUG("Reset due to power change");
|
|
StateTransition(InitializationStep::Uninitialized);
|
|
}
|
|
}
|
|
|
|
void
|
|
uda_c::on_init_changed(void)
|
|
{
|
|
if (init_asserted)
|
|
{
|
|
DEBUG("Reset due to INIT");
|
|
StateTransition(InitializationStep::Uninitialized);
|
|
}
|
|
|
|
storagecontroller_c::on_init_changed();
|
|
}
|
|
|
|
void
|
|
uda_c::on_drive_status_changed(storagedrive_c *drive)
|
|
{
|
|
|
|
}
|
|
|
|
uint32_t
|
|
uda_c::GetCommandDescriptorAddress(
|
|
size_t index
|
|
)
|
|
{
|
|
return _ringBase + _responseRingLength * sizeof(Descriptor) +
|
|
index * sizeof(Descriptor);
|
|
}
|
|
|
|
uint32_t
|
|
uda_c::GetResponseDescriptorAddress(
|
|
size_t index
|
|
)
|
|
{
|
|
return _ringBase + index * sizeof(Descriptor);
|
|
}
|
|
|
|
/*
|
|
Write a single word to Unibus memory. Returns true
|
|
on success; if false is returned this is due to an NXM condition.
|
|
*/
|
|
bool
|
|
uda_c::DMAWriteWord(
|
|
uint32_t address,
|
|
uint16_t word)
|
|
{
|
|
return DMAWrite(
|
|
address,
|
|
sizeof(uint16_t),
|
|
reinterpret_cast<uint8_t*>(&word));
|
|
}
|
|
|
|
/*
|
|
Read a single word from Unibus memory. Returns the word read on success.
|
|
the success field indicates the success or failure of the read.
|
|
*/
|
|
uint16_t
|
|
uda_c::DMAReadWord(
|
|
uint32_t address,
|
|
bool& success)
|
|
{
|
|
uint8_t* buffer = DMARead(
|
|
address,
|
|
sizeof(uint16_t),
|
|
sizeof(uint16_t));
|
|
|
|
if (buffer)
|
|
{
|
|
success = true;
|
|
uint16_t retval = *reinterpret_cast<uint16_t *>(buffer);
|
|
delete[] buffer;
|
|
return retval;
|
|
}
|
|
else
|
|
{
|
|
success = false;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
Write data from buffer to Unibus memory. Returns true
|
|
on success; if false is returned this is due to an NXM condition.
|
|
*/
|
|
bool
|
|
uda_c::DMAWrite(
|
|
uint32_t address,
|
|
size_t lengthInBytes,
|
|
uint8_t* buffer)
|
|
{
|
|
assert ((lengthInBytes % 2) == 0);
|
|
assert (address < 0x40000);
|
|
|
|
return unibusadapter->request_DMA(
|
|
UNIBUS_CONTROL_DATO,
|
|
address,
|
|
reinterpret_cast<uint16_t*>(buffer),
|
|
lengthInBytes >> 1);
|
|
}
|
|
|
|
/*
|
|
Read data from Unibus memory into the returned buffer.
|
|
Buffer returned is nullptr if memory could not be read.
|
|
Caller is responsible for freeing the buffer when done.
|
|
*/
|
|
uint8_t*
|
|
uda_c::DMARead(
|
|
uint32_t address,
|
|
size_t lengthInBytes,
|
|
size_t bufferSize)
|
|
{
|
|
assert (bufferSize >= lengthInBytes);
|
|
assert((lengthInBytes % 2) == 0);
|
|
assert (address < 0x40000);
|
|
|
|
uint16_t* buffer = new uint16_t[bufferSize >> 1];
|
|
|
|
assert(buffer);
|
|
|
|
memset(reinterpret_cast<uint8_t*>(buffer), 0xc3, bufferSize);
|
|
|
|
bool success = unibusadapter->request_DMA(
|
|
UNIBUS_CONTROL_DATI,
|
|
address,
|
|
buffer,
|
|
lengthInBytes >> 1);
|
|
|
|
if (success)
|
|
{
|
|
return reinterpret_cast<uint8_t*>(buffer);
|
|
}
|
|
else
|
|
{
|
|
return nullptr;
|
|
}
|
|
}
|