1
0
mirror of https://github.com/livingcomputermuseum/UniBone.git synced 2026-01-28 12:49:08 +00:00
Files
livingcomputermuseum.UniBone/10.02_devices/2_src/testcontroller.cpp
Joerg Hoppe 974aeed8eb Big summer rework:
Interrupt and DMA system now handles multiple levels and multiple devices in parallel
Interrupt Register changes synced with INTR transaction
DL11 and KW11 clock pass the ZDLDI0 diagnostic.
Devices can now be enabled and disabled individually.
2019-08-02 16:45:54 +02:00

239 lines
7.5 KiB
C++

/* testcontroller.cpp: sample UNIBUS controller with selftest logic
Copyright (c) 2018-2019, Joerg Hoppe
j_hoppe@t-online.de, www.retrocmp.com
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
JOERG HOPPE BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23-jul-2019 JH added interrupt and DMA functions
12-nov-2018 JH entered beta phase
"Tester" is a device to test the event, stress INTR and DMA, and
implements 32 registers at start of IOpage
Controller registers:
------------------------
32 registers @ 0760200.. 0760276
all registers are marked as "active":
DATI and DATO are routed via events into the controller logic
UNIBUS is stopped with long SSYN
+0 = CSR: write command, read = status
other registers have no functions, are simple memory cells.
Backplane Slots: 10,11,12
DMA
---
has 2 DMA channels on different priority_slots
Used for priroity test of parallel DMA req with different slot priority
INTR
---
4 x 3 interrupts (BR4,5,6,7 at slot 10,11,12)
To test slot priority and level priroity
raise all simulataneously with CPU level = 7
-> no INTR triggered
lower CPU lvel to 6 -> 2 INTR in increasing slot priority triggered
Test #1 DMA priority test
------------------------
Write of 1 into CSR triggers test
First a long 1K DMA "A" with lower slot priority is started (DEPOSIT)
2nd a DMA "B" with higher slot priority is started
After some A-chunks, B get priorized and is completed earlier, despit started later.
Verify: At mem start, "B" values re found (B later),
at mem end "A" values are found (runs later)
*/
#include <stdio.h>
#include <stdint.h>
#include <assert.h>
//#include <iostream>
#include "utils.hpp"
#include "logger.hpp"
#include "unibus.h"
#include "unibusadapter.hpp"
#include "unibusdevice.hpp" // definition of class device_c
#include "testcontroller.hpp"
testcontroller_c::testcontroller_c() :
unibusdevice_c() // super class constructor
{
unsigned i;
// static config
name.value = "Test controller";
type_name.value = "testcontroller_c";
log_label = "tc";
// mem at 160000: RT11 crashes?
set_default_bus_params(0760200, 16, 0, 0); // base addr, priority_slot, intr-vector, intr level
//
register_count = 32; // up to 760200 .. 760276
// CSR
CSR = &(this->registers[0]);
strcpy(CSR->name, "CSR");
CSR->active_on_dati = true; // controller state change on read
CSR->active_on_dato = true; // writing changes controller state
CSR->reset_value = 0;
CSR->writable_bits = 0xffff; // all registers are memory cells
// Other registers are "active": receive "on_after_register_access"
for (i = 1; i < this->register_count; i++) {
unibusdevice_register_t *reg = &(this->registers[i]);
sprintf(reg->name, "reg%02o", i); // name is register offset: "reg07"
reg->active_on_dati = true; // controller state change on read
reg->active_on_dato = true; // writing changes controller state
reg->reset_value = 0;
reg->writable_bits = 0xffff; // all registers are memory cells
}
// create DMA requests.
for (unsigned i = 0; i < dma_channel_count; i++) {
dma_request_c *dmareq = dma_channel_request[i] = new dma_request_c(this);
// lowest index = highest slot priority
dmareq->set_priority_slot(i + 15);
dma_channel_buffer[i] = new memoryimage_c();
}
// create INTR requests.
for (unsigned slot = 1; slot < PRIORITY_SLOT_COUNT; slot++)
for (unsigned level_index = 0; level_index < 4; level_index++) {
intr_request_c *intreq = intr_request[slot][level_index] = new intr_request_c(this);
intreq->set_priority_slot(slot);
intreq->set_level(level_index+4);
// "vector" uninitialized, must be set on use!
}
// dynamic state
access_count.value = 0;
}
testcontroller_c::~testcontroller_c() {
for (unsigned i = 0; i < dma_channel_count; i++) {
delete dma_channel_request[i];
delete dma_channel_buffer[i];
}
for (unsigned slot = 0; slot < PRIORITY_SLOT_COUNT; slot++)
for (unsigned level_index = 0; level_index < 4; level_index++)
delete intr_request[slot][level_index];
}
bool testcontroller_c::on_param_changed(parameter_c *param) {
// no own parameter or "enable" logic
return unibusdevice_c::on_param_changed(param); // more actions (for enable)
}
// process DATI/DATO access to one of my "active" registers
// !! called asynchronuously by PRU, with SSYN asserted and blocking UNIBUS.
// The time between PRU event and program flow into this callback
// is determined by ARM Linux context switch
//
// UNIBUS DATO cycles let dati_flipflops "flicker" outside of this proc:
// do not read back dati_flipflops.
void testcontroller_c::on_after_register_access(unibusdevice_register_t *device_reg,
uint8_t unibus_control) {
// emulate a plain memory cell: written values can be read unchanged
if (unibus_control == UNIBUS_CONTROL_DATI) {
}
if (unibus_control == UNIBUS_CONTROL_DATO)
set_register_dati_value(device_reg, device_reg->active_dato_flipflops, __func__);
if (device_reg == CSR) {
/// CSR has been written: signal worker()
pthread_cond_signal(&on_after_register_access_cond);
// worker now executes CSR command and clears datao lfipflops
}
// this is also called for some DATIs, no action anyhow.
access_count.value++;
// DEBUG writes to disk & console ... measured delay up to 30ms !
//DEBUG(LL_DEBUG, LC_demo_regs, "[%6u] reg +%d @ %06o %s", accesscount, (int ) device_reg->index,
// device_reg->addr, unibus_c::control2text(unibus_control));
}
void testcontroller_c::on_power_changed(void) {
if (power_down) { // power-on defaults
}
}
// UNIBUS INIT: clear all registers
void testcontroller_c::on_init_changed(void) {
// write all registers to "reset-values"
if (init_asserted) {
reset_unibus_registers();
INFO("testcontroller_c::on_init()");
}
}
// background worker.
// Just print a heart beat
void testcontroller_c::worker(unsigned instance) {
UNUSED(instance); // only one
timeout_c timeout;
assert(!pthread_mutex_lock(&on_after_register_access_mutex));
// set prio to RT, but less than unibus_adapter
worker_init_realtime_priority(rt_device);
while (!workers_terminate) {
int res = pthread_cond_wait(&on_after_register_access_cond,
&on_after_register_access_mutex);
if (res != 0) {
ERROR("testcontroller_c::worker() pthread_cond_wait = %d = %s>", res,
strerror(res));
continue;
}
// execute command in CSR,
uint16_t cmd = CSR->active_dato_flipflops;
// mark as processed
CSR->active_dato_flipflops = 0;
set_register_dati_value(CSR, 0, __func__); // no status
switch (cmd) {
case 1:
test_dma_priority();
break;
}
timeout.wait_ms(1000);
cout << ".";
}
assert(!pthread_mutex_unlock(&on_after_register_access_mutex));
}
void testcontroller_c::test_dma_priority() {
}