1
0
mirror of https://github.com/mist-devel/mist-board.git synced 2026-02-05 07:34:41 +00:00

HT1080Z: use common MiST modules

This commit is contained in:
Gyorgy Szombathelyi
2020-02-18 10:34:43 +01:00
parent 6cb31e0ad5
commit 9e6cb8c1e9
12 changed files with 60 additions and 1542 deletions

View File

@@ -41,7 +41,7 @@
# ========================
set_global_assignment -name ORIGINAL_QUARTUS_VERSION 13.1
set_global_assignment -name PROJECT_CREATION_TIME_DATE "21:40:24 MAY 17, 2014"
set_global_assignment -name LAST_QUARTUS_VERSION 13.1
set_global_assignment -name LAST_QUARTUS_VERSION "13.1 SP4.26"
set_global_assignment -name PROJECT_OUTPUT_DIRECTORY output_files
set_global_assignment -name NUM_PARALLEL_PROCESSORS ALL
set_global_assignment -name SMART_RECOMPILE ON
@@ -118,7 +118,6 @@ set_location_assignment PIN_66 -to SDRAM_nWE
set_location_assignment PIN_59 -to SDRAM_nCS
set_location_assignment PIN_33 -to SDRAM_CKE
set_location_assignment PIN_43 -to SDRAM_CLK
set_location_assignment PLL_1 -to "pll:pll|altpll:altpll_component"
# Classic Timing Assignments
# ==========================
@@ -329,7 +328,6 @@ set_global_assignment -name ALLOW_POWER_UP_DONT_CARE ON
set_location_assignment PLL_1 -to clkmgr|altpll_component|auto_generated|pll1
set_global_assignment -name USE_SIGNALTAP_FILE output_files/vid.stp
set_global_assignment -name ADV_NETLIST_OPT_SYNTH_WYSIWYG_REMAP ON
set_global_assignment -name QIP_FILE mist/mist.qip
set_global_assignment -name VHDL_FILE videoctrl.vhd
set_global_assignment -name VHDL_FILE YM2149_linmix.vhd
set_global_assignment -name VERILOG_FILE sdram.v
@@ -341,4 +339,5 @@ set_global_assignment -name VHDL_FILE ht1080z.vhd
set_global_assignment -name QIP_FILE pll.qip
set_global_assignment -name SIGNALTAP_FILE output_files/vid.stp
set_global_assignment -name QIP_FILE t80/T80.qip
set_global_assignment -name QIP_FILE "../../mist-modules/mist.qip"
set_instance_assignment -name PARTITION_HIERARCHY root_partition -to | -section_id Top

View File

@@ -36,14 +36,11 @@ derive_clock_uncertainty
set_clock_groups -asynchronous -group [get_clocks {SPI_SCK}] -group [get_clocks {clkmgr|altpll_component|auto_generated|pll1|clk[*]}]
# SDRAM delays
set_input_delay -clock [get_clocks {clkmgr|altpll_component|auto_generated|pll1|clk[0]}] -max 6.4 [get_ports SDRAM_DQ[*]]
set_input_delay -clock [get_clocks {clkmgr|altpll_component|auto_generated|pll1|clk[0]}] -min 3.2 [get_ports SDRAM_DQ[*]]
set_input_delay -clock [get_clocks {clkmgr|altpll_component|auto_generated|pll1|clk[0]}] -reference_pin [get_ports {SDRAM_CLK}] -max 6.4 [get_ports SDRAM_DQ[*]]
set_input_delay -clock [get_clocks {clkmgr|altpll_component|auto_generated|pll1|clk[0]}] -reference_pin [get_ports {SDRAM_CLK}] -min 3.2 [get_ports SDRAM_DQ[*]]
set_output_delay -clock [get_clocks {clkmgr|altpll_component|auto_generated|pll1|clk[0]}] -max 1.5 [get_ports {SDRAM_D* SDRAM_A* SDRAM_BA* SDRAM_n* SDRAM_CKE}]
set_output_delay -clock [get_clocks {clkmgr|altpll_component|auto_generated|pll1|clk[0]}] -min -0.8 [get_ports {SDRAM_D* SDRAM_A* SDRAM_BA* SDRAM_n* SDRAM_CKE}]
set_output_delay -clock [get_clocks {clkmgr|altpll_component|auto_generated|pll1|clk[0]}] -max 1.5 [get_ports {SDRAM_CLK}]
set_output_delay -clock [get_clocks {clkmgr|altpll_component|auto_generated|pll1|clk[0]}] -min -0.8 [get_ports {SDRAM_CLK}]
set_output_delay -clock [get_clocks {clkmgr|altpll_component|auto_generated|pll1|clk[0]}] -reference_pin [get_ports {SDRAM_CLK}] -max 1.5 [get_ports {SDRAM_D* SDRAM_A* SDRAM_BA* SDRAM_n* SDRAM_CKE}]
set_output_delay -clock [get_clocks {clkmgr|altpll_component|auto_generated|pll1|clk[0]}] -reference_pin [get_ports {SDRAM_CLK}] -min -0.8 [get_ports {SDRAM_D* SDRAM_A* SDRAM_BA* SDRAM_n* SDRAM_CKE}]
# Some relaxed constrain to the VGA pins. The signals should arrive together, the delay is not really important.
set_output_delay -clock [get_clocks {clkmgr|altpll_component|auto_generated|pll1|clk[0]}] -max 0 [get_ports {VGA_*}]

View File

@@ -83,18 +83,18 @@ end ht1080z;
architecture Behavioral of ht1080z is
component data_io
port ( sck, ss, sdi : in std_logic;
port (
clk_sys : in std_logic;
-- download info
downloading : out std_logic;
--size : out std_logic_vector(24 downto 0);
index : out std_logic_vector(4 downto 0);
-- external ram interface
clk : in std_logic;
wr : out std_logic;
addr : out std_logic_vector(24 downto 0);
data : out std_logic_vector(7 downto 0)
SPI_SCK, SPI_SS2, SPI_DI : in std_logic;
-- download info
ioctl_download : out std_logic;
ioctl_index : out std_logic_vector(4 downto 0);
-- external ram interface
ioctl_wr : out std_logic;
ioctl_addr : out std_logic_vector(24 downto 0);
ioctl_dout : out std_logic_vector(7 downto 0)
);
end component data_io;
@@ -161,6 +161,7 @@ signal autores : std_logic;
signal scandoubler_disable : std_logic;
signal ypbpr : std_logic;
signal no_csync : std_logic;
signal buttons : std_logic_vector(1 downto 0);
signal PS2CLK : std_logic;
@@ -403,40 +404,42 @@ begin
user_io: work.mist.user_io
generic map (STRLEN => CONF_STR'length)
port map (
clk_sys => clk42m,
clk_sys => clk42m,
conf_str => to_slv(CONF_STR),
SPI_CLK => SPI_SCK ,
SPI_CLK => SPI_SCK ,
SPI_SS_IO => CONF_DATA0 ,
SPI_MISO => SPI_DO ,
SPI_MOSI => SPI_DI ,
status => status,
buttons => buttons,
status => status,
buttons => buttons,
-- ps2 interface
ps2_kbd_clk => ps2CLK,
ps2_kbd_data => ps2DAT,
ps2_mouse_clk => mps2CLK,
ps2_mouse_data => mps2DAT,
-- ps2 interface
ps2_kbd_clk => ps2CLK,
ps2_kbd_data => ps2DAT,
ps2_mouse_clk => mps2CLK,
ps2_mouse_data => mps2DAT,
joystick_0 => joy0,
joystick_1 => joy1,
joystick_0 => joy0,
joystick_1 => joy1,
scandoubler_disable => scandoubler_disable,
ypbpr => ypbpr
scandoubler_disable => scandoubler_disable,
ypbpr => ypbpr,
no_csync => no_csync
);
mist_video : work.mist.mist_video
generic map (
SD_HCNT_WIDTH => 10,
OSD_COLOR => "110")
port map (
clk_sys => clk42m,
scandoubler_disable => scandoubler_disable,
scanlines => status(2 downto 1),
ypbpr => ypbpr,
rotate => "00",
generic map (
SD_HCNT_WIDTH => 10,
OSD_COLOR => "110")
port map (
clk_sys => clk42m,
scandoubler_disable => scandoubler_disable,
scanlines => status(2 downto 1),
ypbpr => ypbpr,
no_csync => no_csync,
rotate => "00",
SPI_SCK => SPI_SCK,
SPI_SS3 => SPI_SS3,
SPI_DI => SPI_DI,
@@ -450,10 +453,10 @@ mist_video : work.mist.mist_video
VGA_R => VGA_R,
VGA_G => VGA_G,
VGA_B => VGA_B,
VGA_HS => VGA_HS,
VGA_VS => VGA_VS
VGA_HS => VGA_HS,
VGA_VS => VGA_VS
);
sdram_inst : sdram
port map( sd_data => SDRAM_DQ,
sd_addr => SDRAM_A,
@@ -485,22 +488,20 @@ mist_video : work.mist.mist_video
SDRAM_DQMH <= sdram_dqm(1);
SDRAM_DQML <= sdram_dqm(0);
dataio : data_io
port map (
sck => SPI_SCK,
ss => SPI_SS2,
sdi => SPI_DI,
clk_sys => clk42m,
SPI_SCK => SPI_SCK,
SPI_SS2 => SPI_SS2,
SPI_DI => SPI_DI,
downloading => dn_go,
--size => ioctl_size,
index => dn_idx,
ioctl_download => dn_go,
ioctl_index => dn_idx,
-- ram interface
clk => clk42m,
wr => dn_wr,
addr => dn_addr,
data => dn_data
-- ram interface
ioctl_wr => dn_wr,
ioctl_addr => dn_addr,
ioctl_dout => dn_data
);
process(clk42m)
@@ -510,7 +511,11 @@ mist_video : work.mist.mist_video
if dn_wr='1' then
dn_wr_new <= '1';
dn_data_r <= dn_data;
dn_addr_r <= dn_addr;
if dn_idx = x"00" then
dn_addr_r <= dn_addr;
else
dn_addr_r <= dn_addr + x"10000";
end if;
end if;
if clkref = '1' then
if dn_wr_new = '1' then

View File

@@ -1,71 +0,0 @@
-------------------------------------------------------------------------------
--
-- Delta-Sigma DAC
--
-- $Id: dac.vhd,v 1.1 2006/05/10 20:57:06 arnim Exp $
--
-- Refer to Xilinx Application Note XAPP154.
--
-- This DAC requires an external RC low-pass filter:
--
-- dac_o 0---XXXXX---+---0 analog audio
-- 3k3 |
-- === 4n7
-- |
-- GND
--
-------------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
entity dac is
generic (
msbi_g : integer := 7
);
port (
clk_i : in std_logic;
res_n_i : in std_logic;
dac_i : in std_logic_vector(msbi_g downto 0);
dac_o : out std_logic
);
end dac;
library ieee;
use ieee.numeric_std.all;
architecture rtl of dac is
signal DACout_q : std_logic;
signal DeltaAdder_s,
SigmaAdder_s,
SigmaLatch_q,
DeltaB_s : unsigned(msbi_g+2 downto 0);
begin
DeltaB_s(msbi_g+2 downto msbi_g+1) <= SigmaLatch_q(msbi_g+2) &
SigmaLatch_q(msbi_g+2);
DeltaB_s(msbi_g downto 0) <= (others => '0');
DeltaAdder_s <= unsigned('0' & '0' & dac_i) + DeltaB_s;
SigmaAdder_s <= DeltaAdder_s + SigmaLatch_q;
seq: process (clk_i, res_n_i)
begin
if res_n_i = '0' then
SigmaLatch_q <= to_unsigned(2**(msbi_g+1), SigmaLatch_q'length);
DACout_q <= '0';
elsif clk_i'event and clk_i = '1' then
SigmaLatch_q <= SigmaAdder_s;
DACout_q <= SigmaLatch_q(msbi_g+2);
end if;
end process seq;
dac_o <= DACout_q;
end rtl;

View File

@@ -1,121 +0,0 @@
//
// data_io.v
//
// io controller writable ram for the MiST board
// http://code.google.com/p/mist-board/
//
// ZX Spectrum adapted version
//
// Copyright (c) 2015 Till Harbaum <till@harbaum.org>
//
// This source file is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This source file is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
module data_io (
// io controller spi interface
input sck,
input ss,
input sdi,
output downloading, // signal indicating an active download
output reg [4:0] index, // menu index used to upload the file
// external ram interface
input clk,
output reg wr,
output reg [24:0] addr,
output reg [7:0] data
);
// *********************************************************************************
// spi client
// *********************************************************************************
// this core supports only the display related OSD commands
// of the minimig
reg [6:0] sbuf;
reg [7:0] cmd;
reg [4:0] cnt;
reg rclk;
localparam UIO_FILE_TX = 8'h53;
localparam UIO_FILE_TX_DAT = 8'h54;
localparam UIO_FILE_INDEX = 8'h55;
assign downloading = downloading_reg;
reg downloading_reg = 1'b0;
// data_io has its own SPI interface to the io controller
always@(posedge sck, posedge ss) begin
if(ss == 1'b1)
cnt <= 5'd0;
else begin
rclk <= 1'b0;
// don't shift in last bit. It is evaluated directly
// when writing to ram
if(cnt != 15)
sbuf <= { sbuf[5:0], sdi};
// increase target address after write
if(rclk)
addr <= addr + 1'd1;
// count 0-7 8-15 8-15 ...
if(cnt < 15) cnt <= cnt + 4'd1;
else cnt <= 4'd8;
// finished command byte
if(cnt == 7)
cmd <= {sbuf, sdi};
// prepare/end transmission
if((cmd == UIO_FILE_TX) && (cnt == 15)) begin
// prepare
if(sdi) begin
//addr <= 25'd0;
// pppppppp
// xxxx....xxxx....
if (index==5'b00000) addr <= 25'b0000000000000000000000000;
else addr <= 25'b0000000010000000000000000;
//addr <= 25'b0000000001100000000000000;
downloading_reg <= 1'b1;
end else
downloading_reg <= 1'b0;
end
// command 0x54: UIO_FILE_TX
if((cmd == UIO_FILE_TX_DAT) && (cnt == 15)) begin
data <= {sbuf, sdi};
rclk <= 1'b1;
end
// expose file (menu) index
if((cmd == UIO_FILE_INDEX) && (cnt == 15))
index <= {sbuf[3:0], sdi};
end
end
reg rclkD, rclkD2;
always@(posedge clk) begin
// bring rclk from spi clock domain into c64 clock domain
rclkD <= rclk;
rclkD2 <= rclkD;
wr <= 1'b0;
if(rclkD && !rclkD2)
wr <= 1'b1;
end
endmodule

View File

@@ -1,8 +0,0 @@
set_global_assignment -name VHDL_FILE [file join $::quartus(qip_path) mist.vhd]
set_global_assignment -name VERILOG_FILE [file join $::quartus(qip_path) user_io.v]
set_global_assignment -name VERILOG_FILE [file join $::quartus(qip_path) data_io.v]
set_global_assignment -name VERILOG_FILE [file join $::quartus(qip_path) mist_video.v]
set_global_assignment -name VERILOG_FILE [file join $::quartus(qip_path) scandoubler.v]
set_global_assignment -name VERILOG_FILE [file join $::quartus(qip_path) osd.v]
set_global_assignment -name SYSTEMVERILOG_FILE [file join $::quartus(qip_path) rgb2ypbpr.sv]
set_global_assignment -name VHDL_FILE [file join $::quartus(qip_path) dac.vhd]

View File

@@ -1,102 +0,0 @@
-- user_io
-- Interface to the MiST IO Controller
-- mist_video
-- A video pipeline for MiST. Just insert between the core video output and the VGA pins
-- Provides an optional scandoubler, a rotateable OSD and (optional) RGb->YPbPr conversion
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
package mist is
component user_io
generic(STRLEN : integer := 0 );
port (
clk_sys : in std_logic;
clk_sd : in std_logic := '0';
SPI_CLK, SPI_SS_IO, SPI_MOSI :in std_logic;
SPI_MISO : out std_logic;
conf_str : in std_logic_vector(8*STRLEN-1 downto 0);
joystick_0 : out std_logic_vector(31 downto 0);
joystick_1 : out std_logic_vector(31 downto 0);
joystick_2 : out std_logic_vector(31 downto 0);
joystick_3 : out std_logic_vector(31 downto 0);
joystick_4 : out std_logic_vector(31 downto 0);
joystick_analog_0 : out std_logic_vector(15 downto 0);
joystick_analog_1 : out std_logic_vector(15 downto 0);
status: out std_logic_vector(31 downto 0);
switches : out std_logic_vector(1 downto 0);
buttons : out std_logic_vector(1 downto 0);
scandoubler_disable : out std_logic;
ypbpr : out std_logic;
sd_lba : in std_logic_vector(31 downto 0) := (others => '0');
sd_rd : in std_logic := '0';
sd_wr : in std_logic := '0';
sd_ack : out std_logic;
sd_ack_conf : out std_logic;
sd_conf : in std_logic := '0';
sd_sdhc : in std_logic := '1';
img_size : out std_logic_vector(31 downto 0);
img_mounted : out std_logic;
sd_buff_addr : out std_logic_vector(8 downto 0);
sd_dout : out std_logic_vector(7 downto 0);
sd_din : in std_logic_vector(7 downto 0) := (others => '0');
sd_dout_strobe : out std_logic;
sd_din_strobe : out std_logic;
ps2_kbd_clk : out std_logic;
ps2_kbd_data : out std_logic;
key_pressed : out std_logic;
key_extended : out std_logic;
key_code : out std_logic_vector(7 downto 0);
key_strobe : out std_logic;
ps2_mouse_clk : out std_logic;
ps2_mouse_data : out std_logic;
mouse_x : out signed(8 downto 0);
mouse_y : out signed(8 downto 0);
mouse_flags : out std_logic_vector(7 downto 0); -- YOvfl, XOvfl, dy8, dx8, 1, mbtn, rbtn, lbtn
mouse_strobe : out std_logic
);
end component user_io;
component mist_video
generic (
OSD_COLOR : std_logic_vector(2 downto 0) := "110";
OSD_X_OFFSET : std_logic_vector(9 downto 0) := (others => '0');
OSD_Y_OFFSET : std_logic_vector(9 downto 0) := (others => '0');
SD_HCNT_WIDTH: integer := 9;
COLOR_DEPTH : integer := 6
);
port (
clk_sys : in std_logic;
SPI_SCK : in std_logic;
SPI_SS3 : in std_logic;
SPI_DI : in std_logic;
scanlines : in std_logic_vector(1 downto 0);
ce_divider : in std_logic := '0';
scandoubler_disable : in std_logic;
ypbpr : in std_logic;
rotate : in std_logic_vector(1 downto 0);
HSync : in std_logic;
VSync : in std_logic;
R : in std_logic_vector(COLOR_DEPTH-1 downto 0);
G : in std_logic_vector(COLOR_DEPTH-1 downto 0);
B : in std_logic_vector(COLOR_DEPTH-1 downto 0);
VGA_HS : out std_logic;
VGA_VS : out std_logic;
VGA_R : out std_logic_vector(5 downto 0);
VGA_G : out std_logic_vector(5 downto 0);
VGA_B : out std_logic_vector(5 downto 0)
);
end component mist_video;
end package;

View File

@@ -1,143 +0,0 @@
// A video pipeline for MiST. Just insert between the core video output and the VGA pins
// Provides an optional scandoubler, a rotateable OSD and (optional) RGb->YPbPr conversion
module mist_video
(
// master clock
// it should be 4x (or 2x) pixel clock for the scandoubler
input clk_sys,
// OSD SPI interface
input SPI_SCK,
input SPI_SS3,
input SPI_DI,
// scanlines (00-none 01-25% 10-50% 11-75%)
input [1:0] scanlines,
// non-scandoubled pixel clock divider 0 - clk_sys/4, 1 - clk_sys/2
input ce_divider,
// 0 = HVSync 31KHz, 1 = CSync 15KHz
input scandoubler_disable,
// YPbPr always uses composite sync
input ypbpr,
// Rotate OSD [0] - rotate [1] - left or right
input [1:0] rotate,
// video in
input [COLOR_DEPTH-1:0] R,
input [COLOR_DEPTH-1:0] G,
input [COLOR_DEPTH-1:0] B,
input HSync,
input VSync,
// MiST video output signals
output [5:0] VGA_R,
output [5:0] VGA_G,
output [5:0] VGA_B,
output VGA_VS,
output VGA_HS
);
parameter OSD_COLOR = 3'd4;
parameter OSD_X_OFFSET = 10'd0;
parameter OSD_Y_OFFSET = 10'd0;
parameter SD_HCNT_WIDTH = 9;
parameter COLOR_DEPTH = 6; // 1-6
wire [5:0] SD_R_O;
wire [5:0] SD_G_O;
wire [5:0] SD_B_O;
wire SD_HS_O;
wire SD_VS_O;
reg [5:0] R_full;
reg [5:0] G_full;
reg [5:0] B_full;
always @(*) begin
if (COLOR_DEPTH == 6) begin
R_full = R;
G_full = G;
B_full = B;
end else if (COLOR_DEPTH == 2) begin
R_full = {3{R}};
G_full = {3{G}};
B_full = {3{B}};
end else if (COLOR_DEPTH == 1) begin
R_full = {6{R}};
G_full = {6{G}};
B_full = {6{B}};
end else begin
R_full = { R, R[COLOR_DEPTH-1 -:(6-COLOR_DEPTH)] };
G_full = { G, G[COLOR_DEPTH-1 -:(6-COLOR_DEPTH)] };
B_full = { B, B[COLOR_DEPTH-1 -:(6-COLOR_DEPTH)] };
end
end
scandoubler #(SD_HCNT_WIDTH, COLOR_DEPTH) scandoubler
(
.clk_sys ( clk_sys ),
.scanlines ( scanlines ),
.ce_divider ( ce_divider ),
.hs_in ( HSync ),
.vs_in ( VSync ),
.r_in ( R ),
.g_in ( G ),
.b_in ( B ),
.hs_out ( SD_HS_O ),
.vs_out ( SD_VS_O ),
.r_out ( SD_R_O ),
.g_out ( SD_G_O ),
.b_out ( SD_B_O )
);
wire [5:0] osd_r_o;
wire [5:0] osd_g_o;
wire [5:0] osd_b_o;
osd #(OSD_X_OFFSET, OSD_Y_OFFSET, OSD_COLOR) osd
(
.clk_sys ( clk_sys ),
.rotate ( rotate ),
.SPI_DI ( SPI_DI ),
.SPI_SCK ( SPI_SCK ),
.SPI_SS3 ( SPI_SS3 ),
.R_in ( scandoubler_disable ? R_full : SD_R_O ),
.G_in ( scandoubler_disable ? G_full : SD_G_O ),
.B_in ( scandoubler_disable ? B_full : SD_B_O ),
.HSync ( scandoubler_disable ? HSync : SD_HS_O ),
.VSync ( scandoubler_disable ? VSync : SD_VS_O ),
.R_out ( osd_r_o ),
.G_out ( osd_g_o ),
.B_out ( osd_b_o )
);
wire [5:0] y, pb, pr;
rgb2ypbpr rgb2ypbpr
(
.red ( osd_r_o ),
.green ( osd_g_o ),
.blue ( osd_b_o ),
.y ( y ),
.pb ( pb ),
.pr ( pr )
);
assign VGA_R = ypbpr?pr:osd_r_o;
assign VGA_G = ypbpr? y:osd_g_o;
assign VGA_B = ypbpr?pb:osd_b_o;
wire cs = scandoubler_disable ? ~(HSync ^ VSync) : ~(SD_HS_O ^ SD_VS_O);
wire hs = scandoubler_disable ? HSync : SD_HS_O;
wire vs = scandoubler_disable ? VSync : SD_VS_O;
// a minimig vga->scart cable expects a composite sync signal on the VGA_HS output.
// and VCC on VGA_VS (to switch into rgb mode)
assign VGA_HS = (scandoubler_disable || ypbpr)? cs : hs;
assign VGA_VS = (scandoubler_disable || ypbpr)? 1'b1 : vs;
endmodule

View File

@@ -1,195 +0,0 @@
// A simple OSD implementation. Can be hooked up between a cores
// VGA output and the physical VGA pins
module osd (
// OSDs pixel clock, should be synchronous to cores pixel clock to
// avoid jitter.
input clk_sys,
// SPI interface
input SPI_SCK,
input SPI_SS3,
input SPI_DI,
input [1:0] rotate, //[0] - rotate [1] - left or right
// VGA signals coming from core
input [5:0] R_in,
input [5:0] G_in,
input [5:0] B_in,
input HSync,
input VSync,
// VGA signals going to video connector
output [5:0] R_out,
output [5:0] G_out,
output [5:0] B_out
);
parameter OSD_X_OFFSET = 10'd0;
parameter OSD_Y_OFFSET = 10'd0;
parameter OSD_COLOR = 3'd0;
localparam OSD_WIDTH = 10'd256;
localparam OSD_HEIGHT = 10'd128;
// *********************************************************************************
// spi client
// *********************************************************************************
// this core supports only the display related OSD commands
// of the minimig
reg osd_enable;
(* ramstyle = "no_rw_check" *) reg [7:0] osd_buffer[2047:0]; // the OSD buffer itself
// the OSD has its own SPI interface to the io controller
always@(posedge SPI_SCK, posedge SPI_SS3) begin
reg [4:0] cnt;
reg [10:0] bcnt;
reg [7:0] sbuf;
reg [7:0] cmd;
if(SPI_SS3) begin
cnt <= 0;
bcnt <= 0;
end else begin
sbuf <= {sbuf[6:0], SPI_DI};
// 0:7 is command, rest payload
if(cnt < 15) cnt <= cnt + 1'd1;
else cnt <= 8;
if(cnt == 7) begin
cmd <= {sbuf[6:0], SPI_DI};
// lower three command bits are line address
bcnt <= {sbuf[1:0], SPI_DI, 8'h00};
// command 0x40: OSDCMDENABLE, OSDCMDDISABLE
if(sbuf[6:3] == 4'b0100) osd_enable <= SPI_DI;
end
// command 0x20: OSDCMDWRITE
if((cmd[7:3] == 5'b00100) && (cnt == 15)) begin
osd_buffer[bcnt] <= {sbuf[6:0], SPI_DI};
bcnt <= bcnt + 1'd1;
end
end
end
// *********************************************************************************
// video timing and sync polarity anaylsis
// *********************************************************************************
// horizontal counter
reg [9:0] h_cnt;
reg [9:0] hs_low, hs_high;
wire hs_pol = hs_high < hs_low;
wire [9:0] dsp_width = hs_pol ? hs_low : hs_high;
// vertical counter
reg [9:0] v_cnt;
reg [9:0] vs_low, vs_high;
wire vs_pol = vs_high < vs_low;
wire [9:0] dsp_height = vs_pol ? vs_low : vs_high;
wire doublescan = (dsp_height>350);
reg ce_pix;
always @(negedge clk_sys) begin
integer cnt = 0;
integer pixsz, pixcnt;
reg hs;
cnt <= cnt + 1;
hs <= HSync;
pixcnt <= pixcnt + 1;
if(pixcnt == pixsz) pixcnt <= 0;
ce_pix <= !pixcnt;
if(hs && ~HSync) begin
cnt <= 0;
pixsz <= (cnt >> 9) - 1;
pixcnt <= 0;
ce_pix <= 1;
end
end
always @(posedge clk_sys) begin
reg hsD, hsD2;
reg vsD, vsD2;
if(ce_pix) begin
// bring hsync into local clock domain
hsD <= HSync;
hsD2 <= hsD;
// falling edge of HSync
if(!hsD && hsD2) begin
h_cnt <= 0;
hs_high <= h_cnt;
end
// rising edge of HSync
else if(hsD && !hsD2) begin
h_cnt <= 0;
hs_low <= h_cnt;
v_cnt <= v_cnt + 1'd1;
end else begin
h_cnt <= h_cnt + 1'd1;
end
vsD <= VSync;
vsD2 <= vsD;
// falling edge of VSync
if(!vsD && vsD2) begin
v_cnt <= 0;
vs_high <= v_cnt;
end
// rising edge of VSync
else if(vsD && !vsD2) begin
v_cnt <= 0;
vs_low <= v_cnt;
end
end
end
// area in which OSD is being displayed
wire [9:0] h_osd_start = ((dsp_width - OSD_WIDTH)>> 1) + OSD_X_OFFSET;
wire [9:0] h_osd_end = h_osd_start + OSD_WIDTH;
wire [9:0] v_osd_start = ((dsp_height- (OSD_HEIGHT<<doublescan))>> 1) + OSD_Y_OFFSET;
wire [9:0] v_osd_end = v_osd_start + (OSD_HEIGHT<<doublescan);
wire [9:0] osd_hcnt = h_cnt - h_osd_start;
wire [9:0] osd_vcnt = v_cnt - v_osd_start;
wire [9:0] osd_hcnt_next = osd_hcnt + 2'd1; // one pixel offset for osd pixel
wire [9:0] osd_hcnt_next2 = osd_hcnt + 2'd2; // two pixel offset for osd byte address register
reg osd_de;
reg [10:0] osd_buffer_addr;
wire [7:0] osd_byte = osd_buffer[osd_buffer_addr];
reg osd_pixel;
always @(posedge clk_sys) begin
if(ce_pix) begin
osd_buffer_addr <= rotate[0] ? {rotate[1] ? osd_hcnt_next2[7:5] : ~osd_hcnt_next2[7:5],
rotate[1] ? (doublescan ? ~osd_vcnt[7:0] : ~{osd_vcnt[6:0], 1'b0}) :
(doublescan ? osd_vcnt[7:0] : {osd_vcnt[6:0], 1'b0})} :
{doublescan ? osd_vcnt[7:5] : osd_vcnt[6:4], osd_hcnt_next2[7:0]};
osd_pixel <= rotate[0] ? osd_byte[rotate[1] ? osd_hcnt_next[4:2] : ~osd_hcnt_next[4:2]] :
osd_byte[doublescan ? osd_vcnt[4:2] : osd_vcnt[3:1]];
osd_de <= osd_enable &&
(HSync != hs_pol) && ((h_cnt + 1'd1) >= h_osd_start) && ((h_cnt + 1'd1) < h_osd_end) &&
(VSync != vs_pol) && (v_cnt >= v_osd_start) && (v_cnt < v_osd_end);
end
end
assign R_out = !osd_de ? R_in : {osd_pixel, osd_pixel, OSD_COLOR[2], R_in[5:3]};
assign G_out = !osd_de ? G_in : {osd_pixel, osd_pixel, OSD_COLOR[1], G_in[5:3]};
assign B_out = !osd_de ? B_in : {osd_pixel, osd_pixel, OSD_COLOR[0], B_in[5:3]};
endmodule

View File

@@ -1,55 +0,0 @@
module rgb2ypbpr (
input [5:0] red,
input [5:0] green,
input [5:0] blue,
output [5:0] y,
output [5:0] pb,
output [5:0] pr
);
wire [5:0] yuv_full[225] = '{
6'd0, 6'd0, 6'd0, 6'd0, 6'd1, 6'd1, 6'd1, 6'd1,
6'd2, 6'd2, 6'd2, 6'd3, 6'd3, 6'd3, 6'd3, 6'd4,
6'd4, 6'd4, 6'd5, 6'd5, 6'd5, 6'd5, 6'd6, 6'd6,
6'd6, 6'd7, 6'd7, 6'd7, 6'd7, 6'd8, 6'd8, 6'd8,
6'd9, 6'd9, 6'd9, 6'd9, 6'd10, 6'd10, 6'd10, 6'd11,
6'd11, 6'd11, 6'd11, 6'd12, 6'd12, 6'd12, 6'd13, 6'd13,
6'd13, 6'd13, 6'd14, 6'd14, 6'd14, 6'd15, 6'd15, 6'd15,
6'd15, 6'd16, 6'd16, 6'd16, 6'd17, 6'd17, 6'd17, 6'd17,
6'd18, 6'd18, 6'd18, 6'd19, 6'd19, 6'd19, 6'd19, 6'd20,
6'd20, 6'd20, 6'd21, 6'd21, 6'd21, 6'd21, 6'd22, 6'd22,
6'd22, 6'd23, 6'd23, 6'd23, 6'd23, 6'd24, 6'd24, 6'd24,
6'd25, 6'd25, 6'd25, 6'd25, 6'd26, 6'd26, 6'd26, 6'd27,
6'd27, 6'd27, 6'd27, 6'd28, 6'd28, 6'd28, 6'd29, 6'd29,
6'd29, 6'd29, 6'd30, 6'd30, 6'd30, 6'd31, 6'd31, 6'd31,
6'd31, 6'd32, 6'd32, 6'd32, 6'd33, 6'd33, 6'd33, 6'd33,
6'd34, 6'd34, 6'd34, 6'd35, 6'd35, 6'd35, 6'd35, 6'd36,
6'd36, 6'd36, 6'd36, 6'd37, 6'd37, 6'd37, 6'd38, 6'd38,
6'd38, 6'd38, 6'd39, 6'd39, 6'd39, 6'd40, 6'd40, 6'd40,
6'd40, 6'd41, 6'd41, 6'd41, 6'd42, 6'd42, 6'd42, 6'd42,
6'd43, 6'd43, 6'd43, 6'd44, 6'd44, 6'd44, 6'd44, 6'd45,
6'd45, 6'd45, 6'd46, 6'd46, 6'd46, 6'd46, 6'd47, 6'd47,
6'd47, 6'd48, 6'd48, 6'd48, 6'd48, 6'd49, 6'd49, 6'd49,
6'd50, 6'd50, 6'd50, 6'd50, 6'd51, 6'd51, 6'd51, 6'd52,
6'd52, 6'd52, 6'd52, 6'd53, 6'd53, 6'd53, 6'd54, 6'd54,
6'd54, 6'd54, 6'd55, 6'd55, 6'd55, 6'd56, 6'd56, 6'd56,
6'd56, 6'd57, 6'd57, 6'd57, 6'd58, 6'd58, 6'd58, 6'd58,
6'd59, 6'd59, 6'd59, 6'd60, 6'd60, 6'd60, 6'd60, 6'd61,
6'd61, 6'd61, 6'd62, 6'd62, 6'd62, 6'd62, 6'd63, 6'd63,
6'd63
};
wire [18:0] y_8 = 19'd04096 + ({red, 8'd0} + {red, 3'd0}) + ({green, 9'd0} + {green, 2'd0}) + ({blue, 6'd0} + {blue, 5'd0} + {blue, 2'd0});
wire [18:0] pb_8 = 19'd32768 - ({red, 7'd0} + {red, 4'd0} + {red, 3'd0}) - ({green, 8'd0} + {green, 5'd0} + {green, 3'd0}) + ({blue, 8'd0} + {blue, 7'd0} + {blue, 6'd0});
wire [18:0] pr_8 = 19'd32768 + ({red, 8'd0} + {red, 7'd0} + {red, 6'd0}) - ({green, 8'd0} + {green, 6'd0} + {green, 5'd0} + {green, 4'd0} + {green, 3'd0}) - ({blue, 6'd0} + {blue , 3'd0});
wire [7:0] y_i = ( y_8[17:8] < 16) ? 8'd16 : ( y_8[17:8] > 235) ? 8'd235 : y_8[15:8];
wire [7:0] pb_i = (pb_8[17:8] < 16) ? 8'd16 : (pb_8[17:8] > 240) ? 8'd240 : pb_8[15:8];
wire [7:0] pr_i = (pr_8[17:8] < 16) ? 8'd16 : (pr_8[17:8] > 240) ? 8'd240 : pr_8[15:8];
assign pr = yuv_full[pr_i - 8'd16];
assign y = yuv_full[y_i - 8'd16];
assign pb = yuv_full[pb_i - 8'd16];
endmodule

View File

@@ -1,216 +0,0 @@
//
// scandoubler.v
//
// Copyright (c) 2015 Till Harbaum <till@harbaum.org>
//
// This source file is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This source file is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// TODO: Delay vsync one line
module scandoubler
(
// system interface
input clk_sys,
// scanlines (00-none 01-25% 10-50% 11-75%)
input [1:0] scanlines,
input ce_divider, // 0 - 4, 1 - 2
// shifter video interface
input hs_in,
input vs_in,
input [COLOR_DEPTH-1:0] r_in,
input [COLOR_DEPTH-1:0] g_in,
input [COLOR_DEPTH-1:0] b_in,
// output interface
output reg hs_out,
output reg vs_out,
output reg [5:0] r_out,
output reg [5:0] g_out,
output reg [5:0] b_out
);
parameter HCNT_WIDTH = 9;
parameter COLOR_DEPTH = 6;
// try to detect changes in input signal and lock input clock gate
// it
reg [1:0] i_div;
reg ce_x1, ce_x2;
always @(*) begin
if (!ce_divider) begin
ce_x1 = (i_div == 2'b01);
ce_x2 = i_div[0];
end else begin
ce_x1 = i_div[0];
ce_x2 = 1'b1;
end
end
always @(posedge clk_sys) begin
reg last_hs_in;
last_hs_in <= hs_in;
if(last_hs_in & !hs_in) begin
i_div <= 2'b00;
end else begin
i_div <= i_div + 2'd1;
end
end
// --------------------- create output signals -----------------
// latch everything once more to make it glitch free and apply scanline effect
reg scanline;
reg [5:0] r;
reg [5:0] g;
reg [5:0] b;
always @(*) begin
if (COLOR_DEPTH == 6) begin
b = sd_out[5:0];
g = sd_out[11:6];
r = sd_out[17:12];
end else if (COLOR_DEPTH == 2) begin
b = {3{sd_out[1:0]}};
g = {3{sd_out[3:2]}};
r = {3{sd_out[5:4]}};
end else if (COLOR_DEPTH == 1) begin
b = {6{sd_out[0]}};
g = {6{sd_out[1]}};
r = {6{sd_out[2]}};
end else begin
b = { sd_out[COLOR_DEPTH-1:0], sd_out[COLOR_DEPTH-1 -:(6-COLOR_DEPTH)] };
g = { sd_out[COLOR_DEPTH*2-1:COLOR_DEPTH], sd_out[COLOR_DEPTH*2-1 -:(6-COLOR_DEPTH)] };
r = { sd_out[COLOR_DEPTH*3-1:COLOR_DEPTH*2], sd_out[COLOR_DEPTH*3-1 -:(6-COLOR_DEPTH)] };
end
end
always @(posedge clk_sys) begin
if(ce_x2) begin
hs_out <= hs_sd;
vs_out <= vs_in;
// reset scanlines at every new screen
if(vs_out != vs_in) scanline <= 0;
// toggle scanlines at begin of every hsync
if(hs_out && !hs_sd) scanline <= !scanline;
// if no scanlines or not a scanline
if(!scanline || !scanlines) begin
r_out <= r;
g_out <= g;
b_out <= b;
end else begin
case(scanlines)
1: begin // reduce 25% = 1/2 + 1/4
r_out <= {1'b0, r[5:1]} + {2'b00, r[5:2] };
g_out <= {1'b0, g[5:1]} + {2'b00, g[5:2] };
b_out <= {1'b0, b[5:1]} + {2'b00, b[5:2] };
end
2: begin // reduce 50% = 1/2
r_out <= {1'b0, r[5:1]};
g_out <= {1'b0, g[5:1]};
b_out <= {1'b0, b[5:1]};
end
3: begin // reduce 75% = 1/4
r_out <= {2'b00, r[5:2]};
g_out <= {2'b00, g[5:2]};
b_out <= {2'b00, b[5:2]};
end
endcase
end
end
end
// scan doubler output register
reg [COLOR_DEPTH*3-1:0] sd_out;
// ==================================================================
// ======================== the line buffers ========================
// ==================================================================
// 2 lines of 2**HCNT_WIDTH pixels 3*COLOR_DEPTH bit RGB
(* ramstyle = "no_rw_check" *) reg [COLOR_DEPTH*3-1:0] sd_buffer[2*2**HCNT_WIDTH];
// use alternating sd_buffers when storing/reading data
reg line_toggle;
// total hsync time (in 16MHz cycles), hs_total reaches 1024
reg [HCNT_WIDTH-1:0] hs_max;
reg [HCNT_WIDTH-1:0] hs_rise;
reg [HCNT_WIDTH-1:0] hcnt;
always @(posedge clk_sys) begin
reg hsD, vsD;
if(ce_x1) begin
hsD <= hs_in;
// falling edge of hsync indicates start of line
if(hsD && !hs_in) begin
hs_max <= hcnt;
hcnt <= 0;
end else begin
hcnt <= hcnt + 1'd1;
end
// save position of rising edge
if(!hsD && hs_in) hs_rise <= hcnt;
vsD <= vs_in;
if(vsD != vs_in) line_toggle <= 0;
// begin of incoming hsync
if(hsD && !hs_in) line_toggle <= !line_toggle;
sd_buffer[{line_toggle, hcnt}] <= {r_in, g_in, b_in};
end
end
// ==================================================================
// ==================== output timing generation ====================
// ==================================================================
reg [HCNT_WIDTH-1:0] sd_hcnt;
reg hs_sd;
// timing generation runs 32 MHz (twice the input signal analysis speed)
always @(posedge clk_sys) begin
reg hsD;
if(ce_x2) begin
hsD <= hs_in;
// output counter synchronous to input and at twice the rate
sd_hcnt <= sd_hcnt + 1'd1;
if(hsD && !hs_in) sd_hcnt <= hs_max;
if(sd_hcnt == hs_max) sd_hcnt <= 0;
// replicate horizontal sync at twice the speed
if(sd_hcnt == hs_max) hs_sd <= 0;
if(sd_hcnt == hs_rise) hs_sd <= 1;
// read data from line sd_buffer
sd_out <= sd_buffer[{~line_toggle, sd_hcnt}];
end
end
endmodule

View File

@@ -1,572 +0,0 @@
//
// user_io.v
//
// user_io for the MiST board
// http://code.google.com/p/mist-board/
//
// Copyright (c) 2014 Till Harbaum <till@harbaum.org>
//
// This source file is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This source file is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// parameter STRLEN and the actual length of conf_str have to match
module user_io #(parameter STRLEN=0, parameter PS2DIV=100) (
input [(8*STRLEN)-1:0] conf_str,
input clk_sys, // clock for system-related messages (kbd, joy, etc...)
input clk_sd, // clock for SD-card related messages
input SPI_CLK,
input SPI_SS_IO,
output reg SPI_MISO,
input SPI_MOSI,
output reg [31:0] joystick_0,
output reg [31:0] joystick_1,
output reg [31:0] joystick_2,
output reg [31:0] joystick_3,
output reg [31:0] joystick_4,
output reg [15:0] joystick_analog_0,
output reg [15:0] joystick_analog_1,
output [1:0] buttons,
output [1:0] switches,
output scandoubler_disable,
output ypbpr,
output reg [31:0] status,
// connection to sd card emulation
input [31:0] sd_lba,
input sd_rd,
input sd_wr,
output reg sd_ack,
output reg sd_ack_conf,
input sd_conf,
input sd_sdhc,
output reg [7:0] sd_dout, // valid on rising edge of sd_dout_strobe
output reg sd_dout_strobe,
input [7:0] sd_din,
output reg sd_din_strobe,
output reg [8:0] sd_buff_addr,
output reg img_mounted, //rising edge if a new image is mounted
output reg [31:0] img_size, // size of image in bytes
// ps2 keyboard/mouse emulation
output ps2_kbd_clk,
output reg ps2_kbd_data,
output ps2_mouse_clk,
output reg ps2_mouse_data,
// keyboard data
output reg key_pressed, // 1-make (pressed), 0-break (released)
output reg key_extended, // extended code
output reg [7:0] key_code, // key scan code
output reg key_strobe, // key data valid
// mouse data
output reg [8:0] mouse_x,
output reg [8:0] mouse_y,
output reg [7:0] mouse_flags, // YOvfl, XOvfl, dy8, dx8, 1, mbtn, rbtn, lbtn
output reg mouse_strobe, // mouse data is valid on mouse_strobe
// serial com port
input [7:0] serial_data,
input serial_strobe
);
reg [6:0] sbuf;
reg [7:0] cmd;
reg [2:0] bit_cnt; // counts bits 0-7 0-7 ...
reg [9:0] byte_cnt; // counts bytes
reg [7:0] but_sw;
reg [2:0] stick_idx;
assign buttons = but_sw[1:0];
assign switches = but_sw[3:2];
assign scandoubler_disable = but_sw[4];
assign ypbpr = but_sw[5];
// this variant of user_io is for 8 bit cores (type == a4) only
wire [7:0] core_type = 8'ha4;
// command byte read by the io controller
wire [7:0] sd_cmd = { 4'h5, sd_conf, sd_sdhc, sd_wr, sd_rd };
wire spi_sck = SPI_CLK;
// ---------------- PS2 ---------------------
// 8 byte fifos to store ps2 bytes
localparam PS2_FIFO_BITS = 3;
reg ps2_clk;
always @(negedge clk_sys) begin
integer cnt;
cnt <= cnt + 1'd1;
if(cnt == PS2DIV) begin
ps2_clk <= ~ps2_clk;
cnt <= 0;
end
end
// keyboard
reg [7:0] ps2_kbd_fifo [(2**PS2_FIFO_BITS)-1:0];
reg [PS2_FIFO_BITS-1:0] ps2_kbd_wptr;
reg [PS2_FIFO_BITS-1:0] ps2_kbd_rptr;
// ps2 transmitter state machine
reg [3:0] ps2_kbd_tx_state;
reg [7:0] ps2_kbd_tx_byte;
reg ps2_kbd_parity;
assign ps2_kbd_clk = ps2_clk || (ps2_kbd_tx_state == 0);
// ps2 transmitter
// Takes a byte from the FIFO and sends it in a ps2 compliant serial format.
reg ps2_kbd_r_inc;
always@(posedge clk_sys) begin
reg ps2_clkD;
ps2_clkD <= ps2_clk;
if (~ps2_clkD & ps2_clk) begin
ps2_kbd_r_inc <= 1'b0;
if(ps2_kbd_r_inc)
ps2_kbd_rptr <= ps2_kbd_rptr + 1'd1;
// transmitter is idle?
if(ps2_kbd_tx_state == 0) begin
// data in fifo present?
if(ps2_kbd_wptr != ps2_kbd_rptr) begin
// load tx register from fifo
ps2_kbd_tx_byte <= ps2_kbd_fifo[ps2_kbd_rptr];
ps2_kbd_r_inc <= 1'b1;
// reset parity
ps2_kbd_parity <= 1'b1;
// start transmitter
ps2_kbd_tx_state <= 4'd1;
// put start bit on data line
ps2_kbd_data <= 1'b0; // start bit is 0
end
end else begin
// transmission of 8 data bits
if((ps2_kbd_tx_state >= 1)&&(ps2_kbd_tx_state < 9)) begin
ps2_kbd_data <= ps2_kbd_tx_byte[0]; // data bits
ps2_kbd_tx_byte[6:0] <= ps2_kbd_tx_byte[7:1]; // shift down
if(ps2_kbd_tx_byte[0])
ps2_kbd_parity <= !ps2_kbd_parity;
end
// transmission of parity
if(ps2_kbd_tx_state == 9)
ps2_kbd_data <= ps2_kbd_parity;
// transmission of stop bit
if(ps2_kbd_tx_state == 10)
ps2_kbd_data <= 1'b1; // stop bit is 1
// advance state machine
if(ps2_kbd_tx_state < 11)
ps2_kbd_tx_state <= ps2_kbd_tx_state + 4'd1;
else
ps2_kbd_tx_state <= 4'd0;
end
end
end
// mouse
reg [7:0] ps2_mouse_fifo [(2**PS2_FIFO_BITS)-1:0];
reg [PS2_FIFO_BITS-1:0] ps2_mouse_wptr;
reg [PS2_FIFO_BITS-1:0] ps2_mouse_rptr;
// ps2 transmitter state machine
reg [3:0] ps2_mouse_tx_state;
reg [7:0] ps2_mouse_tx_byte;
reg ps2_mouse_parity;
assign ps2_mouse_clk = ps2_clk || (ps2_mouse_tx_state == 0);
// ps2 transmitter
// Takes a byte from the FIFO and sends it in a ps2 compliant serial format.
reg ps2_mouse_r_inc;
always@(posedge clk_sys) begin
reg ps2_clkD;
ps2_clkD <= ps2_clk;
if (~ps2_clkD & ps2_clk) begin
ps2_mouse_r_inc <= 1'b0;
if(ps2_mouse_r_inc)
ps2_mouse_rptr <= ps2_mouse_rptr + 1'd1;
// transmitter is idle?
if(ps2_mouse_tx_state == 0) begin
// data in fifo present?
if(ps2_mouse_wptr != ps2_mouse_rptr) begin
// load tx register from fifo
ps2_mouse_tx_byte <= ps2_mouse_fifo[ps2_mouse_rptr];
ps2_mouse_r_inc <= 1'b1;
// reset parity
ps2_mouse_parity <= 1'b1;
// start transmitter
ps2_mouse_tx_state <= 4'd1;
// put start bit on data line
ps2_mouse_data <= 1'b0; // start bit is 0
end
end else begin
// transmission of 8 data bits
if((ps2_mouse_tx_state >= 1)&&(ps2_mouse_tx_state < 9)) begin
ps2_mouse_data <= ps2_mouse_tx_byte[0]; // data bits
ps2_mouse_tx_byte[6:0] <= ps2_mouse_tx_byte[7:1]; // shift down
if(ps2_mouse_tx_byte[0])
ps2_mouse_parity <= !ps2_mouse_parity;
end
// transmission of parity
if(ps2_mouse_tx_state == 9)
ps2_mouse_data <= ps2_mouse_parity;
// transmission of stop bit
if(ps2_mouse_tx_state == 10)
ps2_mouse_data <= 1'b1; // stop bit is 1
// advance state machine
if(ps2_mouse_tx_state < 11)
ps2_mouse_tx_state <= ps2_mouse_tx_state + 4'd1;
else
ps2_mouse_tx_state <= 4'd0;
end
end
end
// fifo to receive serial data from core to be forwarded to io controller
// 16 byte fifo to store serial bytes
localparam SERIAL_OUT_FIFO_BITS = 6;
reg [7:0] serial_out_fifo [(2**SERIAL_OUT_FIFO_BITS)-1:0];
reg [SERIAL_OUT_FIFO_BITS-1:0] serial_out_wptr;
reg [SERIAL_OUT_FIFO_BITS-1:0] serial_out_rptr;
wire serial_out_data_available = serial_out_wptr != serial_out_rptr;
wire [7:0] serial_out_byte = serial_out_fifo[serial_out_rptr] /* synthesis keep */;
wire [7:0] serial_out_status = { 7'b1000000, serial_out_data_available};
// status[0] is reset signal from io controller and is thus used to flush
// the fifo
always @(posedge serial_strobe or posedge status[0]) begin
if(status[0] == 1) begin
serial_out_wptr <= 0;
end else begin
serial_out_fifo[serial_out_wptr] <= serial_data;
serial_out_wptr <= serial_out_wptr + 1'd1;
end
end
always@(negedge spi_sck or posedge status[0]) begin
if(status[0] == 1) begin
serial_out_rptr <= 0;
end else begin
if((byte_cnt != 0) && (cmd == 8'h1b)) begin
// read last bit -> advance read pointer
if((bit_cnt == 7) && !byte_cnt[0] && serial_out_data_available)
serial_out_rptr <= serial_out_rptr + 1'd1;
end
end
end
// SPI bit and byte counters
always@(posedge spi_sck or posedge SPI_SS_IO) begin
if(SPI_SS_IO == 1) begin
bit_cnt <= 0;
byte_cnt <= 0;
end else begin
if((bit_cnt == 7)&&(~&byte_cnt))
byte_cnt <= byte_cnt + 8'd1;
bit_cnt <= bit_cnt + 1'd1;
end
end
// SPI transmitter FPGA -> IO
reg [7:0] spi_byte_out;
always@(negedge spi_sck or posedge SPI_SS_IO) begin
if(SPI_SS_IO == 1) begin
SPI_MISO <= 1'bZ;
end else begin
SPI_MISO <= spi_byte_out[~bit_cnt];
end
end
always@(posedge spi_sck or posedge SPI_SS_IO) begin
reg [31:0] sd_lba_r;
if(SPI_SS_IO == 1) begin
spi_byte_out <= core_type;
end else begin
// read the command byte to choose the response
if(bit_cnt == 7) begin
if(!byte_cnt) cmd <= {sbuf, SPI_MOSI};
spi_byte_out <= 0;
case({(!byte_cnt) ? {sbuf, SPI_MOSI} : cmd})
// reading config string
8'h14: if(byte_cnt < STRLEN) spi_byte_out <= conf_str[(STRLEN - byte_cnt - 1)<<3 +:8];
// reading sd card status
8'h16: if(byte_cnt == 0) begin
spi_byte_out <= sd_cmd;
sd_lba_r <= sd_lba;
end
else if(byte_cnt < 5) spi_byte_out <= sd_lba_r[(4-byte_cnt)<<3 +:8];
// reading sd card write data
8'h18: spi_byte_out <= sd_din;
8'h1b:
// send alternating flag byte and data
if(byte_cnt[0]) spi_byte_out <= serial_out_status;
else spi_byte_out <= serial_out_byte;
endcase
end
end
end
// SPI receiver IO -> FPGA
reg spi_receiver_strobe_r = 0;
reg spi_transfer_end_r = 1;
reg [7:0] spi_byte_in;
// Read at spi_sck clock domain, assemble bytes for transferring to clk_sys
always@(posedge spi_sck or posedge SPI_SS_IO) begin
if(SPI_SS_IO == 1) begin
spi_transfer_end_r <= 1;
end else begin
spi_transfer_end_r <= 0;
if(bit_cnt != 7)
sbuf[6:0] <= { sbuf[5:0], SPI_MOSI };
// finished reading a byte, prepare to transfer to clk_sys
if(bit_cnt == 7) begin
spi_byte_in <= { sbuf, SPI_MOSI};
spi_receiver_strobe_r <= ~spi_receiver_strobe_r;
end
end
end
// Process bytes from SPI at the clk_sys domain
always @(posedge clk_sys) begin
reg spi_receiver_strobe;
reg spi_transfer_end;
reg spi_receiver_strobeD;
reg spi_transfer_endD;
reg [7:0] acmd;
reg [7:0] abyte_cnt; // counts bytes
reg [7:0] mouse_flags_r;
reg [7:0] mouse_x_r;
reg key_pressed_r;
reg key_extended_r;
//synchronize between SPI and sys clock domains
spi_receiver_strobeD <= spi_receiver_strobe_r;
spi_receiver_strobe <= spi_receiver_strobeD;
spi_transfer_endD <= spi_transfer_end_r;
spi_transfer_end <= spi_transfer_endD;
key_strobe <= 0;
mouse_strobe <= 0;
if (~spi_transfer_endD & spi_transfer_end) begin
abyte_cnt <= 8'd0;
end else if (spi_receiver_strobeD ^ spi_receiver_strobe) begin
if(~&abyte_cnt)
abyte_cnt <= abyte_cnt + 8'd1;
if(abyte_cnt == 0) begin
acmd <= spi_byte_in;
end else begin
case(acmd)
// buttons and switches
8'h01: but_sw <= spi_byte_in;
8'h60: if (abyte_cnt < 5) joystick_0[(abyte_cnt-1)<<3 +:8] <= spi_byte_in;
8'h61: if (abyte_cnt < 5) joystick_1[(abyte_cnt-1)<<3 +:8] <= spi_byte_in;
8'h62: if (abyte_cnt < 5) joystick_2[(abyte_cnt-1)<<3 +:8] <= spi_byte_in;
8'h63: if (abyte_cnt < 5) joystick_3[(abyte_cnt-1)<<3 +:8] <= spi_byte_in;
8'h64: if (abyte_cnt < 5) joystick_4[(abyte_cnt-1)<<3 +:8] <= spi_byte_in;
8'h04: begin
// store incoming ps2 mouse bytes
ps2_mouse_fifo[ps2_mouse_wptr] <= spi_byte_in;
ps2_mouse_wptr <= ps2_mouse_wptr + 1'd1;
if (abyte_cnt == 1) mouse_flags_r <= spi_byte_in;
else if (abyte_cnt == 2) mouse_x_r <= spi_byte_in;
else if (abyte_cnt == 3) begin
// flags: YOvfl, XOvfl, dy8, dx8, 1, mbtn, rbtn, lbtn
mouse_flags <= mouse_flags_r;
mouse_x <= { mouse_flags_r[4], mouse_x_r };
mouse_y <= { mouse_flags_r[5], spi_byte_in };
mouse_strobe <= 1;
end
end
8'h05: begin
// store incoming ps2 keyboard bytes
ps2_kbd_fifo[ps2_kbd_wptr] <= spi_byte_in;
ps2_kbd_wptr <= ps2_kbd_wptr + 1'd1;
if (abyte_cnt == 1) begin
key_extended_r <= 0;
key_pressed_r <= 1;
end
if (spi_byte_in == 8'he0) key_extended_r <= 1'b1;
else if (spi_byte_in == 8'hf0) key_pressed_r <= 1'b0;
else begin
key_extended <= key_extended_r;
key_pressed <= key_pressed_r || abyte_cnt == 1;
key_code <= spi_byte_in;
key_strobe <= 1'b1;
end
end
// joystick analog
8'h1a: begin
// first byte is joystick index
if(abyte_cnt == 1)
stick_idx <= spi_byte_in[2:0];
else if(abyte_cnt == 2) begin
// second byte is x axis
if(stick_idx == 0)
joystick_analog_0[15:8] <= spi_byte_in;
else if(stick_idx == 1)
joystick_analog_1[15:8] <= spi_byte_in;
end else if(abyte_cnt == 3) begin
// third byte is y axis
if(stick_idx == 0)
joystick_analog_0[7:0] <= spi_byte_in;
else if(stick_idx == 1)
joystick_analog_1[7:0] <= spi_byte_in;
end
end
8'h15: status <= spi_byte_in;
// status, 32bit version
8'h1e: if(abyte_cnt<5) status[(abyte_cnt-1)<<3 +:8] <= spi_byte_in;
endcase
end
end
end
// Process SD-card related bytes from SPI at the clk_sd domain
always @(posedge clk_sd) begin
reg spi_receiver_strobe;
reg spi_transfer_end;
reg spi_receiver_strobeD;
reg spi_transfer_endD;
reg sd_wrD;
reg [7:0] acmd;
reg [7:0] abyte_cnt; // counts bytes
//synchronize between SPI and sd clock domains
spi_receiver_strobeD <= spi_receiver_strobe_r;
spi_receiver_strobe <= spi_receiver_strobeD;
spi_transfer_endD <= spi_transfer_end_r;
spi_transfer_end <= spi_transfer_endD;
if(sd_dout_strobe) begin
sd_dout_strobe<= 0;
if(~&sd_buff_addr) sd_buff_addr <= sd_buff_addr + 1'b1;
end
sd_din_strobe<= 0;
sd_wrD <= sd_wr;
// fetch the first byte immediately after the write command seen
if (~sd_wrD & sd_wr) begin
sd_buff_addr <= 0;
sd_din_strobe <= 1;
end
img_mounted <= 0;
if (~spi_transfer_endD & spi_transfer_end) begin
abyte_cnt <= 8'd0;
sd_ack <= 1'b0;
sd_ack_conf <= 1'b0;
sd_dout_strobe <= 1'b0;
sd_din_strobe <= 1'b0;
sd_buff_addr <= 0;
end else if (spi_receiver_strobeD ^ spi_receiver_strobe) begin
if(~&abyte_cnt)
abyte_cnt <= abyte_cnt + 8'd1;
if(abyte_cnt == 0) begin
acmd <= spi_byte_in;
if(spi_byte_in == 8'h18) begin
sd_din_strobe <= 1'b1;
if(~&sd_buff_addr) sd_buff_addr <= sd_buff_addr + 1'b1;
end
if((spi_byte_in == 8'h17) || (spi_byte_in == 8'h18))
sd_ack <= 1'b1;
end else begin
case(acmd)
// send sector IO -> FPGA
8'h17: begin
// flag that download begins
sd_dout_strobe <= 1'b1;
sd_dout <= spi_byte_in;
end
// send sector FPGA -> IO
8'h18: begin
sd_din_strobe <= 1'b1;
if(~&sd_buff_addr) sd_buff_addr <= sd_buff_addr + 1'b1;
end
// send SD config IO -> FPGA
8'h19: begin
// flag that download begins
sd_dout_strobe <= 1'b1;
sd_ack_conf <= 1'b1;
sd_dout <= spi_byte_in;
end
8'h1c: img_mounted <= 1;
// send image info
8'h1d: if(abyte_cnt<5) img_size[(abyte_cnt-1)<<3 +:8] <= spi_byte_in;
endcase
end
end
end
endmodule