1
0
mirror of https://github.com/mist-devel/mist-board.git synced 2026-02-06 16:14:42 +00:00

[C64] Update CIA to Rayne's version

This commit is contained in:
Gyorgy Szombathelyi
2019-01-22 12:27:56 +01:00
parent 9f309a1a07
commit b39f003439
5 changed files with 510 additions and 788 deletions

View File

@@ -156,7 +156,7 @@ set_global_assignment -name RESERVE_DCLK_AFTER_CONFIGURATION "USE AS REGULAR IO"
set_global_assignment -name CYCLONEII_RESERVE_NCEO_AFTER_CONFIGURATION "USE AS REGULAR IO"
set_global_assignment -name OPTIMIZE_HOLD_TIMING "ALL PATHS"
set_global_assignment -name OPTIMIZE_MULTI_CORNER_TIMING ON
set_global_assignment -name FITTER_EFFORT "STANDARD FIT"
set_global_assignment -name FITTER_EFFORT "AUTO FIT"
# Assembler Assignments
# =====================
@@ -337,7 +337,8 @@ set_global_assignment -name VHDL_FILE rtl/fpga64_rgbcolor.vhd
set_global_assignment -name VHDL_FILE rtl/fpga64_keyboard_matrix_mark_mcdougall.vhd
set_global_assignment -name VHDL_FILE rtl/fpga64_bustiming.vhd
set_global_assignment -name VHDL_FILE rtl/fpga64_buslogic_roms_mmu.vhd
set_global_assignment -name VHDL_FILE rtl/cia6526.vhd
set_global_assignment -name VERILOG_FILE rtl/mos6526.v
set_global_assignment -name VHDL_FILE rtl/mos6526.vhd
set_global_assignment -name VHDL_FILE rtl/cpu_6510.vhd
set_global_assignment -name VERILOG_FILE rtl/cartridge.v
set_global_assignment -name VHDL_FILE rtl/rom_c64_chargen.vhd

View File

@@ -1,753 +0,0 @@
-- -----------------------------------------------------------------------
--
-- FPGA 64
--
-- A fully functional commodore 64 implementation in a single FPGA
--
-- -----------------------------------------------------------------------
-- Peter Wendrich (pwsoft@syntiac.com)
-- http://www.syntiac.com/fpga64.html
-- -----------------------------------------------------------------------
--
-- 6526 Complex Interface Adapter
--
-- rev 1 - june17 / TOD alarms
-- -----------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.numeric_std.ALL;
-- -----------------------------------------------------------------------
entity cia6526 is
generic (
todEnabled : std_logic := '1'
);
port (
clk: in std_logic;
todClk: in std_logic;
reset: in std_logic;
enable: in std_logic;
cs: in std_logic;
we: in std_logic; -- Write strobe
rd: in std_logic; -- Read strobe
addr: in unsigned(3 downto 0);
di: in unsigned(7 downto 0);
do: out unsigned(7 downto 0);
ppai: in unsigned(7 downto 0);
ppao: out unsigned(7 downto 0);
ppad: out unsigned(7 downto 0);
ppbi: in unsigned(7 downto 0);
ppbo: out unsigned(7 downto 0);
ppbd: out unsigned(7 downto 0);
flag_n: in std_logic;
irq_n: out std_logic
);
end cia6526;
-- -----------------------------------------------------------------------
architecture Behavioral of cia6526 is
-- IO ports
signal pra: unsigned(7 downto 0);
signal prb: unsigned(7 downto 0);
signal ddra: unsigned(7 downto 0);
signal ddrb: unsigned(7 downto 0);
-- Timer to IO ports
signal timerAPulse : std_logic;
signal timerAToggle : std_logic;
signal timerBPulse : std_logic;
signal timerBToggle : std_logic;
-- Timer A reload registers
signal talo: unsigned(7 downto 0) := (others => '1');
signal tahi: unsigned(7 downto 0) := (others => '1');
-- Timer B reload registers
signal tblo: unsigned(7 downto 0) := (others => '1');
signal tbhi: unsigned(7 downto 0) := (others => '1');
-- Timer A and B internal registers
signal timerA : unsigned(15 downto 0);
signal forceTimerA : std_logic;
signal loadTimerA : std_logic;
signal nextClkTimerA : std_logic;
signal clkTimerA : std_logic; -- internal timer clock
signal timerB: unsigned(15 downto 0);
signal forceTimerB : std_logic;
signal loadTimerB : std_logic;
signal nextClkTimerB : std_logic;
signal clkTimerB : std_logic; -- internal timer clock
-- Config register A
signal cra_start : std_logic;
signal cra_pbon : std_logic;
signal cra_outmode : std_logic;
signal cra_runmode : std_logic;
signal cra_runmode_reg : std_logic;
signal cra_inmode : std_logic;
signal cra_spmode : std_logic;
signal cra_todin : std_logic;
-- Config register B
signal crb_start : std_logic;
signal crb_pbon : std_logic;
signal crb_outmode : std_logic;
signal crb_runmode : std_logic;
signal crb_runmode_reg : std_logic;
signal crb_inmode5 : std_logic;
signal crb_inmode6 : std_logic;
signal crb_alarm : std_logic;
-- TOD 50/60 hz clock
signal todTick : std_logic;
signal oldTodClk : std_logic;
signal tod_clkcnt: unsigned(2 downto 0);
-- TOD counters
signal tod_running: std_logic;
signal tod_10ths: unsigned(3 downto 0);
signal tod_secs: unsigned(6 downto 0);
signal tod_mins: unsigned(6 downto 0);
signal tod_hrs: unsigned(7 downto 0);
signal tod_pm: std_logic;
-- TOD latches
signal tod_latched: std_logic;
signal tod_latch_10ths: unsigned(3 downto 0);
signal tod_latch_secs: unsigned(6 downto 0);
signal tod_latch_mins: unsigned(6 downto 0);
signal tod_latch_hrs: unsigned(7 downto 0);
constant tod_latch_pm: std_logic := '0';
-- TOD alarms - LCA
signal tod_10ths_alarm: unsigned(3 downto 0);
signal tod_secs_alarm: unsigned(6 downto 0);
signal tod_mins_alarm: unsigned(6 downto 0);
signal tod_hrs_alarm: unsigned(7 downto 0);
signal tod_pm_alarm: std_logic;
-- Interrupt processing
signal resetIrq : boolean;
signal intr_flagn : std_logic;
signal intr_serial : std_logic;
signal intr_alarm : std_logic; -- LCA
signal intr_timerA : std_logic;
signal intr_timerB : std_logic;
signal mask_timerA : std_logic;
signal mask_timerB : std_logic;
signal mask_alarm : std_logic; -- LCA
signal mask_serial : std_logic;
signal mask_flagn : std_logic;
signal ir: std_logic;
signal prevFlag_n: std_logic;
signal myWr : std_logic;
signal myRd : std_logic;
begin
-- -----------------------------------------------------------------------
-- chip-select signals
-- -----------------------------------------------------------------------
myWr <= cs and we;
myRd <= cs and rd;
-- -----------------------------------------------------------------------
-- I/O ports
-- -----------------------------------------------------------------------
-- Port A
process(pra, ddra)
begin
ppad <= ddra;
ppao <= pra or (not ddra);
end process;
-- Port B
process(prb, ddrb, cra_pbon, cra_outmode, crb_pbon, crb_outmode, timerAPulse, timerAToggle, timerBPulse, timerBToggle)
begin
ppbd <= ddrb;
ppbo <= prb or (not ddrb);
if cra_pbon = '1' then
ppbo(6) <= timerAPulse;
if cra_outmode = '1' then
ppbo(6) <= timerAToggle;
end if;
end if;
if crb_pbon = '1' then
ppbo(7) <= timerBPulse;
if crb_outmode = '1' then
ppbo(7) <= timerBToggle;
end if;
end if;
end process;
-- I/O port registers
process(clk)
begin
if rising_edge(clk) then
if myWr = '1' then
case addr is
when X"0" => pra <= di;
when X"1" => prb <= di;
when X"2" => ddra <= di;
when X"3" => ddrb <= di;
when others => null;
end case;
end if;
if reset = '1' then
pra <= (others => '0');
prb <= (others => '0');
ddra <= (others => '0');
ddrb <= (others => '0');
end if;
end if;
end process;
-- -----------------------------------------------------------------------
-- TOD - time of day
-- -----------------------------------------------------------------------
process(clk)
begin
-- Process rising edge on the todClk.
-- There is a prescaler of 5 or 6 to get 10ths of seconds from
-- 50 Hz or 60 Hz line frequency.
--
-- Output is a 'todTick' signal synchronished with enable signal (@ 1Mhz).
if rising_edge(clk) then
if todEnabled = '1' then
if enable = '1' then
todTick <= '0';
end if;
if todClk = '1' and oldTodClk = '0' then
-- Divide by 5 or 6 dependng on 50/60 Hz flag.
if tod_clkcnt /= "000" then
tod_clkcnt <= tod_clkcnt - 1;
else
todTick <= tod_running;
tod_clkcnt <= "101"; -- 60 Hz
if cra_todin = '1' then
tod_clkcnt <= "100"; -- 50 Hz
end if;
end if;
end if;
oldTodClk <= todClk;
else
todTick <= '0';
end if;
end if;
end process;
process(clk)
variable new_10ths : unsigned(3 downto 0);
variable new_secsL : unsigned(3 downto 0);
variable new_secsH : unsigned(2 downto 0);
variable new_minsL : unsigned(3 downto 0);
variable new_minsH : unsigned(2 downto 0);
variable new_hrsL : unsigned(3 downto 0);
variable new_hrsH : std_logic;
variable new_hrs_byte : unsigned(7 downto 0); -- LCA am/pm and hours
begin
if rising_edge(clk) then
new_10ths := tod_10ths;
new_secsL := tod_secs(3 downto 0);
new_secsH := tod_secs(6 downto 4);
new_minsL := tod_mins(3 downto 0);
new_minsH := tod_mins(6 downto 4);
-- new_hrsL := tod_hrs(3 downto 0);
-- new_hrsH := tod_hrs(4);
new_hrs_byte := tod_hrs (7 downto 0); -- LCA am/pm and hours
-- new_hrs_byte := new_hrsH & new_hrsL;
if enable = '1'
and todTick = '1' then
if new_10ths /= "1001" then
new_10ths := new_10ths + 1;
else
new_10ths := "0000";
if new_secsL /= "1001" then
new_secsL := new_secsL + 1;
else
new_secsL := "0000";
if new_secsH /= "101" then
new_secsH := new_secsH + 1;
else
new_secsH := "000";
if new_minsL /= "1001" then
new_minsL := new_minsL + 1;
else
new_minsL := "0000";
if new_minsH /= "101" then
new_minsH := new_minsH + 1;
else
new_minsH := "000";
-- hrs were missing jun17 LCA
-- I mean completely absent from code :) !!!!!!
-- case to lookup then handles oddities in others
-- retarded am/pm flag flip madness handled at register load below (REG B)
case tod_hrs is -- case state to set hours and am/pm
when "00010010" =>
new_hrs_byte := "00000001"; -- 1 am set
when "00000001" =>
new_hrs_byte := "00000010";
when "00000010" =>
new_hrs_byte := "00000011";
when "00000011" =>
new_hrs_byte := "00000100";
when "00000100" =>
new_hrs_byte := "00000101";
when "00000101" =>
new_hrs_byte := "00000110";
when "00000110" =>
new_hrs_byte := "00000111";
when "00000111" =>
new_hrs_byte := "00001000";
when "00001000" =>
new_hrs_byte := "00001001";
when "00001001" =>
new_hrs_byte := "00010000";
when "00010000" =>
new_hrs_byte := "00010001"; -- 11am set
when "00010001" =>
new_hrs_byte := "10010010"; -- 12pm set
when "10010010" =>
new_hrs_byte := "10000001"; -- 1 pm set
when "10000001" =>
new_hrs_byte := "10000010";
when "10000010" =>
new_hrs_byte := "10000011";
when "10000011" =>
new_hrs_byte := "10000100";
when "10000100" =>
new_hrs_byte := "10000101";
when "10000101" =>
new_hrs_byte := "10000110";
when "10000110" =>
new_hrs_byte := "10000111";
when "10000111" =>
new_hrs_byte := "10001000";
when "10001000" =>
new_hrs_byte := "10001001";
when "10001001" =>
new_hrs_byte := "10010000"; -- 10pm set
when "10010000" =>
new_hrs_byte := "10010001"; -- 11pm set
when "10010001" =>
new_hrs_byte := "00010010"; -- 12am set (midnight)
when others =>
new_hrs_byte (3 downto 0) := new_hrs_byte (3 downto 0) + 1;
--null;
end case;
end if;
end if;
end if;
end if;
end if;
end if;
if myWr = '1' then
if crb_alarm = '0' then
case addr is
when X"8" =>
new_10ths := di(3 downto 0);
tod_running <= '1';
when X"9" =>
new_secsL := di(3 downto 0);
new_secsH := di(6 downto 4);
when X"A" =>
new_minsL := di(3 downto 0);
new_minsH := di(6 downto 4);
when X"B" =>
new_hrs_byte := di(7) & "00" & di(4 downto 0); -- LCA
tod_running <= '0';
if di(7 downto 0) = "10010010" or di(7 downto 0) = "00010010" then -- super bodge because cbm flips am/pm flag at 12 am or pm (its retarded!!!!!)
new_hrs_byte(7) := not new_hrs_byte(7); -- This P.O.S. now mimics real commodore 64 !!!!! LCA
end if;
when others =>
null;
end case;
else -- TOD ALARM UPDATE
case addr is
when X"8" =>
tod_10ths_alarm <= di(3 downto 0);
when X"9" =>
tod_secs_alarm <= di(6 downto 0);
when X"A" =>
tod_mins_alarm <= di(6 downto 0);
when X"B" =>
-- tod_hrs_alarm <= di(4 downto 0);
-- tod_pm_alarm <= di(7);
tod_hrs_alarm <= di(7) & "00" & di(4 downto 0); -- LCA
if di(7 downto 0) = "10010010" or di(7 downto 0) = "00010010" then -- super bodge because cbm flips am/pm flag at 12 am or pm (its retarded!!!!!)
tod_hrs_alarm(7) <= not tod_hrs_alarm(7); -- This P.O.S. now mimics real commodore 64 !!!!! LCA
end if;
when others =>
null;
end case;
end if;
end if;
-- Update state
tod_10ths <= new_10ths;
tod_secs <= new_secsH & new_secsL;
tod_mins <= new_minsH & new_minsL;
tod_hrs <= new_hrs_byte; -- LCA
if tod_latched = '0' then
tod_latch_10ths <= new_10ths;
tod_latch_secs <= new_secsH & new_secsL;
tod_latch_mins <= new_minsH & new_minsL;
tod_latch_hrs <= new_hrs_byte; -- LCA
end if;
-- TOD ALARM test for match - LCA
if (tod_10ths = tod_10ths_alarm) and
(tod_secs = tod_secs_alarm) and
(tod_mins = tod_mins_alarm) and
(tod_hrs = tod_hrs_alarm) and
(crb_alarm = '1') then
intr_alarm <= '1' ;
end if;
if reset = '1' then
tod_running <= '0';
tod_10ths_alarm <= "0000" ;
tod_secs_alarm <= "0000000" ;
tod_mins_alarm <= "0000000" ;
tod_hrs_alarm <= "00000000" ;
tod_pm_alarm <= '0' ;
end if;
if resetIrq then
intr_alarm <= '0' ;
end if;
end if;
end process;
-- Control TOD output latch
-- Reading the hours latches the output until
-- the 10ths of seconds are read. While latched the
-- clock continues to run in the bankground.
process(clk)
begin
if rising_edge(clk) then
if myRd = '1' then
case addr is
when X"8" => tod_latched <= '0';
when X"B" => tod_latched <= '1';
when others => null;
end case;
end if;
end if;
end process;
-- -----------------------------------------------------------------------
-- Timer A and B
-- -----------------------------------------------------------------------
process(clk)
variable newTimerA : unsigned(15 downto 0);
variable timerAInput : std_logic;
variable timerBInput : std_logic;
variable newTimerB : unsigned(15 downto 0);
begin
if rising_edge(clk) then
loadTimerA <= '0';
loadTimerB <= '0';
if resetIrq then
intr_timerA <= '0';
intr_timerB <= '0';
end if;
if myWr = '1' then
case addr is
when X"4" =>
talo <= di;
when X"5" =>
tahi <= di;
if cra_start = '0' then
loadTimerA <= '1';
end if;
when X"6" =>
tblo <= di;
when X"7" =>
tbhi <= di;
if crb_start = '0' then
loadTimerB <= '1';
end if;
when X"E" =>
if cra_start = '0' then
-- Only set on rising edge
timerAToggle <= timerAToggle or di(0);
end if;
cra_start <= di(0);
cra_runmode_reg <= di(3);
when X"F" =>
if crb_start = '0' then
-- Only set on rising edge
timerBToggle <= timerBToggle or di(0);
end if;
crb_start <= di(0);
crb_runmode_reg <= di(3);
when others => null;
end case;
end if;
if reset = '1' then
cra_runmode_reg <= '0';
crb_runmode_reg <= '0';
end if;
if enable = '1' then
cra_runmode <= cra_runmode_reg;
crb_runmode <= crb_runmode_reg;
--
-- process timer A
--
timerAPulse <= '0';
newTimerA := timerA;
-- CNT is not emulated so don't count when inmode = 1
timerAInput := not cra_inmode;
nextClkTimerA <= timerAInput and cra_start;
clkTimerA <= nextClkTimerA;
if clkTimerA = '1' then
newTimerA := newTimerA - 1;
end if;
if nextClkTimerA = '1'
and newTimerA = 0 then
intr_timerA <= '1';
loadTimerA <= '1';
timerAPulse <= '1';
timerAToggle <= not timerAToggle;
if (cra_runmode_reg or cra_runmode) = '1' then
cra_start <= '0';
end if;
end if;
if forceTimerA = '1' then
loadTimerA <= '1';
end if;
timerA <= newTimerA;
--
-- process timer B
--
timerBPulse <= '0';
newTimerB := timerB;
if crb_inmode6 = '1' then
-- count timerA underflows
timerBInput := timerAPulse;
elsif crb_inmode5 = '0' then
-- count clock pulses
timerBInput := '1';
else
-- CNT is not emulated so don't count
timerBInput := '0';
end if;
nextClkTimerB <= timerBInput and crb_start;
clkTimerB <= nextClkTimerB;
if clkTimerB = '1' then
newTimerB := newTimerB - 1;
end if;
if nextClkTimerB = '1'
and newTimerB = 0 then
intr_timerB <= '1';
loadTimerB <= '1';
timerBPulse <= '1';
timerBToggle <= not timerBToggle;
if (crb_runmode_reg or crb_runmode) = '1' then
crb_start <= '0';
end if;
end if;
if forceTimerB = '1' then
loadTimerB <= '1';
end if;
timerB <= newTimerB;
end if;
if loadTimerA = '1' then
timerA <= tahi & talo;
clkTimerA <= '0';
end if;
if loadTimerB = '1' then
timerB <= tbhi & tblo;
clkTimerB <= '0';
end if;
end if;
end process;
-- -----------------------------------------------------------------------
-- Interrupts
-- -----------------------------------------------------------------------
resetIrq <= ((myRd = '1') and (addr = X"D")) or (reset = '1');
irq_n <= not(ir);
intr_serial <= '0';
process(clk)
begin
if rising_edge(clk) then
if enable = '1' then
ir <= ir
or (intr_timerA and mask_timerA)
or (intr_timerB and mask_timerB)
or (intr_alarm and mask_alarm)
or (intr_serial and mask_serial)
or (intr_flagn and mask_flagn);
end if;
if myWr = '1' then
case addr is
when X"D" =>
if di(7) ='0' then
mask_timerA <= mask_timerA and (not di(0));
mask_timerB <= mask_timerB and (not di(1));
mask_alarm <= mask_alarm and (not di(2)); -- LCA
mask_serial <= mask_serial and (not di(3));
mask_flagn <= mask_flagn and (not di(4));
else
mask_timerA <= mask_timerA or di(0);
mask_timerB <= mask_timerB or di(1);
mask_alarm <= mask_alarm or di(2); -- LCA
mask_serial <= mask_serial or di(3);
mask_flagn <= mask_flagn or di(4);
end if;
when others =>
null;
end case;
end if;
if resetIrq then
ir <= '0';
end if;
if reset = '1' then
mask_timerA <= '0';
mask_timerB <= '0';
mask_alarm <= '0' ;
mask_serial <= '0';
mask_flagn <= '0';
end if;
end if;
end process;
-- -----------------------------------------------------------------------
-- FLAG_N input
-- -----------------------------------------------------------------------
process(clk)
begin
if rising_edge(clk) then
prevFlag_n <= flag_n;
if (flag_n = '0') and (prevFlag_n = '1') then
intr_flagn <= '1';
end if;
if resetIrq then
intr_flagn <= '0';
end if;
end if;
end process;
-- -----------------------------------------------------------------------
-- Write registers
-- -----------------------------------------------------------------------
process(clk)
begin
if rising_edge(clk) then
-- resetIrq <= '0';
if enable = '1' then
forceTimerA <= '0';
forceTimerB <= '0';
-- cra_runmode_reg <= cra_runmode;
-- crb_runmode_reg <= crb_runmode;
end if;
if myWr = '1' then
case addr is
when X"E" =>
cra_pbon <= di(1);
cra_outmode <= di(2);
-- cra_runmode <= di(3);
forceTimerA <= di(4);
cra_inmode <= di(5);
cra_spmode <= di(6);
cra_todin <= di(7);
when X"F" =>
crb_pbon <= di(1);
crb_outmode <= di(2);
-- crb_runmode <= di(3);
forceTimerB <= di(4);
crb_inmode5 <= di(5);
crb_inmode6 <= di(6);
crb_alarm <= di(7);
when others => null;
end case;
end if;
if reset = '1' then
cra_pbon <= '0';
cra_outmode <= '0';
-- cra_runmode <= '0';
cra_inmode <= '0';
cra_spmode <= '0';
cra_todin <= '0';
crb_pbon <= '0';
crb_outmode <= '0';
-- crb_runmode <= '0';
crb_inmode5 <= '0';
crb_inmode6 <= '0';
crb_alarm <= '0';
end if;
end if;
end process;
-- -----------------------------------------------------------------------
-- Read registers
-- -----------------------------------------------------------------------
process(clk)
begin
if rising_edge(clk) then
case addr is
when X"0" => do <= ppai;
when X"1" => do <= ppbi;
when X"2" => do <= DDRA;
when X"3" => do <= DDRB;
when X"4" => do <= timera(7 downto 0);
when X"5" => do <= timera(15 downto 8);
when X"6" => do <= timerb(7 downto 0);
when X"7" => do <= timerb(15 downto 8);
when X"8" => do <= "0000" & tod_latch_10ths;
when X"9" => do <= "0" & tod_latch_secs;
when X"A" => do <= "0" & tod_latch_mins;
-- when X"B" => do <= tod_latch_pm & "00" & tod_latch_hrs;
when X"B" => do <= tod_latch_hrs; -- LCA
when X"C" => do <= (others => '0');
when X"D" => do <= ir & "00" & intr_flagn & intr_serial & intr_alarm & intr_timerB & intr_timerA;
when X"E" => do <= cra_todin & cra_spmode & cra_inmode & '0' & cra_runmode & cra_outmode & cra_pbon & cra_start;
when X"F" => do <= crb_alarm & crb_inmode6 & crb_inmode5 & '0' & crb_runmode & crb_outmode & crb_pbon & crb_start;
when others => do <= (others => '-');
end case;
end if;
end process;
end Behavioral;

View File

@@ -29,6 +29,7 @@ use IEEE.STD_LOGIC_1164.ALL;
use IEEE.std_logic_unsigned.ALL;
use IEEE.numeric_std.all;
use work.mos6526.all;
-- -----------------------------------------------------------------------
entity fpga64_sid_iec is
@@ -367,12 +368,13 @@ begin
when CYCLE_VIC2 =>
enableVic <= '1';
when CYCLE_CPUE =>
enableCia <= '1';
enableVic <= '1';
if baLoc = '1'
or cpuWe = '1' then
enableCpu <= '1';
end if;
when CYCLE_CPUF =>
enableCia <= '1';
when others =>
null;
end case;
@@ -615,52 +617,56 @@ div1m: process(clk32) -- this process devides 32 MHz to 1MHz (for the SID)
-- -----------------------------------------------------------------------
-- CIAs
-- -----------------------------------------------------------------------
cia1: entity work.cia6526
cia1: mos6526
port map (
clk => clk32,
todClk => vicVSync,
reset => reset,
enable => enableCia,
cs => cs_cia1,
we => pulseWrIo,
rd => pulseRd,
phi2 => enableCia,
res_n => not reset,
cs_n => not cs_cia1,
rw => not cpuWe,
addr => cpuAddr(3 downto 0),
di => cpuDo,
do => cia1Do,
rs => std_logic_vector(cpuAddr)(3 downto 0),
db_in => std_logic_vector(cpuDo),
unsigned(db_out) => cia1Do,
ppai => cia1_pai,
ppao => cia1_pao,
ppbi => cia1_pbi,
ppbo => cia1_pbo,
pa_in => std_logic_vector(cia1_pai),
unsigned(pa_out) => cia1_pao,
pb_in => std_logic_vector(cia1_pbi),
unsigned(pb_out) => cia1_pbo,
flag_n => '1',
flag_n => '1',
sp_in => '1',
cnt_in => '1',
irq_n => irq_cia1
pc_n => open,
tod => vicVSync,
irq_n => irq_cia1
);
cia2: entity work.cia6526
cia2: mos6526
port map (
clk => clk32,
todClk => vicVSync,
reset => reset,
enable => enableCia,
cs => cs_cia2,
we => pulseWrIo,
rd => pulseRd,
phi2 => enableCia,
res_n => not reset,
cs_n => not cs_cia2,
rw => not cpuWe,
addr => cpuAddr(3 downto 0),
di => cpuDo,
do => cia2Do,
rs => std_logic_vector(cpuAddr)(3 downto 0),
db_in => std_logic_vector(cpuDo),
unsigned(db_out) => cia2Do,
ppai => cia2_pai,
ppao => cia2_pao,
ppbi => cia2_pbi,
ppbo => cia2_pbo,
pa_in => std_logic_vector(cia2_pai),
unsigned(pa_out) => cia2_pao,
pb_in => std_logic_vector(cia2_pbi),
unsigned(pb_out) => cia2_pbo,
flag_n => '1',
flag_n => '1',
sp_in => '1',
cnt_in => '1',
irq_n => irq_cia2
pc_n => open,
tod => vicVSync,
irq_n => irq_cia2
);
-- -----------------------------------------------------------------------

439
cores/c64/rtl/mos6526.v Normal file
View File

@@ -0,0 +1,439 @@
module mos6526 (
input wire clk,
input wire phi2,
input wire res_n,
input wire cs_n,
input wire rw,
input wire [3:0] rs,
input wire [7:0] db_in,
output reg [7:0] db_out,
input wire [7:0] pa_in,
output reg [7:0] pa_out,
input wire [7:0] pb_in,
output reg [7:0] pb_out,
input wire flag_n,
output reg pc_n,
input wire tod,
input wire sp_in,
output reg sp_out,
input wire cnt_in,
output reg cnt_out,
output reg irq_n
);
// Internal Registers
reg [7:0] pra;
reg [7:0] prb;
reg [7:0] ddra;
reg [7:0] ddrb;
reg [7:0] ta_lo;
reg [7:0] ta_hi;
reg [7:0] tb_lo;
reg [7:0] tb_hi;
reg [3:0] tod_10ths;
reg [6:0] tod_sec;
reg [6:0] tod_min;
reg [5:0] tod_hr;
reg [7:0] sdr;
reg [4:0] icr;
reg [7:0] cra;
reg [7:0] crb;
// Internal Signals
reg flag_n_prev;
reg [15:0] timer_a;
reg [ 1:0] timer_a_out;
reg [15:0] timer_b;
reg [ 1:0] timer_b_out;
reg tod_prev;
reg tod_run;
reg [ 2:0] tod_count;
reg tod_tick;
reg [23:0] tod_alarm;
reg tod_alarm_reg;
reg [23:0] tod_latch;
reg tod_latched;
reg sp_pending;
reg sp_received;
reg sp_transmit;
reg [ 7:0] sp_shiftreg;
reg cnt_in_prev;
reg cnt_out_prev;
reg [ 2:0] cnt_pulsecnt;
reg [ 4:0] int_data;
reg [ 1:0] int_reset;
// Register Decoding
always @(posedge clk) begin
if (!res_n) db_out <= 8'h00;
else if (!cs_n && rw)
case (rs)
4'h0: db_out <= pa_in;
4'h1: db_out <= pb_in;
4'h2: db_out <= ddra;
4'h3: db_out <= ddrb;
4'h4: db_out <= timer_a[ 7:0];
4'h5: db_out <= timer_a[15:8];
4'h6: db_out <= timer_b[ 7:0];
4'h7: db_out <= timer_b[15:8];
4'h8: db_out <= tod_latched ?
{4'h0, tod_latch[3:0]} : {4'h0, tod_10ths};
4'h9: db_out <= tod_latched ?
{1'b0, tod_latch[10:4]} : {1'b0, tod_sec};
4'ha: db_out <= tod_latched ?
{1'b0, tod_latch[17:11]} : {1'b0, tod_min};
4'hb: db_out <= tod_latched ?
{tod_latch[23], 2'h0, tod_latch[22:18]} :
{tod_hr[5], 2'h0, tod_hr[4:0]};
4'hc: db_out <= sdr;
4'hd: db_out <= {~irq_n, 2'b00, int_data};
4'he: db_out <= {cra[7:5], 1'b0, cra[3:0]};
4'hf: db_out <= {crb[7:5], 1'b0, crb[3:0]};
endcase
end
// Port A Output
always @(posedge clk) begin
if (!res_n) begin
pra <= 8'h00;
ddra <= 8'h00;
end
else if (!cs_n && !rw)
case (rs)
4'h0: pra <= db_in;
4'h2: ddra <= db_in;
default: begin
pra <= pra;
ddra <= ddra;
end
endcase
if (phi2) pa_out <= pra | ~ddra;
end
// Port B Output
always @(posedge clk) begin
if (!res_n) begin
prb <= 8'h00;
ddrb <= 8'h00;
end
else if (!cs_n && !rw)
case (rs)
4'h1: prb <= db_in;
4'h3: ddrb <= db_in;
default: begin
prb <= prb;
ddrb <= ddrb;
end
endcase
if (phi2) begin
pb_out[7] <= crb[1] ? crb[2] ? timer_b_out[1] | ~ddrb[7] :
timer_b_out[0] | ~ddrb[7] : prb[7] | ~ddrb[7];
pb_out[6] <= cra[1] ? cra[2] ? timer_a_out[1] | ~ddrb[6] :
timer_a_out[0] | ~ddrb[7] : prb[6] | ~ddrb[6];
pb_out[5:0] <= prb[5:0] | ~ddrb[5:0];
end
end
// FLAG Input
always @(posedge clk) begin
if (!res_n || int_reset[1]) int_data[4] <= 1'b0;
else if (!flag_n && flag_n_prev) int_data[4] <= 1'b1;
if (phi2) flag_n_prev <= flag_n;
end
// Port Control Output
always @(posedge clk) begin
if (!cs_n && rs == 4'h1) pc_n <= 1'b0;
else pc_n <= phi2 ? 1'b1 : pc_n;
end
// Timer A
always @(posedge clk) begin
if (!res_n) begin
ta_lo <= 8'hff;
ta_hi <= 8'hff;
cra <= 8'h00;
timer_a <= 16'h0000;
timer_a_out[1] <= 1'b0;
int_data[0] <= 1'b0;
end
else if (!cs_n && !rw)
case (rs)
4'h4: ta_lo <= db_in;
4'h5: ta_hi <= db_in;
4'he: begin
cra <= db_in;
timer_a_out[1] <= timer_a_out[1] | db_in[0];
end
default: begin
ta_lo <= ta_lo;
ta_hi <= ta_hi;
cra <= cra;
timer_a_out[1] <= timer_a_out[1];
end
endcase
timer_a_out[0] <= phi2 ? 1'b0 : timer_a_out[0];
if (phi2 && cra[0] && !cra[4]) begin
if (!cra[5]) timer_a <= timer_a - 1'b1;
else timer_a <= (cnt_in && !cnt_in_prev) ? timer_a - 1'b1 : timer_a;
if (!timer_a) begin
cra[0] <= ~cra[3];
int_data[0] <= 1'b1;
timer_a <= {ta_hi, ta_lo};
timer_a_out <= {~timer_a_out[1], 1'b1};
end
end
if ((phi2 && cra[4]) || (!cra[0] && !cs_n && !rw && rs == 4'h5)) begin
cra[4] <= 1'b0;
timer_a <= {ta_hi, ta_lo};
end
if (int_reset[1]) int_data[0] <= 1'b0;
end
// Timer B
always @(posedge clk) begin
if (!res_n) begin
tb_lo <= 8'hff;
tb_hi <= 8'hff;
crb <= 8'h00;
timer_b <= 16'h0000;
timer_b_out[1] <= 1'b0;
int_data[1] <= 1'b0;
end
else if (!cs_n && !rw)
case (rs)
4'h6: tb_lo <= db_in;
4'h7: tb_hi <= db_in;
4'hf: begin
crb <= db_in;
timer_b_out[1] <= timer_b_out[1] | db_in[0];
end
default: begin
tb_lo <= tb_lo;
tb_hi <= tb_hi;
crb <= crb;
timer_b_out[1] <= timer_b_out[1];
end
endcase
timer_b_out[0] <= phi2 ? 1'b0 : timer_b_out[0];
if (phi2 && crb[0] && !crb[4]) begin
case (crb[6:5])
2'b00: timer_b <= timer_b - 1'b1;
2'b01: timer_b <= (cnt_in && !cnt_in_prev) ? timer_b - 1'b1 : timer_b;
2'b10: timer_b <= timer_a_out[0] ? timer_b - 1'b1 : timer_b;
2'b11: timer_b <= (timer_a_out[0] && cnt_in) ? timer_b - 1'b1 : timer_b;
endcase
if (!timer_b) begin
crb[0] <= ~crb[3];
int_data[1] <= 1'b1;
timer_b <= {tb_hi, tb_lo};
timer_b_out <= {~timer_b_out[1], 1'b1};
end
end
if ((phi2 && crb[4]) || (!crb[0] && !cs_n && !rw && rs == 4'h7)) begin
crb[4] <= 1'b0;
timer_b <= {tb_hi, tb_lo};
end
if (int_reset[1]) int_data[1] <= 1'b0;
end
// Time of Day
always @(posedge clk) begin
if (!res_n) begin
tod_10ths <= 4'h0;
tod_sec <= 7'h00;
tod_min <= 7'h00;
tod_hr <= 6'h01;
tod_run <= 1'b0;
tod_alarm <= 24'h000000;
tod_latch <= 24'h000000;
tod_latched <= 1'b0;
int_data[2] <= 1'b0;
end
else if (!cs_n && !rw)
case (rs)
4'h8: if (crb[7]) tod_alarm[3:0] <= db_in[3:0];
else tod_10ths <= db_in[3:0];
4'h9: if (crb[7]) tod_alarm[10:4] <= db_in[6:0];
else tod_sec <= db_in[6:0];
4'ha: if (crb[7]) tod_alarm[17:11] <= db_in[6:0];
else tod_min <= db_in[6:0];
4'hb: if (crb[7]) tod_alarm[23:18] <= {db_in[7], db_in[4:0]};
else tod_hr <= {db_in[7], db_in[4:0]};
default: begin
tod_10ths <= tod_10ths;
tod_sec <= tod_sec;
tod_min <= tod_min;
tod_hr <= tod_hr;
tod_alarm <= tod_alarm;
end
endcase
if (!cs_n)
if (rs == 4'h8)
if (!rw) tod_run <= !crb[7] ? 1'b1 : tod_run;
else begin
tod_latched <= 1'b0;
tod_latch <= 24'h000000;
end
else if (rs == 4'hb)
if (!rw) tod_run <= !crb[7] ? 1'b0 : tod_run;
else begin
tod_latched <= 1'b1;
tod_latch <= {tod_hr, tod_min, tod_sec, tod_10ths};
end
tod_prev <= tod;
tod_tick <= 1'b0;
if (tod_run) begin
tod_count <= (tod && !tod_prev) ? tod_count + 1'b1 : tod_count;
if ((cra[7] && tod_count == 3'h5) || tod_count == 3'h6) begin
tod_tick <= 1'b1;
tod_count <= 3'h0;
end
if (tod_tick) begin
tod_10ths <= (tod_10ths == 4'h9) ? 1'b0 : tod_10ths + 1'b1;
if (tod_10ths == 4'h9) begin
tod_sec[3:0] <= tod_sec[3:0] + 1'b1;
if (tod_sec[3:0] == 4'h9) begin
tod_sec[3:0] <= 4'h0;
tod_sec[6:4] <= tod_sec[6:4] + 1'b1;
end
if (tod_sec == 7'h59) begin
tod_sec[6:4] <= 3'h0;
tod_min[3:0] <= tod_min[3:0] + 1'b1;
end
if (tod_min[3:0] == 4'h9 && tod_sec == 7'h59) begin
tod_min[3:0] <= 4'h0;
tod_min[6:4] <= tod_min[6:4] + 1'b1;
end
if (tod_min == 7'h59 && tod_sec == 7'h59) begin
tod_min[6:4] <= 3'h0;
tod_hr[3:0] <= tod_hr[3:0] + 1'b1;
end
if (tod_hr[3:0] == 4'h9 && tod_min == 7'h59 && tod_sec == 7'h59) begin
tod_hr[3:0] <= 4'h0;
tod_hr[4] <= tod_hr[4] + 1'b1;
end
if (tod_min == 7'h59 && tod_sec == 7'h59)
if (tod_hr[4:0] == 5'h11)
if (!tod_hr[5]) begin
tod_hr[5] <= ~tod_hr[5];
tod_hr[3:0] <= tod_hr[3:0] + 1'b1;
end
else begin
tod_hr[5] <= ~tod_hr[5];
tod_hr[4:0] <= 5'h00;
end
else if (tod_hr[4:0] == 5'h12) tod_hr[4:0] <= 5'h01;
end
end
end
else tod_count <= 3'h0;
if ({tod_hr, tod_min, tod_sec, tod_10ths} == tod_alarm) begin
tod_alarm_reg <= 1'b1;
int_data[2] <= !tod_alarm_reg ? 1'b1 : int_data[2];
end
else tod_alarm_reg <= 1'b0;
if (int_reset[1]) int_data[2] <= 1'b0;
end
// Serial Port Input/Output
always @(posedge clk) begin
if (!res_n) begin
sdr <= 8'h00;
sp_out <= 1'b0;
sp_pending <= 1'b0;
sp_received <= 1'b0;
sp_transmit <= 1'b0;
sp_shiftreg <= 8'h00;
int_data[3] <= 1'b0;
end
else if (!cs_n && !rw)
case (rs)
4'hc: sdr <= db_in;
default: sdr <= sdr;
endcase
if (!cra[6]) begin
if (sp_received) begin
sdr <= sp_shiftreg;
int_data[3] <= 1'b1;
sp_received <= 1'b0;
sp_shiftreg <= 8'h00;
end
else if (cnt_in && !cnt_in_prev) begin
sp_shiftreg <= {sp_shiftreg[6:0], sp_in};
sp_received <= (cnt_pulsecnt == 3'h7) ? 1'b1 : sp_received;
end
end
else if (cra[6] && !cra[3] && cra[0]) begin
if (!cs_n && !rw && rs == 8'hc) sp_pending <= 1'b1;
if (sp_pending && !sp_transmit) begin
sp_pending <= 1'b0;
sp_transmit <= 1'b1;
sp_shiftreg <= sdr;
end
else if (!cnt_out && cnt_out_prev) begin
if (cnt_pulsecnt == 3'h7) begin
int_data[3] <= 1'b1;
sp_transmit <= 1'b0;
end
sp_out <= sp_shiftreg[7];
sp_shiftreg <= {sp_shiftreg[6:0], 1'b0};
end
end
if (int_reset[1]) int_data[3] <= 1'b0;
end
// CNT Input/Output
always @(posedge clk) begin
if (!res_n) begin
cnt_out <= 1'b1;
cnt_out_prev <= 1'b1;
cnt_pulsecnt <= 3'h0;
end
else if (phi2) begin
cnt_in_prev <= cnt_in;
cnt_out_prev <= cnt_out;
end
if (!cra[6] && cnt_in && !cnt_in_prev) cnt_pulsecnt <= cnt_pulsecnt + 1'b1;
else if (cra[6] && !cra[3] && cra[0]) begin
if (sp_transmit) begin
cnt_out <= timer_a_out[0] ? ~cnt_out : cnt_out;
if (!cnt_out && cnt_out_prev) cnt_pulsecnt <= cnt_pulsecnt + 1'b1;
end
else cnt_out <= timer_a_out[0] ? 1'b1 : cnt_out;
end
end
// Interrupt Control
always @(posedge clk) begin
if (!res_n) begin
icr <= 5'h00;
irq_n <= 1'b1;
int_reset <= 2'b00;
end
else if (!cs_n && !rw)
case (rs)
4'hd: icr <= db_in[7] ? icr | db_in[4:0] : icr & ~db_in[4:0];
default: icr <= icr;
endcase
else irq_n <= irq_n ? ~|(icr & int_data) : int_reset[1] ? 1'b1 : irq_n;
if (!cs_n && rw && rs == 4'hd) int_reset <= 2'b01;
else if (int_reset) int_reset <= {int_reset[0], 1'b0};
end
endmodule

29
cores/c64/rtl/mos6526.vhd Normal file
View File

@@ -0,0 +1,29 @@
library IEEE;
use IEEE.std_logic_1164.all;
package mos6526 is
component mos6526
PORT (
clk : in std_logic;
phi2 : in std_logic;
res_n : in std_logic;
cs_n : in std_logic;
rw : in std_logic; -- '1' - read, '0' - write
rs : in std_logic_vector(3 downto 0);
db_in : in std_logic_vector(7 downto 0);
db_out : out std_logic_vector(7 downto 0);
pa_in : in std_logic_vector(7 downto 0);
pa_out : out std_logic_vector(7 downto 0);
pb_in : in std_logic_vector(7 downto 0);
pb_out : out std_logic_vector(7 downto 0);
flag_n : in std_logic;
pc_n : out std_logic;
tod : in std_logic;
sp_in : in std_logic;
sp_out : out std_logic;
cnt_in : in std_logic;
cnt_out : out std_logic;
irq_n : out std_logic
);
end component;
end package;