1
0
mirror of https://github.com/mist-devel/mist-board.git synced 2026-02-07 00:17:07 +00:00
Files
mist-devel.mist-board/cores/c16/ted.v
2020-02-17 22:44:42 +01:00

1760 lines
59 KiB
Verilog

`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Copyright 2013-2016 Istvan Hegedus
//
// FPGATED is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// FPGATED is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Create Date: 12/18/2013 - 31/03/2016
// Design Name: MOS 8360 video chip
// Module Name: ted.v
// Project Name: FPGATED
// Description: Cycle exact MOS 8360 TED display chip
//
// Revision history:
// 0.2 12/11/2015 diag 264 runs, all screenmodes implemented, external dram works, scroll bug in diag264
// 0.3 22/01/2016 DRAM resfresh horizontal events improved (increment start/stop, counter reset),vertical scroll bug in Invincible, FF1E write bug in New FLI, FLI incorrect
// 0.4 03/02/2016 VertSub counter fixed for Invincible start screen
// 0.5 22/02/2016 Raster interrupt fixed, Invincible does not freeze now
// 0.6 03/03/2016 Multicolor Character mode bug fixed in pixelgenerator. Majesty Of Sprites looks good now
// 0.7 30/03/2016 Audio sound generator and audio D/A implemented
// 1.0 14/07/2016 First public release, functionally equivalent to 0.7, code cleaned up, license information added
//////////////////////////////////////////////////////////////////////////////////
module ted(
input wire clk, // clk must be 4*dot clk so 28.375152MHz for PAL (1.6*PAL system's clock) and 28.63636 for NTSC (2*NTSC system's clock)
input wire [15:0] addr_in,
output wire [15:0] addr_out,
input wire [7:0] data_in,
output wire [7:0] data_out,
input wire rw,
output wire cpuclk, // this is a CPU clock for external real CPU
output wire [6:0] color, // 7 bits color code
output wire csync,
output reg hsync,
output reg vsync,
output wire irq,
output wire ba,
output reg mux,
output reg ras,
output reg cas,
output reg cs0,
output reg cs1,
output reg aec,
output wire snd,
output wire pal,
input wire [7:0] k,
output wire cpuenable // this TED signals is needed only for FPGA bustiming and FPGA internal cpu. If external CPU is used, it is not needed.
);
// TED register addresses
parameter TIMER1LO=6'h00;
parameter TIMER1HI=6'h01;
parameter TIMER2LO=6'h02;
parameter TIMER2HI=6'h03;
parameter TIMER3LO=6'h04;
parameter TIMER3HI=6'h05;
parameter CONTROL1=6'h06;
parameter CONTROL2=6'h07;
parameter KEYLATCH=6'h08;
parameter IRQ =6'h09;
parameter IRQEN =6'h0A;
parameter RASTER =6'h0B;
parameter CURPOSHI=6'h0C;
parameter CURPOSLO=6'h0D;
parameter CH1FREQLO=6'h0E;
parameter CH2FREQLO=6'h0F;
parameter CH2FREQHI=6'h10;
parameter SOUNDCTRL=6'h11;
parameter BMAPBASE=6'h12;
parameter CHARBASE=6'h13;
parameter VIDEOBASE=6'h14;
parameter BGCOLOR0=6'h15;
parameter BGCOLOR1=6'h16;
parameter BGCOLOR2=6'h17;
parameter BGCOLOR3=6'h18;
parameter EXCOLOR=6'h19;
parameter CHARPOSRELOADHI=6'h1A;
parameter CHARPOSRELOADLO=6'h1B;
parameter VSCANPOSHI=6'h1C;
parameter VSCANPOSLO=6'h1D;
parameter HSCANPOS=6'h1E;
parameter FLASH_VERTSUB=6'h1F;
parameter ROMEN=6'h3E;
parameter RAMEN=6'h3F;
// DMA FSM states
localparam IDLE=3'b000,THALT1=3'b001,THALT2=3'b010,THALT3=3'b011,TDMA=3'b100;
reg [2:0] dma_state=IDLE,dma_nextstate; // DMA FSM state register
// TED user accessible registers
// These registers are the actual TED registers accessible by end users
reg [15:0] timer1=16'b0,timer1_reload=16'b0; // $FF00/01
reg [15:0] timer2=16'b0; // $FF02/03
reg [15:0] timer3=16'b0; // $FF04/05
reg test=1'b0,ecm=1'b0,bmm=1'b0,den=1'b0,rsel=1'b0; // $FF06 control1 register bits
reg [2:0] yscroll=3'b0; // $FF06 bits 0-2, vertical scroll register
reg bmm_reg=1'b0,ecm_reg=1'b0; // delayed registered values of BMM and ECM
reg reverse=1'b0,stop=1'b0,mcm=1'b0,csel=1'b0; // $FF07 control2 register bits
reg [2:0] xscroll=3'b0; // $FF07 bits 0-2, horizontal scroll regitser
reg reverse_reg=1'b0,mcm_reg=1'b0; // delayed registered values of REVERSE and ECM
reg [7:0] keylatch=8'hff; // $FF08 keyboard latch
reg Cnt1Irq=1'b0,Cnt2Irq=1'b0,Cnt3Irq=1'b0,RasterIrq=1'b0,LPIrq=1'b1; // $FF09 IRQ register
reg enCnt1Irq=1'b0,enCnt2Irq=1'b0,enCnt3Irq=1'b0,enRasterIrq=1'b0,enLPIrq=1'b0; // $FF0A IRQ enable register
reg [8:0] RasterCmp=9'b0; // $FF0B
reg [9:0] CursorPos=10'b0; // $FF0C/0D
reg [9:0] Ch1Freq=10'b0; // $FF0E, $FF12 bits 0-1
reg [9:0] Ch2Freq=10'b0; // $FF0F, $FF10 bits 0-1
reg damode=1'b0,ch2noise=1'b0,ch2en=1'b0,ch1en=1'b0; // $FF11 bits 4-7
reg [3:0] volume=4'b0; // $FF11 bits 0-3
reg [2:0] bmapbase=3'b0; // $FF12 bits 3-5, Bitmap base address
reg charrom=1'b0; // $FF12 bit 2
reg [5:0] charbase=6'b0; // $FF13 bits 2-7, Character memory base address
reg clkmode=1'b0; // $FF13 bit 1, force single clock mode
reg [4:0] vmbase=5'b0; // $FF14 bits 3-7, Video RAM base address register
reg [6:0] bgcolor0=7'b0,bgcolor1=7'b0,bgcolor2=7'b0,bgcolor3=7'b0,excolor=7'b0; // $FF15-19 color registers
reg [9:0] CharPosReload=10'b0; // $FF1A/B, Character Position Reload increments by 40 for each character row completed
reg [8:0] vcounter=9'b0; // $FF1C/D, Vertical line counter
reg [8:0] hcounter=9'b0; // $FF1E, Horizontal dot counter. In real TED it is 11bit. Counts from 0 to 455
reg [4:0] FlashCount=5'b0; // $FF1F bits 3-6, Flash counter's 5th bit is the actual flash state and is not user accessible
reg [2:0] VertSubCount=3'b0; // $FF1f bits 0-2, Vertical Character scan line position
// TED internal operational registers
// These are needed for the internal operation
reg [7:0] refreshcounter=8'h00;
reg refresh=1'b0;
reg [3:0] phicounter=4'b0; // CPU single clock generator counter
reg phi=1'b0; // CPU single clock
reg singleclock=1'b0; // signals single clock mode
reg [8:0] hcounter_next;
reg [8:0] vcounter_next;
reg [8:0] videoline=9'b0; // vcounter latched at start of each scanline
reg [7:0] dataout_reg=8'hff; // TED's databus out register
reg [7:0] data_in_reg; // TED databus in register
reg [5:0] addr_in_reg; // TED address in register
reg [6:0] colorreg=7'b0; // video out register
reg ramen=1'b0; // High memory address RAM enable register (above $8000)
reg t1stop=1'b0,t2stop=1'b0,t3stop=1'b0; // Timer disable signals
reg resetRasterIrq,resetLpIrq,resetCnt1Irq,resetCnt2Irq,resetCnt3Irq; // Interrupt reset signals
reg RasterIrqDone=1'b0; // Signals that raster interrupt has already happened in this line
reg enabledisplay=1'b0; // DEN register changes enabledisplay signal on first scanline only
reg badline2=1'b0; // signals 2nd badline (1st badline signal is a wire)
reg ext_fetch=1'b0; // signals external fetch window inside scanline
reg char_fetch=1'b0; // signals character fetch window inside scanline
reg dma_window=1'b0; // signals active dma range inside a scanline
reg char_window=1'b0; // signals when character/pixel data can be latched from data bus inside a scanline
reg inc_flashcount_window=1'b0; // signals flash counter increase window
reg inc_vertsub_window=1'b0; // active for one single clock cycle, signals vertsub register incrementation point (thus actual increment point is delayed with a single clock cycle)
reg inc_vertline_window=1'b0; // active for one single clock cycle, signals vertical line incrementation point (thus actual increment point is delayed with a single clock cycle)
// horizontal event positions used for the horizontal event decoder. They don't necessarily reflect the values seen in documentation
reg hpos_0,hpos_8,hpos_154,hpos_172,hpos_288,hpos_295,hpos_296,hpos_303,hpos_304;
reg hpos_312,hpos_320,hpos_336,hpos_343,hpos_348,hpos_353,hpos_359,hpos_380,hpos_382;
reg hpos_384,hpos_391,hpos_392,hpos_400,hpos_407,hpos_423,hpos_431,hpos_432,hpos_440;
reg inc_charpos=1'b0; // signals internal character position register (not user accessible) increment range inside scanline (not same as $FF1A/$FF1B)
reg [15:0] addr_out_reg; // TED's address out register
reg [15:0] tedaddress; // this is a non registered TED address (although register variable but used in combinational logic)
reg datahold=1'b0; // signals whether TED should hold its data on the databus
reg VertSubActive=1'b0; // signals the scanline ranges when Vertsub counter is active
reg tedwrite_delay=1'b0; // this signal was needed to emulate a one dot clock delay when TED writes data to its internal registers. Although most probably this delay exist at
// all TED register writes, in FPGATED we use it only for hcounter/vcounter and color register writes. This emulates white pixel bug too.
reg csyncreg=1'b0,palreg=1'b0,equalization=1'b0,eq1=1'b1,eq2=1'b1; // PAL/NTSC video screen signals
reg [9:0] videocounter=10'b0; // videocounter is the actual DMA counter.
reg inc_videocounter=1'b0; // signals videocounter increment window
reg [9:0] videocounter_reload=10'b0; // videocounter is reloaded with this value at the beginning of each displayed line
reg [9:0] CharPosition=10'b0; // CharPosition is loaded by $FF1A/$FF1B and is similar to videocounter. It is used for pixel data fetch from memory.
reg CharPosLatch=1'b0; // Signals latching position of CharPosition and videocounter
reg latch_window=1'b0; // CharPosition and videocounter latch delay window
reg latch_charposition=1'b0; // Charposition and videocounter latch position
reg [7:0] attr_buf [0:39]; // TED internal videomatrix attribute memory
reg [7:0] char_buf [0:39]; // TED internal videomatrix character pointer memory
reg [7:0] nextchar=8'b0,currentchar=8'b0,waitingchar=8'b0,pixelchar=8'b0; // next...,current... is a 2 bytes shiftregister to keep data until rendering. waiting... is waiting to be loaded to rendering shiftregister
reg [7:0] nextattr=8'b0,currentattr=8'b0,waitingattr=8'b0,pixelattr=8'b0;
reg [7:0] nextpixels=8'b0,currentpixels=8'b0,waitingpixels=8'b0;
reg [7:0] pixelshiftreg=8'b0; // This register contains pixel data and shifts it during rendering
reg [5:0] shiftcount=6'b0; // Used by the videomatrix shift register to count number of shifts
reg verticalscreen=1'b0; // Signals which lines are in screen area (top/bottom border control)
reg widescreen=1'b0,narrowscreen=1'b0; // Signals horizontal screen area (left/right border control)
reg videoshift=1'b0; // Signals when vide shoft register is active
reg nextcursor=1'b0,currentcursor=1'b0,waitingcursor=1'b0; // cursor state internal storage for 3 signle clock cycles
reg [6:0] pixelcolor; // Color of a pixel
reg doubleshift=1'b0; // During multicolor mode 2 pixels identify one pixel, so this register signals to pixel generator wheter to shift one or two pixels to get color data
reg dotfetch; // Signals when TED is fetching pixeldata from databus
reg dotfetch_reg=1'b0; // Registered version of dotfetch
reg [2:0] xscroll_latch=3'b0; // Registered version of xscroll register
reg [2:0] yscroll_latch=3'b0; // Registered version of yscroll register
reg hblank=1'b0,vblank=1'b0; // Signals blanking area
reg refresh_inc=1'b0; // Dram refresh counter increment window
reg stopreg=1'b0; // This is a latched version of stop register. Latched at single cycle end
// audio part registers
reg [1:0] audiocycle=2'b0; // Audio cycle counter divides single clock by 4 and generates audio clock
reg [9:0] ch1count=10'b0,ch2count=10'b0; // Audio channel1 and channel2 counters
reg ch1state=1'b0,ch2state=1'b0; // State register of audio channels
reg ch1stateclk_prev=1'b0,ch2stateclk_prev=1'b0;
reg [7:0] noisegen=8'b0; // Noise generator register
reg [4:0] pwmcounter1=5'b0,pwmcounter2=5'b0; // PWM D/A counters
reg ch1pwm=0,ch2pwm=0; // continous square wave with proportional duty cycle to volume
reg [4:0] digivolume=5'b0; // A digital value signaling at which pwmclock cycle PWM signal high value starts. A digitized version of volume level
reg [17:0] watchdog_ch1=18'b0,watchdog_ch2=18'b0; // Watchdog timer to emulate sound decay of TED's dynamic latch behaviour
integer i;
integer j;
integer n;
// Internal wires, flags
wire dphi; // double phi clock
wire [8:0] EOS,VS_START,VS_STOP,EQ_START,EQ_STOP,VBLANK_START,VBLANK_STOP; //video signal generation constants. Vertical Sync, Equalization, Blank
wire tick8; // enable tick for pixelclock (8MHz)
wire blanking; // screen blanking area flag
wire lowrom,highrom; // TED low and high rom area flags
wire irqpos; // IRQ position flag inside clock cycle. Emulates real TED's IRQ signal activation position
wire io,tedreg,tedwrite; // IO area flag, TED user registers area flag, TED write cycle flag (signals when TED register is written by CPU)
wire badline; // badline flag
wire attr_fetch_line; // Visible screen area flag (signals active window)
wire tedlatch; // tedlatch simulates at which exact position TED latches value into its internal register from the databus
wire [7:0] charpointer,attrpointer;
wire multicolor; // multicolor mode flag
wire pixelscreen; // visible pixelscreen area flag (excluding borders)
wire ch1clk,ch2clk; // Audio channel clocks
wire ch1stateclk,ch2stateclk; // Audio state register change clock
wire ch1audio,ch2audio; // Audio channel square waves not modulated by volume (before PWM)
wire noise; // Noise
wire watchdog_ch1max,watchdog_ch2max; // Audio watchdog timer maximum values. Actual value is taken from plus4emu
// Initializing internal video matrix
initial
begin
for(i=0;i<=39;i=i+1)
begin
char_buf[i]=0;
attr_buf[i]=0;
end
end
//-----------------------------------------------------------------------
// Often used combinational signals
//-----------------------------------------------------------------------
assign cycle_end=(phicounter==15)?1'b1:1'b0; // high pulse at the end of each double clock cycle
assign single_cycle_end=(cycle_end & phi)?1'b1:1'b0; // high pulse at the end of each single clock cycle
//-----------------------------------------------------------------------
// Clock signal driver phi=Single Clock dphi=Double Clock
//-----------------------------------------------------------------------
always @(posedge clk) // Counting FPGA clock cycles during double clock. phicounter is mod16 counter, 16*clk=half phi
begin
phicounter<=phicounter+1;
end
assign cpuclk = singleclock?phi:dphi; // Generated CPU clock. Used only when real 8501 CPU is connected to FPGA
assign dphi = phicounter[3]; // Internal double clock signal
assign cpuenable=(single_cycle_end)?1'b1: // Generated CPU enable signal. Used only when FPGA CPU is used
(cycle_end && !singleclock)?1'b1:
1'b0;
always @(posedge clk) // Internal single clock signal is always generated
begin
if (cycle_end)
phi<=~phi;
end
always @(posedge clk) // clock mode controller. Single or double clock multiplex for the CPU.
begin
if(single_cycle_end) // clock mode change happens only at single clock boundary
singleclock<=((enabledisplay & ext_fetch) | refresh | clkmode | stop); // there are 4 criterias to generate single clock: display area,dram refresh,forced 1Mhz,TED stop
end
always @(posedge clk)
begin
if(single_cycle_end)
stopreg<=stop;
end
//--------------------------------------------------------------------------
// Attribute Fetch
//--------------------------------------------------------------------------
always @(posedge clk) // flip flop to signal external fetch single clock window, delayed with 1 single clock cycle
begin
if(hpos_296)
ext_fetch<=0;
else if(hpos_400)
ext_fetch<=1;
end
assign attr_fetch_line=(videoline>=0 && videoline<203);
//--------------------------------------------------------------------------
// DRAM Refresh
//--------------------------------------------------------------------------
always @(posedge clk) // refresh single clock control
begin
if(hpos_336)
refresh<=0;
else if(hpos_296)
refresh<=1;
end
always @(posedge clk) // refresh counter increment control
begin
if(hpos_343)
refresh_inc<=0;
else if(hpos_303)
refresh_inc<=1;
end
always @(posedge clk)
begin
if(single_cycle_end & (refresh_inc|stopreg))
refreshcounter<=refreshcounter+1;
else if(hpos_431 & (videoline==0|refresh_inc|stopreg))
refreshcounter<=8'h00;
end
//-------------------------------------------------------------------------------------------
// Horizontal counter running on ~8Mhz and vertical counter qualified by horizontal counter
//-------------------------------------------------------------------------------------------
assign tick8=(phicounter[1:0]==3)?1'b1:1'b0; //8Mhz clock tick for pixelclock. tick8 must activate one fastclk cycle earlier to use it for hcounter
always @(posedge clk)
begin
hcounter<=hcounter_next;
vcounter<=vcounter_next;
if(hpos_392)
videoline<=vcounter;
end
always @* //horizontal counter next state logic
begin
hcounter_next=hcounter;
if (tedlatch & addr_in_reg[5:0]==HSCANPOS) // horizontal counter is written by CPU
begin
hcounter_next=hcounter+1;
hcounter_next[8:3]=~data_in_reg[7:2]; // bit 0-2 are not modified by user write to prevent clock phase change
end
else if (tick8 & ~stopreg)
begin
if (hcounter==9'd455)
hcounter_next=9'd0;
else
hcounter_next=hcounter+1;
end
end
always @* //vertical counter next state logic
begin
vcounter_next=vcounter;
if(tedwrite & addr_in[5:1]==5'b01110) // $ff1c or $ff1d register write (VSCAN HI and LO)
begin
if(addr_in[0]==0)
vcounter_next={data_in[0],vcounter[7:0]};
else vcounter_next={vcounter[8],data_in};
end
else if(inc_vertline_window & single_cycle_end)
begin
if (vcounter==EOS)
vcounter_next=0;
else vcounter_next=vcounter+1;
end
end
always @(posedge clk)
begin
if(hpos_384)
inc_vertline_window<=1;
else if (single_cycle_end)
inc_vertline_window<=0;
end
//---------------------------------------------------------------------------
// Timer 1
//---------------------------------------------------------------------------
// timer 1 decrements during odd single clock cycle (phi=0)
// exact counter change position is unknown but can be estimated based on IRQ place and reading counter values every cycle on a real hardware
// timer 1 changes approximately at half of phi low cycle after IRQ position (IRQ position is 160ns after phi low cycle start).
//
always @(posedge clk)
begin
if(tedwrite) // load timer 1 at cycle border
begin
if (addr_in[5:0]==TIMER1LO)
begin
timer1[7:0]<=data_in;
timer1_reload[7:0]<=data_in;
t1stop<=1;
end
if (addr_in[5:0]==TIMER1HI)
begin
timer1[15:8]<=data_in;
timer1_reload[15:8]<=data_in;
t1stop<=0;
end
end
if(phicounter==7 && ~phi & ~t1stop & ~stopreg) // decrement or reload timer 1
begin
if(timer1==0)
timer1<=timer1_reload-1;
else
timer1<=timer1-1;
end
end
//---------------------------------------------------------------------------
// Timer 2
//---------------------------------------------------------------------------
// timer 2 decrements during even single clock cycle (phi=1)
// timer 2 changes approximately at odd-even single clock cycle boundary (phi low - high transition)
always @(posedge clk)
begin
if(tedwrite) // load timer 2 at cycle border
begin
if (addr_in[5:0]==TIMER2LO)
begin
timer2[7:0]<=data_in;
t2stop<=1;
end
if (addr_in[5:0]==TIMER2HI)
begin
timer2[15:8]<=data_in;
t2stop<=0;
end
end
else if(phicounter==15 && phi==0 && t2stop==0 && stopreg==0) // if not loaded, decrement timer 2 at odd-even cycle border
begin
timer2<=timer2-1;
end
end
//---------------------------------------------------------------------------
// Timer 3
//---------------------------------------------------------------------------
// timer 3 decrements during even single clock cycle (phi=1)
// timer 3 changes approximately at half of phi high cycle (contrary to timer 1)
always @(posedge clk)
begin
if(tedwrite)
begin
if (addr_in[5:0]==TIMER3LO) // load timer 3 at cycle border
begin
timer3[7:0]<=data_in;
t3stop<=1;
end
if (addr_in[5:0]==TIMER3HI)
begin
timer3[15:8]<=data_in;
t3stop<=0;
end
end
if(phicounter==7 && phi==1 && t3stop==0 && stopreg==0) // decrement timer 3
begin
timer3<=timer3-1;
end
end
//---------------------------------------------------------------------------
// Timer IRQs
//---------------------------------------------------------------------------
//
assign irqpos=(phicounter==4 & ~phi)?1'b1:1'b0;
always @(posedge clk)
begin
if(resetCnt1Irq)
Cnt1Irq<=0;
else if(irqpos && timer1==0)
Cnt1Irq<=1;
end
always @(posedge clk)
begin
if(resetCnt2Irq)
Cnt2Irq<=0;
else if(irqpos && timer2==0)
Cnt2Irq<=1;
end
always @(posedge clk)
begin
if(resetCnt3Irq)
Cnt3Irq<=0;
else if(irqpos && timer3==0)
Cnt3Irq<=1;
end
//---------------------------------------------------------------------------
// Raster IRQ
//---------------------------------------------------------------------------
always @(posedge clk)
begin
if (resetRasterIrq)
RasterIrq<=0;
else if (RasterCmp==vcounter)
begin
if(~RasterIrqDone & tick8) // do raster interrupt only 1 time per raster line and interrupt happens when phi or dphi is low and about 170ns after cycle start
begin
RasterIrq<=1;
RasterIrqDone<=1;
end
end
else RasterIrqDone<=0;
end
//---------------------------------------------------------------------------
// IRQ signal
//---------------------------------------------------------------------------
assign irq=~((enCnt1Irq & Cnt1Irq)|(enCnt2Irq & Cnt2Irq)| (enCnt3Irq & Cnt3Irq) | (enRasterIrq & RasterIrq) | (enLPIrq & LPIrq));
//---------------------------------------------------------------------------
// AEC signal generating
//---------------------------------------------------------------------------
always @(posedge clk)
begin
if((singleclock & ~phi) | (dma_state==TDMA))
aec<=0;
else aec<=1;
end
//---------------------------------------------------------------------------
// BA signal (RDY)
//---------------------------------------------------------------------------
assign ba=(dma_state==IDLE)?1'b1:1'b0;
//---------------------------------------------------------------------------
// badline
//---------------------------------------------------------------------------
assign badline=((yscroll_latch==videoline[2:0]) & enabledisplay & attr_fetch_line)?1'b1:1'b0; // signal 1st badline
always @(posedge clk)
begin
if(inc_vertline_window & single_cycle_end)
begin
if(badline)
badline2<=1;
else if(badline2)
badline2<=0;
end
/* else if(badline & ~hpos_392) //when yscroll changed to generate badline, abort an already started badline2 (except at start of line)
badline2<=0;*/
end
always @(posedge clk) // synchronize yscroll changes to single cycle border
begin
if(single_cycle_end)
yscroll_latch<=yscroll;
end
//---------------------------------------------------------------------------
// EnableDisplay signal
//---------------------------------------------------------------------------
always @(posedge clk)
begin
if(videoline==0 && den==1)
enabledisplay<=1;
if(videoline==204)
enabledisplay<=0;
end
//---------------------------------------------------------------------------
// Bitmapmask fetch signal
//---------------------------------------------------------------------------
always @(posedge clk) // character fetch window starts at first badline2 and stops at line 204. It signals that character fetches can happen in these lines.
begin
if(videoline==9'd204)
char_fetch<=0;
else if(badline2)
char_fetch<=1;
end
//----------------------------------------------------------------------------
// Character Position register $FF1A/$FF1B
//----------------------------------------------------------------------------
always @(posedge clk) // character fetch position increase from horizontal count 432 to horizontal count 296
begin
if(hpos_296)
inc_charpos<=0;
else if(hpos_432)
inc_charpos<=1;
end
always @(posedge clk) // DMA and Charpos latch delay trick
begin
latch_charposition<=0;
if(hpos_288)
latch_window<=1;
else if(single_cycle_end & latch_window)
begin
latch_window<=0;
latch_charposition<=1; // 1 FPGA cycle long latch enable signal used for Character position and videocounter position reload latch
end
end
always @(posedge clk)
begin
if(hpos_392)
begin
if(VertSubCount==6)
CharPosLatch<=1; // CharPosLatch signal activates in line 6 and signals that videocounter (DMA counter) has been latched. It is used in line 7 for character position latch.
else
CharPosLatch<=0;
end
end
always @(posedge clk) // Character Position Reload register $FF1A/$FF1B
begin
if(tedwrite & addr_in[5:0]==CHARPOSRELOADHI)
CharPosReload[9:8]<=data_in[1:0];
else if(tedwrite & addr_in[5:0]==CHARPOSRELOADLO)
CharPosReload[7:0]<=data_in;
else if(hpos_392 & videoline==EOS) // clear character position reload at last line
CharPosReload<=0;
else if(CharPosLatch & latch_charposition & enabledisplay) // latch character position at 7th line of a character row if videocunter was latched in previous 6th row
CharPosReload<=CharPosition;
end
always @(posedge clk) // Character Position counter (not user accessible)
begin
if(hpos_392) // clear character position in each line at 392
CharPosition<=0;
else
begin
if(hpos_432 & enabledisplay & VertSubActive) // FIXME this might need delay
CharPosition<=CharPosReload;
else if(inc_charpos & single_cycle_end)
CharPosition<=CharPosition+1;
end
end
//---------------------------------------------------------------------------
// Attribute fetch (DMA)
//---------------------------------------------------------------------------
// DMA FSM
always @(posedge clk)
begin
dma_state<=dma_nextstate;
end
always @*
begin
dma_nextstate=dma_state;
case(dma_state)
IDLE: begin
if((badline|badline2) & dma_window)
dma_nextstate=THALT1;
end
THALT1: begin
if((badline|badline2) & dma_window & single_cycle_end)
dma_nextstate=THALT2;
else if (~dma_window | ~(badline|badline2))
dma_nextstate=IDLE;
end
THALT2: begin
if((badline|badline2) & dma_window & single_cycle_end)
dma_nextstate=THALT3;
else if (~dma_window | ~(badline|badline2))
dma_nextstate=IDLE;
end
THALT3: begin
if((badline|badline2) & dma_window & single_cycle_end)
dma_nextstate=TDMA;
else if (~dma_window | ~(badline|badline2))
dma_nextstate=IDLE;
end
TDMA: begin
if (~dma_window | ~(badline|badline2))
dma_nextstate=IDLE;
end
default: dma_nextstate=IDLE;
endcase
end
always @(posedge clk)
begin
if(hpos_407 & tick8)
dma_window<=1;
else if(hpos_295 & tick8)
dma_window<=0;
end
//-------------
// Attribute fetch address generation (videocounter is DMA position counter)
//-------------
always @(posedge clk) // videocounter increase window
begin
if(enabledisplay)
begin
if(hpos_296)// | shiftcount==6'd40)
inc_videocounter<=0;
else if(hpos_432)
inc_videocounter<=1;
end
end
always @(posedge clk)
begin
if(hpos_392 & videoline==EOS) // clear videocounter reload register at last line
videocounter_reload<=0;
else if(inc_videocounter && hcounter_next == 9'd432 && tick8) // if the videocounter running when it's reloaded, that affects the reload value (HSP in Alpharay)
videocounter_reload<=videocounter+1'd1;
else if(VertSubCount==6 && latch_charposition && enabledisplay) // Latch videocounter position at 6th line of a character row
videocounter_reload<=videocounter;
end
always @(posedge clk) // videocounter used for attribute and character pointer fetches (DMA counter)
begin
if(enabledisplay)
begin
if(hpos_432)
videocounter<=videocounter_reload;
else if(inc_videocounter & single_cycle_end) // increase videocounter at cycle border
videocounter<=videocounter+1;
end
end
//------------------------------------
// Internal VideoMatrix (DMA buffers)
//------------------------------------
always @(posedge clk)
begin
if(single_cycle_end)
begin
if(inc_videocounter)
begin
if(badline) begin // in 1st badline fetch attribute from databus and place to buffer's start
attr_buf[0]<=data_in;
end
else begin
attr_buf[0]<=attr_buf[39];
end
for(i=1;i<40;i=i+1) begin
attr_buf[i]<=attr_buf[i-1];
end
nextattr<=attr_buf[39];
shiftcount<=shiftcount+1;
if(((CursorPos==CharPosition) && VertSubActive) || (CursorPos==0 && CharPosition==0)) // cursor position must be checked here
nextcursor<=1;
else nextcursor<=0;
end
else begin
nextattr<=0;
shiftcount<=0;
end
end
end
always @(posedge clk)
begin
if(single_cycle_end)
begin
if(inc_videocounter)
begin
if(badline) begin // during badline1 load this buffer together with attribute buffer. Needed for FLI trick
char_buf[0]<=data_in;
nextchar<=char_buf[39];
end
else if(badline2) begin
char_buf[0]<=data_in;
nextchar<=data_in;
end
else begin
char_buf[0]<=char_buf[39];
nextchar<=char_buf[39];
end
for(j=1;j<40;j=j+1) begin
char_buf[j]<=char_buf[j-1];
end
end
else begin
nextchar<=0;
end
end
end
always @(posedge clk) // character window flag is needed for fetching pixel data from bus
begin
if(hpos_304)
char_window<=0;
else if(hpos_440 & enabledisplay)
char_window<=1;
end
always @(posedge clk) // latch pixel data from data bus at phi0 change from 0 to 1
begin
if(char_window)
begin
if(hpos_440)
nextpixels<=0;
else if(cycle_end & ~phi)
nextpixels<=data_in;
end
end
//---------------------------------------------------------------------------
// Vertical Sub register represents actual raster line inside character
//---------------------------------------------------------------------------
always @(posedge clk)
begin
if(hpos_392)
inc_vertsub_window<=1;
else if(single_cycle_end)
inc_vertsub_window<=0;
if (hpos_380 & badline) // ... activates at 1st badline of the frame
VertSubActive<=1;
else if (~enabledisplay) // ... inactivates at line 204
VertSubActive<=0;
end
always @(posedge clk)
begin
if(tedwrite && addr_in[5:0]==FLASH_VERTSUB) // if it is written by user
VertSubCount<=data_in[2:0];
else
if(inc_vertsub_window & single_cycle_end) // if it is time to change VertSub
if (videoline==0) // ... changes to 7 at line 0 FIXME: between cycle $C8 and $CA
VertSubCount<=3'd7;
else if(enabledisplay & VertSubActive)
VertSubCount<=VertSubCount+1; // ... increases between line 0 and 204
end
//---------------------------------------------------------------------------
// Flash counter
// 5th bit of FlashCount contains flash status and not accessible via FF1F register
//---------------------------------------------------------------------------
always @(posedge clk)
begin
if(hpos_348)
inc_flashcount_window<=1;
else if(single_cycle_end)
inc_flashcount_window<=0;
if(tedwrite && addr_in[5:0]==FLASH_VERTSUB)
FlashCount[3:0]<=data_in[6:3];
else if(videoline==205 & inc_flashcount_window & single_cycle_end)
FlashCount<=FlashCount+1;
end
//---------------------------------------------------------------------------
// Horizontal event decodes
//---------------------------------------------------------------------------
always @(hcounter)
begin
hpos_0=0;
hpos_8=0;
hpos_154=0;
hpos_172=0;
hpos_288=0;
hpos_295=0;
hpos_296=0;
hpos_303=0;
hpos_304=0;
hpos_312=0;
hpos_320=0;
hpos_336=0;
hpos_343=0;
hpos_348=0;
hpos_353=0;
hpos_359=0;
hpos_380=0;
hpos_382=0;
hpos_384=0;
hpos_391=0;
hpos_392=0;
hpos_400=0;
hpos_407=0;
hpos_423=0;
hpos_431=0;
hpos_432=0;
hpos_440=0;
case (hcounter)
0: hpos_0=1; // Start of 40 column screen
8: hpos_8=1; // Start of 38 column screen
154: hpos_154=1; // Equalization pulse 1 start
172: hpos_172=1; // Equalization pulse 1 end
288: hpos_288=1; // CharPosition and Videocounter latch position delayed by 1 cycle (starts at 296)
295: hpos_295=1; // Attribute fetch (DMA) FSM stop
296: hpos_296=1; // Stop external fetch single clock delayed by 1 cycle
// Start refresh singleclock delayed by 1 cycle (actual start at 304)
303: hpos_303=1; // Start refresh counter increment (304 in real TED)
304: hpos_304=1; // End of character window
312: hpos_312=1; // End of 38 column screen
320: hpos_320=1; // End of 40 column screen
336: hpos_336=1; // Stop refresh singleclock but delayed by 2 cycle (actual stop at 344)
343: hpos_343=1; // Stop refresh counter increment (344 in real TED)
348: hpos_348=1; // Flash (blink) counter increment point delayed by 2 cycles (increments at 352)
353: hpos_353=1; // Horizontal blanking start
359: hpos_359=1; // Horizontal sync start (358 in real TED however line change takes time thus the delay)
380: hpos_380=1;
382: hpos_382=1; // Equalization pulse 2 start
384: hpos_384=1; // End Of Screen. Clear vertical line,refresh counters and character reload register, increase vertical line after 1 cycle delay
391: hpos_391=1;
392: hpos_392=1; // VertSub register increment (delayed), Hsync end
400: hpos_400=1; // Start external fetch single clock (delayed), Equalization pulse 2 end
407: hpos_407=1; // Attribute fetch (DMA) FSM start
423: hpos_423=1; // Horizontal blanking stop
431: hpos_431=1; // Refresh counter reset point
432: hpos_432=1; // Start videocounter increment
440: hpos_440=1; // Start video shiftregister
endcase
end
//---------------------------------------------------------------------------
// Border control
//---------------------------------------------------------------------------
always @(posedge clk) // 25/24 row select and top/bottom borders
begin
if(rsel==1) begin
if(videoline==9'd4) // if 25 rows mode, screen starts at line 4
verticalscreen<=1;
else if (videoline==9'd204) // stops at line 204
verticalscreen<=0;
end
else begin
if(videoline==9'd8) // if 24 rows mode, screen starts at line 8
verticalscreen<=1;
else if(videoline==9'd200) // stops at line 200
verticalscreen<=0;
end
end
always @(posedge clk) // 38/40 columns select and side borders
begin
if(enabledisplay & verticalscreen)
begin
if(hpos_320 & tick8)
widescreen<=0;
else if (hpos_0 & tick8)
widescreen<=1;
if(hpos_312 & tick8)
narrowscreen<=0;
else if (hpos_8 & tick8)
narrowscreen<=1;
end
end
//---------------------------------------------------------------------------
// VideoShift Register
//---------------------------------------------------------------------------
always @(posedge clk)
begin
if (hpos_312)
videoshift<=0;
else if(enabledisplay & hpos_440)
videoshift<=1;
end
always @(posedge clk) // video shift register stores fetched video data until pixelshiftregister is loaded
begin
if(hpos_440)
begin
waitingattr<=0;
waitingchar<=0;
waitingpixels<=0;
currentattr<=0;
currentchar<=0;
currentpixels<=0;
end
else if(cycle_end & videoshift)
begin
if(phi)
begin
currentchar<=nextchar;
waitingchar<=currentchar;
currentattr<=nextattr;
waitingattr<=currentattr;
waitingpixels<=currentpixels;
currentcursor<=nextcursor;
waitingcursor<=currentcursor;
end
else if(~phi)
currentpixels<=nextpixels;
end
end
assign cursor=(waitingcursor & ~FlashCount[4]);
//---------------------------------------------------------------------------
// Pixel Generator
// Final screen is delayed by 2 pixels
//---------------------------------------------------------------------------
always @(posedge clk) // synchronize xscroll and display mode changes to single cycle border
begin
if (single_cycle_end)
begin
xscroll_latch<=xscroll;
ecm<=ecm_reg;
bmm<=bmm_reg;
reverse<=reverse_reg;
mcm<=mcm_reg;
end
end
always @(posedge clk) // video pixel shift tregister
begin
if(videoshift | widescreen) // shift register works only when beam is on wide screen area
begin
if(tick8)
begin
doubleshift<=~doubleshift;
if(hcounter[2:0] == xscroll_latch) // load register based on xscroll
begin
doubleshift<=0;
if(cursor & ~bmm & ~ecm & ~mcm) // when character is at cursor position and in Standard Character mode, load the invert of character mask
pixelshiftreg<=waitingpixels^8'hFF;
else pixelshiftreg<=waitingpixels;
pixelattr<=waitingattr; // latch attribute and charpointer for pixelgenerator
pixelchar<=waitingchar;
end
else
begin
if(~multicolor)
pixelshiftreg<={pixelshiftreg[6:0],1'b0};
else if(doubleshift) // double pixel shifting
pixelshiftreg<={pixelshiftreg[5:0],2'b0};
end
end
end
else pixelshiftreg<=0; // clear shiftreg at the end of screen line to avoid shifting in its content at next line
end
assign pixelscreen=(csel)?widescreen:narrowscreen; // change between narrow and wide screens plus 1 pixel delay due to latch
assign multicolor= mcm & (ecm | pixelattr[3] | bmm); // multicolor rendering is initiated when mcm=1 and either ecm,bmm or character attribute's 4th bit is 1
always @* // video pixel color generator
begin
pixelcolor=bgcolor0;
if(pixelscreen & enabledisplay)
begin
if (~bmm & ~ecm) // Standard and Multicolor Character modes
begin
if(~multicolor) // Standard Character mode
begin
if((reverse|mcm)?pixelshiftreg[7]:(pixelshiftreg[7]& ~(pixelattr[7] & FlashCount[4]))^pixelchar[7])
pixelcolor=pixelattr[6:0];
end
else
begin // Multicolor Character mode
case(pixelshiftreg[7:6])
2'b00: pixelcolor=bgcolor0;
2'b01: pixelcolor=bgcolor1;
2'b10: pixelcolor=bgcolor2;
2'b11: pixelcolor={pixelattr[6:4],1'b0,pixelattr[2:0]};
endcase
end
end
else if (~mcm & ~bmm & ecm) // Extended Color Character mode
begin
if(pixelshiftreg[7])
pixelcolor=pixelattr[6:0];
else begin
case(pixelchar[7:6])
2'b00: pixelcolor=bgcolor0;
2'b01: pixelcolor=bgcolor1;
2'b10: pixelcolor=bgcolor2;
2'b11: pixelcolor=bgcolor3;
endcase
end
end
else if(~mcm & bmm & ~ecm) // Standard Bitmap mode
begin
if(pixelshiftreg[7])
pixelcolor={pixelattr[2:0],pixelchar[7:4]};
else pixelcolor={pixelattr[6:4],pixelchar[3:0]};
end
else if(mcm & bmm & ~ecm) // Multicolor bitmap mode
begin
case(pixelshiftreg[7:6])
2'b00: pixelcolor=bgcolor0;
2'b01: pixelcolor={pixelattr[2:0],pixelchar[7:4]};
2'b10: pixelcolor={pixelattr[6:4],pixelchar[3:0]};
2'b11: pixelcolor=bgcolor1;
endcase
end
else // invalid mode
begin
pixelcolor=7'b0;
end
end
else
pixelcolor=excolor;
end
always @(posedge clk) // latch pixelcolor and multiplex it with blank signal
begin
if (tick8)
if(~blanking)
colorreg<=pixelcolor;
else colorreg<=0;
end
//---------------------------------------------------------------------------
// Screen signals generation
//---------------------------------------------------------------------------
// PAL/NTSC screen constants
assign pal = !palreg;
assign EOS = pal?9'd311:9'd261; // End of Screen scanline
assign VS_START = pal?9'd254:9'd229; // Vertical sync start
assign VS_STOP = pal?9'd257:9'd232; // Vertical sync stop
assign EQ_START = pal?9'd251:9'd226; // Equalization start
assign EQ_STOP = pal?9'd260:9'd235; // Equalization stop
assign VBLANK_START = pal?9'd251:9'd226; // Screen blanking start
assign VBLANK_STOP = pal?9'd269:9'd244; // Screen blanking stop// Composite Sync signal
always @(posedge clk) // composite synchron is either hsync or equalization+vsync
begin
csyncreg<=(equalization)?~((eq1&eq2)|~vsync):hsync;
end
always @(posedge clk) // vsync signal inverts equalization signal
begin
if (videoline==VS_START && hpos_400)
vsync<=1;
else if (videoline==VS_STOP && hpos_400)
vsync<=0;
end
always @(posedge clk) // equalization signal active during actual vsync+equalization window
begin
if(videoline==EQ_START && hpos_400)
equalization<=1;
else if (videoline==EQ_STOP && hpos_400)
equalization<=0;
end
always @(posedge clk) // Equalization pulses generated by horizontal decoder events
begin
if(hpos_154)
eq1<=0;
else if (hpos_172)
eq1<=1;
if(hpos_382)
eq2<=0;
else if (hpos_400)
eq2<=1;
end
always @(posedge clk) // Horizontal sync pulse (due to original HMOS technology signal change takes 2 pixels long thus these change positions differ from the specification)
begin
if(hpos_359)
hsync<=0;
else if (hpos_391)
hsync<=1;
end
always @(posedge clk) // horizontal blanking zone
begin
if(hpos_423)
hblank<=0;
else if(hpos_353) // in real TED it starts at 352 but slew rate takes 2 pixels. 353 is at halfway. FIXME: Might be initiated at 344.
hblank<=1;
end
always @(posedge clk) // vertical blanking zone
begin
if(videoline==VBLANK_STOP)
vblank<=0;
else if(videoline==VBLANK_START)
vblank<=1;
end
assign blanking=hblank|vblank;
assign csync=csyncreg;
assign color=colorreg;
//-----------------------------------------------------------------------------------------------
// Memory Controller
//-----------------------------------------------------------------------------------------------
always @(posedge clk) // Generating RAS, internal CAS and MUX signals based on clk28 cycle numbers. Not 100% precise reproduction of original TED timing but still in dram specifications
case (phicounter) // one clk28 cycle is 35.35ns
1: begin
ras<=1;
cas<=1;
mux<=1;
cs0<=1;
cs1<=1;
end
6: ras<=0; // RAS goes low 35ns before MUX (20ns on real system)
7: begin
mux<=0; // MUX goes low when double phi changes to high at half double clock cycle, CS0,CS1 changes together with MUX when needed
if(rw) // CS0,CS1 generation only on read cycles
begin
if((~ramen & ~dotfetch_reg) | (charrom & dotfetch_reg )) // ROM chip select is controlled by ramen register or by charrom register depending on whether dot data is fetched from bus
begin
if(lowrom) // Basic area
cs0<=0;
if(highrom & ~io & ~tedreg) // Kernal area
cs1<=0;
end
end
end
// TH: relax write timing a little bit
// 8: if (rw & cs0 & cs1 & ~io & ~tedreg) // when read cycle, CAS goes low 35ns after MUX (40ns on real system)
// cas<=0;
// 11: if (~rw & ~io & ~tedreg) // when write cycle, CAS goes low 160ns after MUX
// cas<=0;
8: if ((rw & cs0 & cs1 & ~io & ~tedreg) || (~rw & ~io & ~tedreg))
cas<=0;
default: // otherwise they don't change
begin
ras<=ras;
mux<=mux;
cas<=cas;
cs0<=cs0;
cs1<=cs1;
end
endcase
// Generating memory area flags.
assign lowrom=(addr_in[15:14]==2'b10)?1'b1:1'b0; //$8000-$bfff low rom area (Basic)
assign highrom=(addr_in[15:14]==2'b11)?1'b1:1'b0; //$c000-$ffff high rom area (Kernal, IO and TED area)
assign io=(addr_in[15:8]==8'hFD || addr_in[15:8]==8'hFE)?1'b1:1'b0; //$fd00-$feff IO space
assign tedreg=(addr_in[15:6]==10'b1111111100 && (addr_in[5]==0 || addr_in[5:1]==7'b11111))?1'b1:1'b0; //$ff00-$ff1f & $ff3e-$ff3f TED registers
//-----------------------------------------------------------------------------------------------
// Generating TED address out
//-----------------------------------------------------------------------------------------------
assign addr_out=(~aec)?addr_out_reg:16'hffff;
always @(posedge clk)
begin
if(cycle_end)
begin
addr_out_reg<=tedaddress;
dotfetch_reg<=dotfetch;
end
end
assign charpointer=(inc_videocounter)?((badline2)?data_in:char_buf[39]):0;
assign attrpointer=attr_buf[39];
always @*
begin
tedaddress=16'hffff;
dotfetch=0;
if(phi==0) // generating address for phi1 phase (will be clocked and valid in phi1)
begin
if(dma_state==TDMA)
tedaddress={vmbase,(badline)?1'b0:1'b1,videocounter}; // attribute or character pointer fetch address
end
else //if(~test)
begin // generating address for phi0 phase (will be clocked and valid in phi0)
if(refresh_inc|stopreg) // dram refresh address
tedaddress={8'hff,refreshcounter};
else if(inc_charpos & char_fetch)
begin
dotfetch=1;
if(~bmm) // Text mode fetch address
begin
tedaddress=(~reverse)?{charbase[5:0],charpointer[6:0],VertSubCount}:{charbase[5:1],charpointer,VertSubCount};
tedaddress[10:9]=(ecm)?2'b00:tedaddress[10:9];
end
else
tedaddress={bmapbase,CharPosition,VertSubCount}; // bitmap mode fetch address
end
end
/*
else begin // IC test mode fetch addresses
dotfetch=1;
if(~bmm)
tedaddress={5'hF8,attrpointer,VertSubCount}; // test mode character screen
else tedaddress={3'b111,(CharPosition && {2'b11,attrpointer}),VertSubCount};
end
*/
end
//-----------------------------------------------------------------------------------------------
// TED registers write
//-----------------------------------------------------------------------------------------------
assign tedwrite=tedreg&~rw&cycle_end; // It signals TED register write which happens always when rw is low and end of double clock cycle
assign tedlatch=tedwrite_delay & (phicounter==3); // trying to simulate when exactly the hcounter is written by TED
always @(posedge clk)
begin
if(tedwrite)
tedwrite_delay<=1;
else if (phicounter==3)
tedwrite_delay<=0;
end
always @(posedge clk)
begin
resetRasterIrq<=1'b0;
resetLpIrq<=1'b0;
resetCnt1Irq<=1'b0;
resetCnt2Irq<=1'b0;
resetCnt3Irq<=1'b0;
if (tedwrite) // when TED registers are addressed
begin
data_in_reg<=data_in;
addr_in_reg<=addr_in[5:0];
case(addr_in[5:0])
CONTROL1: // $FF06
begin
test<=data_in[7];
ecm_reg<=data_in[6];
bmm_reg<=data_in[5];
den<=data_in[4];
rsel<=data_in[3];
yscroll<=data_in[2:0];
end
CONTROL2: // $FF07
begin
reverse_reg<=data_in[7];
palreg<=data_in[6];
stop<=data_in[5];
mcm_reg<=data_in[4];
csel<=data_in[3];
xscroll<=data_in[2:0];
end
KEYLATCH: // $FF08
keylatch<=k[7:0];
IRQ: // $FF09
begin
resetCnt3Irq<=data_in[6];
resetCnt2Irq<=data_in[4];
resetCnt1Irq<=data_in[3];
resetLpIrq<=data_in[2];
resetRasterIrq<=data_in[1];
end
IRQEN: // $FF0A
begin
enCnt3Irq<=data_in[6];
enCnt2Irq<=data_in[4];
enCnt1Irq<=data_in[3];
enRasterIrq<=data_in[1];
RasterCmp[8]<=data_in[0];
end
RASTER: // $FF0B
RasterCmp[7:0]<=data_in;
CURPOSHI: // $FF0C
CursorPos[9:8]<=data_in[1:0];
CURPOSLO: // $FF0D
CursorPos[7:0]<=data_in;
CH1FREQLO: // $FF0E
Ch1Freq[7:0]<=data_in;
CH2FREQLO: // $FF0F
Ch2Freq[7:0]<=data_in;
CH2FREQHI: // $FF10
Ch2Freq[9:8]<=data_in[1:0];
SOUNDCTRL: // $FF11
begin
damode<=data_in[7];
ch2noise<=data_in[6];
ch2en<=data_in[5];
ch1en<=data_in[4];
volume<=data_in[3:0];
end
BMAPBASE: // $FF12
begin
bmapbase<=data_in[5:3];
charrom<=data_in[2];
Ch1Freq[9:8]<=data_in[1:0];
end
CHARBASE: // $FF13
begin
charbase<=data_in[7:2];
clkmode<=data_in[1];
end
VIDEOBASE: // $FF14
vmbase<=data_in[7:3];
BGCOLOR0: // $FF15 , color change at cycle start, emulating white pixel bug (for all 5 color registers)
bgcolor0<=8'hff;
BGCOLOR1: // $FF16
bgcolor1<=8'hff;
BGCOLOR2: // $FF17
bgcolor2<=8'hff;
BGCOLOR3: // $FF18
bgcolor3<=8'hff;
EXCOLOR: // $FF19
excolor<=8'hff;
ROMEN: ramen<=1'b0;
RAMEN: ramen<=1'b1;
default:;
endcase
end
// Color registers write (white pixel bug emulation)
else if (tedlatch) // these events happen 1 pixel later after cycle start, setting the proper color to color registers
case(addr_in_reg[5:0])
BGCOLOR0: // $FF15
bgcolor0<=data_in_reg[6:0];
BGCOLOR1: // $FF16
bgcolor1<=data_in_reg[6:0];
BGCOLOR2: // $FF17
bgcolor2<=data_in_reg[6:0];
BGCOLOR3: // $FF18
bgcolor3<=data_in_reg[6:0];
EXCOLOR: // $FF19
excolor<=data_in_reg[6:0];
default:;
endcase
end
// TED register read
always @(posedge clk)
begin
if(tedreg & rw)
begin
if(phicounter==7) // latch register contents to dataout reg at mux change
begin
case(addr_in[5:0])
TIMER1LO: // $FF00
dataout_reg<=timer1[7:0];
TIMER1HI: // $FF01
dataout_reg<=timer1[15:8];
TIMER2LO: // $FF02
dataout_reg<=timer2[7:0];
TIMER2HI: // $FF03
dataout_reg<=timer2[15:8];
TIMER3LO: // $FF04
dataout_reg<=timer3[7:0];
TIMER3HI: // $FF05
dataout_reg<=timer3[15:8];
CONTROL1: // $FF06
begin
dataout_reg[7]<=test;
dataout_reg[6]<=ecm;
dataout_reg[5]<=bmm;
dataout_reg[4]<=den;
dataout_reg[3]<=rsel;
dataout_reg[2:0]<=yscroll;
end
CONTROL2: // $FF07
begin
dataout_reg[7]<=reverse;
dataout_reg[6]<=palreg;
dataout_reg[5]<=stop;
dataout_reg[4]<=mcm;
dataout_reg[3]<=csel;
dataout_reg[2:0]<=xscroll;
end
KEYLATCH: // $FF08
begin
dataout_reg<=keylatch;
end
IRQ: // $FF09
begin
dataout_reg[7]<=~irq;
dataout_reg[6]<=Cnt3Irq;
dataout_reg[4]<=Cnt2Irq;
dataout_reg[3]<=Cnt1Irq;
dataout_reg[2]<=LPIrq; // Lightpen irq is always 1 as it is not implemented in TED
dataout_reg[1]<=RasterIrq;
end
IRQEN: // $FF0A
begin
dataout_reg[6]<=enCnt3Irq;
dataout_reg[4]<=enCnt2Irq;
dataout_reg[3]<=enCnt1Irq;
dataout_reg[2]<=enLPIrq; // lightpen irq enable bit is implemented in TED
dataout_reg[1]<=enRasterIrq;
dataout_reg[0]<=RasterCmp[8];
end
RASTER: // $FF0B
dataout_reg<=RasterCmp[7:0];
CURPOSHI: // $FF0C
dataout_reg[1:0]<=CursorPos[9:8];
CURPOSLO: // $FF0D
dataout_reg<=CursorPos[7:0];
CH1FREQLO: // $FF0E
dataout_reg<=Ch1Freq[7:0];
CH2FREQLO: // $FF0F
dataout_reg<=Ch2Freq[7:0];
CH2FREQHI: // $FF10
begin
dataout_reg[7]<=1'b0; // the 8th unused bit is always 0
dataout_reg[1:0]<=Ch2Freq[9:8];
end
SOUNDCTRL: //$FF11
begin
dataout_reg[7]<=damode;
dataout_reg[6]<=ch2noise;
dataout_reg[5]<=ch2en;
dataout_reg[4]<=ch1en;
dataout_reg[3:0]<=volume;
end
BMAPBASE: // $FF12
begin
dataout_reg[5:3]<=bmapbase;
dataout_reg[2]<=charrom;
dataout_reg[1:0]<=Ch1Freq[9:8];
end
CHARBASE: // $FF13
begin
dataout_reg[7:2]<=charbase;
dataout_reg[1]<=clkmode;
dataout_reg[0]<=~ramen;
end
VIDEOBASE: // $FF14
dataout_reg[7:3]<=vmbase;
BGCOLOR0: // $FF15
dataout_reg[6:0]<=bgcolor0;
BGCOLOR1: // $FF16
dataout_reg[6:0]<=bgcolor1;
BGCOLOR2: // $FF17
dataout_reg[6:0]<=bgcolor2;
BGCOLOR3: // $FF18
dataout_reg[6:0]<=bgcolor3;
EXCOLOR: // $FF19
dataout_reg[6:0]<=excolor;
CHARPOSRELOADHI: //$FF1A
dataout_reg[1:0]<=CharPosReload[9:8];
CHARPOSRELOADLO: //$FF1B
dataout_reg<=CharPosReload[7:0];
VSCANPOSHI: // $FF1C
dataout_reg[0]<=vcounter[8];
VSCANPOSLO: // $FF1D
dataout_reg<=vcounter[7:0];
HSCANPOS: // $FF1E
dataout_reg<={hcounter[8:2],1'b0};
FLASH_VERTSUB: //$FF1F
begin
dataout_reg[6:3]<=FlashCount[3:0];
dataout_reg[2:0]<=VertSubCount;
end
ROMEN: // $FF3E
dataout_reg<=8'h00;
RAMEN: // $FF3F
dataout_reg<=8'h00;
default:;
endcase
end
else if(phicounter==10) // put dataout register content to databus at this moment
datahold<=1;
end
if(phicounter==1)
begin
datahold<=0;
dataout_reg<=8'hff;
end
end
assign data_out=(datahold)?dataout_reg:8'hff;
//--------------------------------------------------------------------------------
// TED audio generator
//--------------------------------------------------------------------------------
assign snd=(ch1audio&ch1pwm)|(ch2audio&ch2pwm); // mixing audio channel signals
always @(posedge clk) // audio cycle counter divides single clock by 4
begin
if(single_cycle_end)
audiocycle<=audiocycle+1;
end
assign ch1clk=single_cycle_end&(audiocycle==2'b11); // Channel1 clock
assign ch2clk=single_cycle_end&(audiocycle==2'b01); // Channel2 clock
// Channel 1
always @(posedge clk)
begin
if(ch1clk)
begin
if((ch1count==10'h3ff) || damode)
ch1count<=Ch1Freq+1;
else ch1count<=ch1count+1;
end
end
assign ch1stateclk=(ch1count==10'h3ff)?1'b1:1'b0;
always @(posedge clk) // Channel 1 state clock rising edge detection
begin
ch1stateclk_prev<=ch1stateclk;
if(damode|watchdog_ch1max) // reset ch1state if damode is enabled or watchdog timer expires
ch1state<=0;
else if(~ch1stateclk_prev & ch1stateclk) // if rising edge
ch1state<=~ch1state; // change channel 1 state
end
assign ch1audio=(ch1en)?~ch1state:1'b0; // ch1audio before D/A conversion
always @(posedge clk) // emulating dynamic latch behaviour using watchdog timer (forgets setting after 188416 * audio clock cycles)
begin
if((~ch1stateclk_prev & ch1stateclk)|watchdog_ch1max) // reset watchdog timer at channel1 state change or when maximum time reached
watchdog_ch1<=0;
else if(ch1clk) // watchdog timer counts with audio clock cycles
watchdog_ch1<=watchdog_ch1+1;
end
assign watchdog_ch1max=(watchdog_ch1==18'd188416)?1'b1:1'b0;
// Channel 2
always @(posedge clk)
begin
if(ch2clk)
begin
if((ch2count==10'h3ff) || damode)
ch2count<=Ch2Freq+1;
else ch2count<=ch2count+1;
end
end
assign ch2stateclk=(ch2count==10'h3ff)?1'b1:1'b0;
always @(posedge clk) // Channel 2 state clock rising edge detection
begin
ch2stateclk_prev<=ch2stateclk;
if(damode) // reset ch2state if damode is enabled
ch2state<=0;
else if(~ch2stateclk_prev & ch2stateclk) // if rising edge
ch2state<=~ch2state; // change channel 2 state
end
assign ch2audio=(ch2en)?~ch2state:noise; // ch2audio combined with noise before D/A conversion
always @(posedge clk) // emulating dynamic latch behaviour using watchdog timer (forgets setting after 188416 * audio clock cycles)
begin
if((~ch2stateclk_prev & ch2stateclk)|watchdog_ch2max) // reset watchdog timer at channel1 state change or when maximum time reached
watchdog_ch2<=0;
else if(ch2clk) // watchdog timer counts with audio clock cycles
watchdog_ch2<=watchdog_ch2+1;
end
assign watchdog_ch2max=(watchdog_ch2==18'd188416)?1'b1:1'b0;
// Noise generator
always @(posedge clk)
begin
if(damode)
noisegen<=0;
else if(~ch2stateclk_prev & ch2stateclk)
begin
for(n=1;n<8;n=n+1)
begin
noisegen[n]<=noisegen[n-1];
end
noisegen[0]<=1^noisegen[7]^noisegen[5]^noisegen[4]^noisegen[1];
end
end
assign noise=(ch2noise)?noisegen[0]:1'b0; // noise signal
// D/A converter
always @* // volume value conversion to pwmcounter numbers where PWM signal high value starts
begin
case (volume)
0: digivolume=31;
1: digivolume=30;
2: digivolume=28;
3: digivolume=26;
4: digivolume=24;
5: digivolume=22;
6: digivolume=20;
7: digivolume=18;
8: digivolume=16;
default: digivolume=16;
endcase
end
always @(posedge clk) // generating PWM pulses for channel1
begin
if(tick8)
begin
if(ch1clk) // synchronizing channel1 PWM signal to channel1 audio
pwmcounter1<=0;
else pwmcounter1<=pwmcounter1+1;
if ( pwmcounter1 < digivolume || pwmcounter1==31 ) // set pwm signal duty cycle based on modified volume value
ch1pwm<=0;
else ch1pwm<=1;
end
end
always @(posedge clk) // generating PWM pulses for channel2
begin
if(tick8)
begin
if(ch2clk) // synchronizing channel2 PWM signal to channel2 audio (it is shifted by 2 single clock cycles compared to channel1)
pwmcounter2<=0;
else pwmcounter2<=pwmcounter2+1;
if ( pwmcounter2 < digivolume || pwmcounter2==31 ) // set pwm signal duty cycle based on modified volume value
ch2pwm<=0;
else ch2pwm<=1;
end
end
endmodule