1
0
mirror of synced 2026-01-17 08:32:53 +00:00

enable the XOR in HW for CBC mode, some R/W protect on registers

This commit is contained in:
Romain Dolbeau 2020-12-21 09:03:57 -05:00
parent 0f737c1064
commit 55b8b7697e
3 changed files with 109 additions and 21 deletions

View File

@ -454,7 +454,10 @@ typedef struct {
int Nr; /* key-length-dependent number of rounds */
uint32_t ek[4 * (RIJNDAEL_MAXNR + 1)]; /* encrypt key schedule */
uint32_t dk[4 * (RIJNDAEL_MAXNR + 1)]; /* decrypt key schedule */
struct rdfpga_softc *sc;
int readback;
int cbc;
} rdfpga_rijndael_ctx;
struct rdfpga_enc_xform {
@ -525,6 +528,8 @@ static int rdfpga_newses(void* arg, u_int32_t* sid, struct cryptoini* cri) {
return EINVAL;
}
((rdfpga_rijndael_ctx *)sc->sw_kschedule)->sc = sc;
((rdfpga_rijndael_ctx *)sc->sw_kschedule)->readback = 1;
((rdfpga_rijndael_ctx *)sc->sw_kschedule)->cbc = 0;
u_int32_t ctrl;
while ((ctrl = bus_space_read_4(sc->sc_bustag, sc->sc_bhregs, RDFPGA_REG_AES128_CTRL)) != 0) {
@ -601,6 +606,8 @@ rdfpga_rijndael128_encrypt(void *key, u_int8_t *blk)
for (i = 0 ; i < 2 ; i++)
bus_space_write_8(sc->sc_bustag, sc->sc_bhregs, (RDFPGA_REG_AES128_DATA + (i*8)), ptr[i] );
ctrl = RDFPGA_MASK_AES128_START;
if (ctx->cbc)
ctrl |= RDFPGA_MASK_AES128_CBCMOD;
bus_space_write_4(sc->sc_bustag, sc->sc_bhregs, RDFPGA_REG_AES128_CTRL, ctrl);
/* aprint_normal_dev(sc->sc_dev, "rdfpga_rijndael128_crypt: wait for results\n"); */
@ -617,15 +624,17 @@ rdfpga_rijndael128_encrypt(void *key, u_int8_t *blk)
}
/* aprint_normal_dev(sc->sc_dev, "rdfpga_rijndael128_crypt: read results\n"); */
for (i = 0 ; i < 2 ; i++)
ptr[i] = bus_space_read_8(sc->sc_bustag, sc->sc_bhregs, (RDFPGA_REG_AES128_OUT + (i*8)));
if (!(((u_int32_t)blk) & 0x7)) {
/* nothing */
} else {
memcpy(blk, data, 16);
if (ctx->readback) {
for (i = 0 ; i < 2 ; i++)
ptr[i] = bus_space_read_8(sc->sc_bustag, sc->sc_bhregs, (RDFPGA_REG_AES128_OUT + (i*8)));
if (!(((u_int32_t)blk) & 0x7)) {
/* nothing */
} else {
memcpy(blk, data, 16);
}
}
/* aprint_normal_dev(sc->sc_dev, "rdfpga_rijndael128_crypt: xor\n"); */
@ -672,6 +681,7 @@ rdfpga_encdec_aes128cbc(struct rdfpga_softc *sw, struct cryptodesc *crd, void *b
const struct rdfpga_enc_xform *exf = &rdfpga_enc_xform_rijndael128;
int i, k, j, blks, ivlen;
int count, ind;
rdfpga_rijndael_ctx* ctx = ( rdfpga_rijndael_ctx*)sw->sw_kschedule;
//exf = sw->sw_exf;
blks = 16; //exf->enc_xform->blocksize;
@ -907,17 +917,20 @@ rdfpga_encdec_aes128cbc(struct rdfpga_softc *sw, struct cryptodesc *crd, void *b
/* Actual encryption/decryption */
if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
if (!ctx->cbc) {
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
}
exf->encrypt(sw->sw_kschedule, blk);
ctx->cbc = 1;
/*
* Keep encrypted block for XOR'ing
* with next block
*/
memcpy(iv, blk, blks);
ivp = iv;
if (!ctx->cbc) {
memcpy(iv, blk, blks);
ivp = iv;
}
} else { /* decrypt */
/*
* Keep encrypted block for XOR'ing
@ -968,10 +981,13 @@ rdfpga_encdec_aes128cbc(struct rdfpga_softc *sw, struct cryptodesc *crd, void *b
i > 0) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
if (!ctx->cbc) {
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
}
exf->encrypt(sw->sw_kschedule, idat);
ctx->cbc = 1;
ivp = idat;
} else { /* decrypt */
/*

View File

@ -87,5 +87,6 @@ struct rdfpga_softc {
#define RDFPGA_MASK_AES128_BUSY 0x40000000
#define RDFPGA_MASK_AES128_ERR 0x20000000
#define RDFPGA_MASK_AES128_NEWKEY 0x10000000
#define RDFPGA_MASK_AES128_CBCMOD 0x08000000
#endif /* _RDFPGA_H_ */

View File

@ -132,6 +132,20 @@ ENTITY SBusFSM is
CONSTANT REG_OFFSET_DMA_CTRL2 : std_logic_vector(8 downto 0) := conv_std_logic_vector(REG_INDEX_DMA_CTRL2 *4, 9); -- placeholder
CONSTANT REG_OFFSET_DMA_CTRL3 : std_logic_vector(8 downto 0) := conv_std_logic_vector(REG_INDEX_DMA_CTRL3 *4, 9); -- placeholder
CONSTANT REG_OFFSET_AES128_KEY1 : std_logic_vector(8 downto 0) := conv_std_logic_vector(REG_INDEX_AES128_KEY1*4, 9);
CONSTANT REG_OFFSET_AES128_KEY2 : std_logic_vector(8 downto 0) := conv_std_logic_vector(REG_INDEX_AES128_KEY2*4, 9);
CONSTANT REG_OFFSET_AES128_KEY3 : std_logic_vector(8 downto 0) := conv_std_logic_vector(REG_INDEX_AES128_KEY3*4, 9);
CONSTANT REG_OFFSET_AES128_KEY4 : std_logic_vector(8 downto 0) := conv_std_logic_vector(REG_INDEX_AES128_KEY4*4, 9);
CONSTANT REG_OFFSET_AES128_DATA1 : std_logic_vector(8 downto 0) := conv_std_logic_vector(REG_INDEX_AES128_DATA1*4, 9);
CONSTANT REG_OFFSET_AES128_DATA2 : std_logic_vector(8 downto 0) := conv_std_logic_vector(REG_INDEX_AES128_DATA2*4, 9);
CONSTANT REG_OFFSET_AES128_DATA3 : std_logic_vector(8 downto 0) := conv_std_logic_vector(REG_INDEX_AES128_DATA3*4, 9);
CONSTANT REG_OFFSET_AES128_DATA4 : std_logic_vector(8 downto 0) := conv_std_logic_vector(REG_INDEX_AES128_DATA4*4, 9);
CONSTANT REG_OFFSET_AES128_OUT1 : std_logic_vector(8 downto 0) := conv_std_logic_vector(REG_INDEX_AES128_OUT1*4, 9);
CONSTANT REG_OFFSET_AES128_OUT2 : std_logic_vector(8 downto 0) := conv_std_logic_vector(REG_INDEX_AES128_OUT2*4, 9);
CONSTANT REG_OFFSET_AES128_OUT3 : std_logic_vector(8 downto 0) := conv_std_logic_vector(REG_INDEX_AES128_OUT3*4, 9);
CONSTANT REG_OFFSET_AES128_OUT4 : std_logic_vector(8 downto 0) := conv_std_logic_vector(REG_INDEX_AES128_OUT4*4, 9);
CONSTANT REG_OFFSET_AES128_CTRL : std_logic_vector(8 downto 0) := conv_std_logic_vector(REG_INDEX_AES128_CTRL*4, 9);
constant c_CLKS_PER_BIT : integer := 417; -- 48M/115200
-- constant c_CLKS_PER_BIT : integer := 50; -- 5.76M/115200
END ENTITY;
@ -266,19 +280,66 @@ ARCHITECTURE RTL OF SBusFSM IS
(REG_OFFSET_GCM_C3 = value) OR
(REG_OFFSET_GCM_C4 = value);
end function;
pure function REG_OFFSET_IS_DMA(value : in std_logic_vector(8 downto 0)) return boolean is
pure function REG_OFFSET_IS_ANYDMA(value : in std_logic_vector(8 downto 0)) return boolean is
begin
return (REG_OFFSET_DMA_ADDR = value) OR
(REG_OFFSET_DMA_CTRL = value) OR
(REG_OFFSET_DMA_CTRL2 = value) OR
(REG_OFFSET_DMA_CTRL3 = value);
end function;
pure function REG_OFFSET_IS_AESKEY(value : in std_logic_vector(8 downto 0)) return boolean is
begin
return (REG_OFFSET_AES128_KEY1 = value) OR
(REG_OFFSET_AES128_KEY2 = value) OR
(REG_OFFSET_AES128_KEY3 = value) OR
(REG_OFFSET_AES128_KEY4 = value);
end function;
pure function REG_OFFSET_IS_AESDATA(value : in std_logic_vector(8 downto 0)) return boolean is
begin
return (REG_OFFSET_AES128_DATA1 = value) OR
(REG_OFFSET_AES128_DATA2 = value) OR
(REG_OFFSET_AES128_DATA3 = value) OR
(REG_OFFSET_AES128_DATA4 = value);
end function;
pure function REG_OFFSET_IS_AESOUT(value : in std_logic_vector(8 downto 0)) return boolean is
begin
return (REG_OFFSET_AES128_OUT1 = value) OR
(REG_OFFSET_AES128_OUT2 = value) OR
(REG_OFFSET_AES128_OUT3 = value) OR
(REG_OFFSET_AES128_OUT4 = value);
end function;
pure function REG_OFFSET_IS_ANYGCM(value : in std_logic_vector(8 downto 0)) return boolean is
begin
return REG_OFFSET_IS_GCMINPUT(value) or REG_OFFSET_IS_GCMH(value) or REG_OFFSET_IS_GCMC(value);
end function;
pure function REG_OFFSET_IS_ANYAES(value : in std_logic_vector(8 downto 0)) return boolean is
begin
return REG_OFFSET_IS_AESKEY(value) OR REG_OFFSET_IS_AESDATA(value) OR REG_OFFSET_IS_AESOUT(value) OR
(REG_OFFSET_AES128_CTRL = value);
end function;
pure function REG_OFFSET_IS_ANYREAD(value : in std_logic_vector(8 downto 0)) return boolean is
begin
return REG_OFFSET_IS_GCMC(value) OR
REG_OFFSET_IS_AESOUT(value) OR
(REG_OFFSET_DMA_CTRL = value) OR
(REG_OFFSET_AES128_CTRL = value)
;
end function;
pure function REG_OFFSET_IS_ANYWRITE(value : in std_logic_vector(8 downto 0)) return boolean is
begin
return (REG_OFFSET_LED = value) OR
REG_OFFSET_IS_ANYGCM(value) OR
REG_OFFSET_IS_ANYAES(value) OR
REG_OFFSET_IS_ANYDMA(value);
end function;
pure function REG_OFFSET_IS_ANY(value : in std_logic_vector(8 downto 0)) return boolean is
begin
return true;
@ -568,7 +629,7 @@ BEGIN
-- word address goes to the p_addr lines
p_addr <= last_pa(8 downto 2);
State <= SBus_Slave_Ack_Read_Prom_Burst;
ELSIF ((last_pa(27 downto 9) = REG_ADDR_PFX) AND REG_OFFSET_IS_ANY(last_pa(8 downto 0))) then
ELSIF ((last_pa(27 downto 9) = REG_ADDR_PFX) AND REG_OFFSET_IS_ANYREAD(last_pa(8 downto 0))) then
-- 32 bits read from aligned memory IN REG space ------------------------------------
BUF_ACKs_O <= ACK_WORD;
BUF_ERRs_O <= '1'; -- no late error
@ -620,7 +681,7 @@ BEGIN
SBUS_DATA_OE_LED_2 <= '1';
BURST_COUNTER := 0;
BURST_LIMIT := SIZ_TO_BURSTSIZE(BUF_SIZ_I);
IF ((last_pa(27 downto 9) = REG_ADDR_PFX) and REG_OFFSET_IS_ANY(last_pa(8 downto 0))) then
IF ((last_pa(27 downto 9) = REG_ADDR_PFX) and REG_OFFSET_IS_ANYWRITE(last_pa(8 downto 0))) then
-- 32 bits write to register ------------------------------------
BUF_ACKs_O <= ACK_WORD; -- acknowledge the Word
BUF_ERRs_O <= '1'; -- no late error
@ -998,8 +1059,18 @@ BEGIN
-- start & !busy & !aesbusy -> start processing
aes_Cipherkey_DI <= REGISTERS(REG_INDEX_AES128_KEY1) & REGISTERS(REG_INDEX_AES128_KEY2) &
REGISTERS(REG_INDEX_AES128_KEY3) & REGISTERS(REG_INDEX_AES128_KEY4);
aes_Plaintext_DI <= REGISTERS(REG_INDEX_AES128_DATA1) & REGISTERS(REG_INDEX_AES128_DATA2) &
REGISTERS(REG_INDEX_AES128_DATA3) & REGISTERS(REG_INDEX_AES128_DATA4);
IF (REGISTERS(REG_INDEX_AES128_CTRL)(27) = '0') THEN
-- normal mode
aes_Plaintext_DI <= REGISTERS(REG_INDEX_AES128_DATA1) & REGISTERS(REG_INDEX_AES128_DATA2) &
REGISTERS(REG_INDEX_AES128_DATA3) & REGISTERS(REG_INDEX_AES128_DATA4);
ELSE
-- cbc mode
aes_Plaintext_DI <=
(REGISTERS(REG_INDEX_AES128_DATA1) XOR REGISTERS(REG_INDEX_AES128_OUT1))
& (REGISTERS(REG_INDEX_AES128_DATA2) XOR REGISTERS(REG_INDEX_AES128_OUT2))
& (REGISTERS(REG_INDEX_AES128_DATA3) XOR REGISTERS(REG_INDEX_AES128_OUT3))
& (REGISTERS(REG_INDEX_AES128_DATA4) XOR REGISTERS(REG_INDEX_AES128_OUT4));
END IF;
aes_NewCipherkey_SI <= REGISTERS(REG_INDEX_AES128_CTRL)(28);
aes_Start_SI <= '1';
REGISTERS(REG_INDEX_AES128_CTRL)(30) <= '1'; -- busy