mirror of
https://github.com/rdolbeau/VintageBusFPGA_Common.git
synced 2026-01-11 23:42:48 +00:00
preliminary support for the hdl-util/hdmi contorller as an alternative
This commit is contained in:
parent
c708a83469
commit
59e39731de
80
fb_video.py
80
fb_video.py
@ -17,8 +17,8 @@ video_timing_nohwcursor_layout = [
|
||||
# Synchronization signals.
|
||||
("hsync", 1),
|
||||
("vsync", 1),
|
||||
("de", 1),
|
||||
("inframe", 1),
|
||||
("de", 1), # in the windowed part
|
||||
("inframe", 1), # in the full resolution
|
||||
# Extended/Optional synchronization signals.
|
||||
("hres", hbits),
|
||||
("vres", vbits),
|
||||
@ -42,11 +42,10 @@ video_timing_hwcursor_layout = [
|
||||
("vcount", vbits),
|
||||
]
|
||||
|
||||
# FB Video Timing Generator ---------------------------------------------------------------------------
|
||||
# Same as the normal one except (a) _enable isn't a CSR
|
||||
|
||||
class FBVideoTimingGenerator(Module, AutoCSR):
|
||||
def __init__(self, default_video_timings="800x600@60Hz", hwcursor=False):
|
||||
# FB Video Timing Generator interface
|
||||
class FBVideoTimingGeneratorInterface(Module, AutoCSR):
|
||||
def __init__(self, default_video_timings):
|
||||
|
||||
# Check / Get Video Timings (can be str or dict)
|
||||
if isinstance(default_video_timings, str):
|
||||
try:
|
||||
@ -58,10 +57,11 @@ class FBVideoTimingGenerator(Module, AutoCSR):
|
||||
raise ValueError("\n".join(msg))
|
||||
else:
|
||||
self.video_timings = vt = default_video_timings
|
||||
|
||||
|
||||
# MMAP Control/Status Registers.
|
||||
self.enable = Signal() # external control signal
|
||||
|
||||
|
||||
# all CSR in Interface so we keep the same addresses for software
|
||||
self._hres = CSRStorage(hbits, vt["h_active"])
|
||||
self._hsync_start = CSRStorage(hbits, vt["h_active"] + vt["h_sync_offset"])
|
||||
self._hsync_end = CSRStorage(hbits, vt["h_active"] + vt["h_sync_offset"] + vt["h_sync_width"])
|
||||
@ -77,19 +77,22 @@ class FBVideoTimingGenerator(Module, AutoCSR):
|
||||
self._vres_start = Signal(hbits, reset = 0)
|
||||
self._vres_end = Signal(hbits, reset = vt["v_active"])
|
||||
|
||||
# Video Timing Source
|
||||
if (hwcursor):
|
||||
self.source = source = stream.Endpoint(video_timing_hwcursor_layout)
|
||||
_hwcursor_x = Signal(12) # 12 out of 16 is enough
|
||||
_hwcursor_y = Signal(12) # 12 out of 16 is enough
|
||||
self.hwcursor_x = Signal(12)
|
||||
self.hwcursor_y = Signal(12)
|
||||
self.specials += MultiReg(self.hwcursor_x, _hwcursor_x)
|
||||
self.specials += MultiReg(self.hwcursor_y, _hwcursor_y)
|
||||
else:
|
||||
self.source = source = stream.Endpoint(video_timing_nohwcursor_layout)
|
||||
# Resynchronize Window to Video clock domain
|
||||
# in Interface as they are the bits used by the non-LitexHDMI stuff
|
||||
self.hres_start = hres_start = Signal(hbits)
|
||||
self.hres_end = hres_end = Signal(hbits)
|
||||
self.vres_start = vres_start = Signal(vbits)
|
||||
self.vres_end = vres_end = Signal(vbits)
|
||||
self.specials += MultiReg(self._hres_start, hres_start)
|
||||
self.specials += MultiReg(self._hres_end, hres_end)
|
||||
self.specials += MultiReg(self._vres_start, vres_start)
|
||||
self.specials += MultiReg(self._vres_end, vres_end)
|
||||
|
||||
|
||||
# # #
|
||||
# FB Video Timing Generator ---------------------------------------------------------------------------
|
||||
class FBVideoTimingGenerator(FBVideoTimingGeneratorInterface):
|
||||
def __init__(self, default_video_timings="800x600@60Hz", hwcursor=False):
|
||||
FBVideoTimingGeneratorInterface.__init__(self, default_video_timings=default_video_timings)
|
||||
|
||||
# Resynchronize Horizontal Timings to Video clock domain.
|
||||
self.hres = hres = Signal(hbits)
|
||||
@ -111,14 +114,33 @@ class FBVideoTimingGenerator(Module, AutoCSR):
|
||||
self.specials += MultiReg(self._vsync_end.storage, vsync_end)
|
||||
self.specials += MultiReg(self._vscan.storage, vscan)
|
||||
|
||||
self.hres_start = hres_start = Signal(hbits)
|
||||
self.hres_end = hres_end = Signal(hbits)
|
||||
self.vres_start = vres_start = Signal(vbits)
|
||||
self.vres_end = vres_end = Signal(vbits)
|
||||
self.specials += MultiReg(self._hres_start, hres_start)
|
||||
self.specials += MultiReg(self._hres_end, hres_end)
|
||||
self.specials += MultiReg(self._vres_start, vres_start)
|
||||
self.specials += MultiReg(self._vres_end, vres_end)
|
||||
# Video Timing Source
|
||||
if (hwcursor):
|
||||
self.source = source = stream.Endpoint(video_timing_hwcursor_layout)
|
||||
_hwcursor_x = Signal(12) # 12 out of 16 is enough
|
||||
_hwcursor_y = Signal(12) # 12 out of 16 is enough
|
||||
self.hwcursor_x = Signal(12)
|
||||
self.hwcursor_y = Signal(12)
|
||||
self.specials += MultiReg(self.hwcursor_x, _hwcursor_x)
|
||||
self.specials += MultiReg(self.hwcursor_y, _hwcursor_y)
|
||||
else:
|
||||
self.source = source = stream.Endpoint(video_timing_nohwcursor_layout)
|
||||
|
||||
# # #
|
||||
hres = self.hres
|
||||
hsync_start = self.hsync_start
|
||||
hsync_end = self.hsync_end
|
||||
hscan = self.hscan
|
||||
|
||||
vres = self.vres
|
||||
vsync_start = self.vsync_start
|
||||
vsync_end = self.vsync_end
|
||||
vscan = self.vscan
|
||||
|
||||
hres_start = self.hres_start
|
||||
hres_end = self.hres_end
|
||||
vres_start = self.vres_start
|
||||
vres_end = self.vres_end
|
||||
|
||||
# Generate timings.
|
||||
# whether we're in the visible frame
|
||||
|
||||
830
goblin_alt_fb.py
Normal file
830
goblin_alt_fb.py
Normal file
@ -0,0 +1,830 @@
|
||||
from migen import *
|
||||
from migen.genlib.fifo import *
|
||||
|
||||
from litex.soc.interconnect.csr import *
|
||||
from litex.soc.interconnect import stream
|
||||
from litex.soc.interconnect import wishbone
|
||||
from litex.soc.cores.code_tmds import TMDSEncoder
|
||||
|
||||
from litex.build.io import SDROutput, DDROutput
|
||||
|
||||
from migen.genlib.cdc import MultiReg
|
||||
|
||||
from litex.soc.cores.video import *
|
||||
|
||||
from VintageBusFPGA_Common.fb_video import *
|
||||
from VintageBusFPGA_Common.fb_dma import LiteDRAMFBDMAReader
|
||||
|
||||
from math import ceil
|
||||
|
||||
cmap_layout = [
|
||||
("color", 2),
|
||||
("address", 8),
|
||||
("data", 8),
|
||||
]
|
||||
omap_layout = [
|
||||
("color", 2),
|
||||
("address", 2),
|
||||
("data", 8),
|
||||
]
|
||||
|
||||
def goblin_rounded_size(hres, vres, bus="NuBus"):
|
||||
mib = int(ceil(((hres * vres) + 0) / 1048576))
|
||||
if (mib > 0 and mib < 8 and (bus == "NuBus")): # FIXME : NuBus
|
||||
mib = 8
|
||||
if (mib > 0 and mib < 16 and (bus == "SBus")): # FIXME : SBus
|
||||
mib = 16
|
||||
if (mib > 16 or mib < 1):
|
||||
print(f"{mib} mebibytes framebuffer not supported")
|
||||
assert(False)
|
||||
return int(1048576 * mib)
|
||||
|
||||
class VideoFrameBufferMultiDepth(Module, AutoCSR):
|
||||
"""Video FrameBufferMultiDepth"""
|
||||
def __init__(self, dram_port, upd_clut_fifo = None, hres=800, vres=600, base=0x00000000, fifo_depth=65536, clock_domain="sys", clock_faster_than_sys=False, hwcursor=False, upd_overlay_fifo=False, upd_omap_fifo=False, truecolor=True, endian="big"):
|
||||
|
||||
print(f"FRAMEBUFFER: dram_port.data_width = {dram_port.data_width}, {hres}x{vres}, 0x{base:x}, in {clock_domain}, clock_faster_than_sys={clock_faster_than_sys}")
|
||||
|
||||
vga_sync = getattr(self.sync, clock_domain) # usually should be named hdmi_sync, really...
|
||||
|
||||
npixels = hres * vres # default to max
|
||||
|
||||
# if 0, 32-bits mode
|
||||
# should only be changed while in reset
|
||||
self.use_indexed = Signal(1, reset = 0x1)
|
||||
# mode, as x in 2^x (so 1, 2, 4, 8 bits)
|
||||
# should only be changed while in reset
|
||||
self.indexed_mode = Signal(2, reset = 0x3)
|
||||
# for the VBL interrupt
|
||||
self.vblping = Signal(reset = 0)
|
||||
|
||||
# vtg_sink replacement
|
||||
self.de = Signal() # are we in windowed picture ?
|
||||
self.inframe = Signal() # are we in the frame (native resolution here, not the same as the HDMI frame...) ? # probably not needed, only used for underflow - we need underflow during reset, but it could/should be based on 'de' instead
|
||||
self.last = Signal() # end-of-picture marker
|
||||
if (hwcursor):
|
||||
self.hwcursor = Signal()
|
||||
self.hwcursorx = Signal(5)
|
||||
self.hwcursory = Signal(5)
|
||||
|
||||
if (hwcursor):
|
||||
upd_omap_fifo_dout = Record(omap_layout)
|
||||
self.comb += upd_omap_fifo_dout.raw_bits().eq(upd_omap_fifo.dout)
|
||||
overlay = Array(Array(Array(Signal(1) for x in range(0,32)) for y in range(0,32)) for i in range(0, 2))
|
||||
omap = Array(Array(Signal(8, reset = (255-i)) for i in range(0, 4)) for j in range(0, 3))
|
||||
vga_sync += [
|
||||
If(upd_overlay_fifo.readable,
|
||||
upd_overlay_fifo.re.eq(1),
|
||||
[ overlay[upd_overlay_fifo.dout[0]][upd_overlay_fifo.dout[1:6]][x].eq(upd_overlay_fifo.dout[6+x]) for x in range(0, 32)],
|
||||
).Else(
|
||||
upd_overlay_fifo.re.eq(0),
|
||||
)
|
||||
]
|
||||
vga_sync += [
|
||||
If(upd_omap_fifo.readable,
|
||||
upd_omap_fifo.re.eq(1),
|
||||
omap[upd_omap_fifo_dout.color][upd_omap_fifo_dout.address].eq(upd_omap_fifo_dout.data),
|
||||
).Else(
|
||||
upd_omap_fifo.re.eq(0),
|
||||
)
|
||||
]
|
||||
#else:
|
||||
|
||||
|
||||
|
||||
self.source = source = stream.Endpoint(video_data_layout)
|
||||
self.underflow = Signal()
|
||||
|
||||
#source_buf_ready = Signal()
|
||||
source_buf_valid = Signal()
|
||||
source_buf_de = Signal()
|
||||
source_buf_inframe = Signal()
|
||||
data_buf_index = Signal(8)
|
||||
data_buf_direct = Array(Signal(8) for x in range(3))
|
||||
if (hwcursor):
|
||||
hwcursor_buf = Signal()
|
||||
hwcursorx_buf = Signal(5)
|
||||
hwcursory_buf = Signal(5)
|
||||
|
||||
source_buf_b_valid = Signal()
|
||||
source_buf_b_de = Signal()
|
||||
source_buf_b_inframe = Signal()
|
||||
data_buf_b_index = Signal(8)
|
||||
if (truecolor):
|
||||
data_buf_b_direct = Array(Signal(8) for x in range(3))
|
||||
if (hwcursor):
|
||||
hwcursor_color_idx = Signal(2)
|
||||
|
||||
#source_out_ready = Signal()
|
||||
source_out_valid = Signal()
|
||||
source_out_de = Signal()
|
||||
source_out_inframe = Signal()
|
||||
source_out_r = Signal(8)
|
||||
source_out_g = Signal(8)
|
||||
source_out_b = Signal(8)
|
||||
|
||||
# # #
|
||||
# First the Color Look-up Table (for all but 1 bit & 16/32 bits)
|
||||
# updated from the FIFO
|
||||
# 8-and-less-than-8-bits mode used the 2^x first entries
|
||||
### clut = Array(Array(Signal(8, reset = (255-i)) for i in range(0, 256)) for j in range(0, 3))
|
||||
clut = Array(Array(Signal(8, reset = (255-i)) for j in range(0, 3)) for i in range(0, 256))
|
||||
|
||||
upd_clut_fifo_dout = Record(cmap_layout)
|
||||
self.comb += upd_clut_fifo_dout.raw_bits().eq(upd_clut_fifo.dout)
|
||||
vga_sync += [
|
||||
If(upd_clut_fifo.readable,
|
||||
upd_clut_fifo.re.eq(1),
|
||||
clut[upd_clut_fifo_dout.address][upd_clut_fifo_dout.color].eq(upd_clut_fifo_dout.data),
|
||||
).Else(
|
||||
upd_clut_fifo.re.eq(0),
|
||||
)
|
||||
]
|
||||
|
||||
# # #
|
||||
|
||||
# Video DMA.
|
||||
# length should be changed to match mode
|
||||
self.submodules.fb_dma = LiteDRAMFBDMAReader(dram_port,
|
||||
fifo_depth = fifo_depth//(dram_port.data_width//8),
|
||||
default_base = base,
|
||||
default_length = npixels)
|
||||
|
||||
# If DRAM Data Width > 8-bit and Video clock is faster than sys_clk:
|
||||
# actually always use that case to simplify the design
|
||||
# if (dram_port.data_width > 8) and clock_faster_than_sys:
|
||||
# Do Clock Domain Crossing first...
|
||||
self.submodules.cdc = stream.ClockDomainCrossing([("data", dram_port.data_width)], cd_from="sys", cd_to=clock_domain)
|
||||
self.comb += self.fb_dma.source.connect(self.cdc.sink)
|
||||
# ... and then Data-Width Conversion.
|
||||
# we have 5 possible conversion and mux/connect the appropriate one
|
||||
if (truecolor):
|
||||
self.submodules.conv32 = ClockDomainsRenamer({"sys": clock_domain})(stream.Converter(dram_port.data_width, 32))
|
||||
self.submodules.conv16 = ClockDomainsRenamer({"sys": clock_domain})(stream.Converter(dram_port.data_width, 16))
|
||||
|
||||
handle_truecolor_sink = [ Case(self.indexed_mode, {
|
||||
0x0: [ self.cdc.source.connect(self.conv32.sink) ],
|
||||
0x1: [ self.cdc.source.connect(self.conv16.sink) ],
|
||||
})]
|
||||
|
||||
handle_truecolor_source = [ Case(self.indexed_mode, {
|
||||
0x0: [ source_buf_valid.eq(self.conv32.source.valid), self.conv32.source.connect(source, keep={"ready"}), ],
|
||||
0x1: [ source_buf_valid.eq(self.conv16.source.valid), self.conv16.source.connect(source, keep={"ready"}), ],
|
||||
})]
|
||||
|
||||
if (endian == "big"): # this starts to _really_ mean "i'm in the SBusFPGA"...
|
||||
handle_truecolor_databuf = [ Case(self.indexed_mode, {
|
||||
0x0: [ data_buf_direct[2].eq(self.conv32.source.data[24:32]),
|
||||
data_buf_direct[1].eq(self.conv32.source.data[16:24]),
|
||||
data_buf_direct[0].eq(self.conv32.source.data[8:16]), ],
|
||||
0x1: [ data_buf_direct[0].eq(Cat(Signal(3, reset = 0), self.conv16.source.data[0:5])), # fixme: 16-bits in X11 ??? (this is QD32)
|
||||
data_buf_direct[1].eq(Cat(Signal(3, reset = 0), self.conv16.source.data[5:10])),
|
||||
data_buf_direct[2].eq(Cat(Signal(3, reset = 0), self.conv16.source.data[10:15])), ]
|
||||
})]
|
||||
else: # and little "i'm in the NuBusFPGA" ...
|
||||
handle_truecolor_databuf =[ Case(self.indexed_mode, {
|
||||
0x0: [ data_buf_direct[2].eq(self.conv32.source.data[24:32]),
|
||||
data_buf_direct[1].eq(self.conv32.source.data[16:24]),
|
||||
data_buf_direct[0].eq(self.conv32.source.data[8:16]), ],
|
||||
0x1: [ data_buf_direct[0].eq(Cat(self.conv16.source.data[ 4: 7], self.conv16.source.data[ 2: 7])), # 16-bits in QD32
|
||||
data_buf_direct[1].eq(Cat(self.conv16.source.data[15:16], self.conv16.source.data[ 0: 2], # seems byte-swapped in 5551 BGRx
|
||||
self.conv16.source.data[13:16], self.conv16.source.data[ 0: 2])),
|
||||
data_buf_direct[2].eq(Cat(self.conv16.source.data[10:13], self.conv16.source.data[ 8:13])), ]
|
||||
})]
|
||||
|
||||
handle_truecolor_databuf_b = [ data_buf_b_direct[0].eq(data_buf_direct[0]),
|
||||
data_buf_b_direct[1].eq(data_buf_direct[1]),
|
||||
data_buf_b_direct[2].eq(data_buf_direct[2]), ]
|
||||
handle_truecolor_final_source = [ source_out_r.eq(data_buf_b_direct[2]),
|
||||
source_out_g.eq(data_buf_b_direct[1]),
|
||||
source_out_b.eq(data_buf_b_direct[0]), ]
|
||||
|
||||
else:
|
||||
handle_truecolor_sink = [ ]
|
||||
handle_truecolor_source = [ ]
|
||||
handle_truecolor_databuf = [ ]
|
||||
handle_truecolor_databuf_b = [ ]
|
||||
handle_truecolor_final_source = [ ]
|
||||
self.submodules.conv8 = ClockDomainsRenamer({"sys": clock_domain})(stream.Converter(dram_port.data_width, 8))
|
||||
self.submodules.conv4 = ClockDomainsRenamer({"sys": clock_domain})(stream.Converter(dram_port.data_width, 4))
|
||||
self.submodules.conv2 = ClockDomainsRenamer({"sys": clock_domain})(stream.Converter(dram_port.data_width, 2))
|
||||
self.submodules.conv1 = ClockDomainsRenamer({"sys": clock_domain})(stream.Converter(dram_port.data_width, 1))
|
||||
|
||||
# not sure the bit-reversal needed in the NuBusFPGA is really tied to the endianess (didn't really try < 8 bits on SBusFPGA)
|
||||
if (endian == "big"):
|
||||
self.comb += [
|
||||
If(self.use_indexed,
|
||||
Case(self.indexed_mode, {
|
||||
0x3: [ self.cdc.source.connect(self.conv8.sink), ],
|
||||
0x2: [ self.cdc.source.connect(self.conv4.sink), ],
|
||||
0x1: [ self.cdc.source.connect(self.conv2.sink), ],
|
||||
0x0: [ self.cdc.source.connect(self.conv1.sink), ],
|
||||
})
|
||||
).Else(
|
||||
*handle_truecolor_sink
|
||||
)
|
||||
]
|
||||
else:
|
||||
self.comb += [
|
||||
If(self.use_indexed,
|
||||
Case(self.indexed_mode, {
|
||||
0x3: [ self.cdc.source.connect(self.conv8.sink), ],
|
||||
0x2: [ self.cdc.source.connect(self.conv4.sink, omit={"data"}),
|
||||
*[ self.conv4.sink.data[xbyte*8 + xbit*4:xbyte*8 + xbit*4+4].eq(self.cdc.source.data[xbyte*8 + 4-xbit*4:xbyte*8 + 4-xbit*2+4]) for xbit in range(0,2) for xbyte in range(0, dram_port.data_width//8) ], ],
|
||||
0x1: [ self.cdc.source.connect(self.conv2.sink, omit={"data"}),
|
||||
*[ self.conv2.sink.data[xbyte*8 + xbit*2:xbyte*8 + xbit*2+2].eq(self.cdc.source.data[xbyte*8 + 6-xbit*2:xbyte*8 + 6-xbit*2+2]) for xbit in range(0,4) for xbyte in range(0, dram_port.data_width//8) ], ],
|
||||
0x0: [ self.cdc.source.connect(self.conv1.sink, omit={"data"}),
|
||||
*[ self.conv1.sink.data[xbyte*8 + xbit].eq(self.cdc.source.data[xbyte*8 + 7-xbit]) for xbit in range(0,8) for xbyte in range(0, dram_port.data_width//8) ],
|
||||
],
|
||||
})
|
||||
).Else(
|
||||
*handle_truecolor_sink
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
|
||||
# Video Generation.
|
||||
self.comb += [
|
||||
If(self.de, # 1 cycle after cx/cy
|
||||
If(self.use_indexed,
|
||||
Case(self.indexed_mode, {
|
||||
0x3: [ source_buf_valid.eq(self.conv8.source.valid),
|
||||
self.conv8.source.connect(source, keep={"ready"}),
|
||||
],
|
||||
0x2: [ source_buf_valid.eq(self.conv4.source.valid),
|
||||
self.conv4.source.connect(source, keep={"ready"}),
|
||||
],
|
||||
0x1: [ source_buf_valid.eq(self.conv2.source.valid),
|
||||
self.conv2.source.connect(source, keep={"ready"}),
|
||||
],
|
||||
0x0: [ source_buf_valid.eq(self.conv1.source.valid),
|
||||
self.conv1.source.connect(source, keep={"ready"}),
|
||||
],
|
||||
}),
|
||||
).Else(
|
||||
*handle_truecolor_source,
|
||||
),
|
||||
),
|
||||
source_buf_de.eq(self.de),
|
||||
source_buf_inframe.eq(self.inframe),
|
||||
Case(self.indexed_mode, {
|
||||
0x3: [ data_buf_index.eq(self.conv8.source.data),
|
||||
],
|
||||
0x2: [ data_buf_index.eq(Cat(self.conv4.source.data, Signal(4, reset = 0))),
|
||||
],
|
||||
0x1: [ data_buf_index.eq(Cat(self.conv2.source.data, Signal(6, reset = 0))),
|
||||
],
|
||||
0x0: [ data_buf_index.eq(Replicate(self.conv1.source.data, 8)),
|
||||
],
|
||||
}),
|
||||
*handle_truecolor_databuf,
|
||||
]
|
||||
if (hwcursor):
|
||||
self.comb += [
|
||||
hwcursor_buf.eq(self.hwcursor),
|
||||
hwcursorx_buf.eq(self.hwcursorx),
|
||||
hwcursory_buf.eq(self.hwcursory),
|
||||
]
|
||||
|
||||
vga_sync += [
|
||||
source_buf_b_de.eq(source_buf_de), # 2 cycles after cx/cy
|
||||
source_buf_b_inframe.eq(source_buf_inframe),
|
||||
source_buf_b_valid.eq(source_buf_valid),
|
||||
data_buf_b_index.eq(data_buf_index),
|
||||
*handle_truecolor_databuf_b,
|
||||
]
|
||||
if (hwcursor):
|
||||
vga_sync += [
|
||||
If(hwcursor_buf,
|
||||
hwcursor_color_idx.eq(Cat(overlay[0][hwcursory_buf][hwcursorx_buf], overlay[1][hwcursory_buf][hwcursorx_buf])),
|
||||
).Else(
|
||||
hwcursor_color_idx.eq(0),
|
||||
)
|
||||
]
|
||||
|
||||
vga_sync += [
|
||||
source_out_de.eq(source_buf_b_de), # 3 cycles after cx/cy
|
||||
source_out_inframe.eq(source_buf_b_inframe),
|
||||
source_out_valid.eq(source_buf_b_valid),
|
||||
#source_buf_ready.eq(source_out_ready), # ready flow the other way
|
||||
]
|
||||
if (hwcursor):
|
||||
vga_sync += [
|
||||
If(hwcursor_color_idx != 0,
|
||||
source_out_r.eq(omap[0][hwcursor_color_idx]),
|
||||
source_out_g.eq(omap[1][hwcursor_color_idx]),
|
||||
source_out_b.eq(omap[2][hwcursor_color_idx]),
|
||||
).Elif(source_buf_b_de, # also 3 cycles after cx/cy
|
||||
If(self.use_indexed,
|
||||
source_out_r.eq(clut[data_buf_b_index][2]),
|
||||
source_out_g.eq(clut[data_buf_b_index][1]),
|
||||
source_out_b.eq(clut[data_buf_b_index][0])
|
||||
).Else(
|
||||
*handle_truecolor_final_source,
|
||||
),
|
||||
).Else(source_out_r.eq(0),
|
||||
source_out_g.eq(0),
|
||||
source_out_b.eq(0)
|
||||
)
|
||||
]
|
||||
else:
|
||||
vga_sync += [
|
||||
If(source_buf_b_de, # also 3 cycles after cx/cy
|
||||
If(self.use_indexed,
|
||||
source_out_r.eq(clut[data_buf_b_index][2]),
|
||||
source_out_g.eq(clut[data_buf_b_index][1]),
|
||||
source_out_b.eq(clut[data_buf_b_index][0])
|
||||
).Else(
|
||||
*handle_truecolor_final_source,
|
||||
),
|
||||
).Else(source_out_r.eq(0),
|
||||
source_out_g.eq(0),
|
||||
source_out_b.eq(0)
|
||||
)
|
||||
]
|
||||
|
||||
self.comb += [
|
||||
source.de.eq(source_out_inframe), # inframe, not de
|
||||
source.valid.eq(source_out_valid),
|
||||
source.r.eq(source_out_b), # something got swapped at some point...
|
||||
source.g.eq(source_out_g),
|
||||
source.b.eq(source_out_r),
|
||||
]
|
||||
|
||||
# Underflow.
|
||||
self.comb += self.underflow.eq(~source.valid & source.de)
|
||||
|
||||
# VBL handling
|
||||
# create a pulse in self.vlbping in sys at the end of the frame
|
||||
from migen.genlib.cdc import PulseSynchronizer
|
||||
old_last = Signal()
|
||||
vga_vblping = Signal()
|
||||
vga_sync += [
|
||||
old_last.eq(self.last),
|
||||
If((self.last == 1) & (old_last == 0),
|
||||
vga_vblping.eq(1),
|
||||
).Else(
|
||||
vga_vblping.eq(0)
|
||||
)
|
||||
]
|
||||
self.submodules.vbl_ps = PulseSynchronizer(idomain = clock_domain, odomain = "sys")
|
||||
self.comb += self.vbl_ps.i.eq(vga_vblping)
|
||||
self.comb += self.vblping.eq(self.vbl_ps.o)
|
||||
|
||||
class GoblinAlt(Module, AutoCSR):
|
||||
def __init__(self, soc=None, timings=None, clock_domain="sys", irq_line=None, endian="big", hwcursor=True, truecolor=True):
|
||||
platform = soc.platform
|
||||
|
||||
self.add_sources(platform)
|
||||
|
||||
# 2 bits for color (0/r, 1/g, 2/b), 8 for @ and 8 for value
|
||||
self.submodules.upd_cmap_fifo = upd_cmap_fifo = ClockDomainsRenamer({"read": clock_domain, "write": "sys"})(AsyncFIFOBuffered(width=layout_len(cmap_layout), depth=8))
|
||||
upd_cmap_fifo_din = Record(cmap_layout)
|
||||
self.comb += self.upd_cmap_fifo.din.eq(upd_cmap_fifo_din.raw_bits())
|
||||
|
||||
# hw cursor support
|
||||
self.submodules.upd_overlay_fifo = upd_overlay_fifo = ClockDomainsRenamer({"read": clock_domain, "write": "sys"})(AsyncFIFOBuffered(width=1+5+32, depth=8))
|
||||
self.submodules.upd_omap_fifo = upd_omap_fifo = ClockDomainsRenamer({"read": clock_domain, "write": "sys"})(AsyncFIFOBuffered(width=layout_len(omap_layout), depth=8))
|
||||
upd_omap_fifo_din = Record(omap_layout)
|
||||
self.comb += self.upd_omap_fifo.din.eq(upd_omap_fifo_din.raw_bits())
|
||||
|
||||
name = "video_framebuffer"
|
||||
# near duplicate of plaform.add_video_framebuffer
|
||||
# Video Timing Generator. Interface, we only keep the CSR & timingd stuff for compatibility
|
||||
vtg = FBVideoTimingGeneratorInterface(default_video_timings=timings if isinstance(timings, str) else timings[1])
|
||||
vtg = ClockDomainsRenamer(clock_domain)(vtg)
|
||||
setattr(self.submodules, f"{name}_vtg", vtg)
|
||||
vtg_enable = Signal(reset = 0)
|
||||
self.comb += [ vtg.enable.eq(vtg_enable) ]
|
||||
|
||||
# Video FrameBuffer.
|
||||
timings = timings if isinstance(timings, str) else timings[0]
|
||||
base = soc.mem_map.get(name)
|
||||
print(f"goblin: visible memory at {base:x}")
|
||||
hres = int(timings.split("@")[0].split("x")[0])
|
||||
vres = int(timings.split("@")[0].split("x")[1])
|
||||
assert(hres == vtg.video_timings["h_active"])
|
||||
assert(vres == vtg.video_timings["v_active"])
|
||||
freq = vtg.video_timings["pix_clk"]
|
||||
print(f"goblin: using {hres} x {vres}, {freq/1e6} MHz pixclk")
|
||||
vfb = VideoFrameBufferMultiDepth(dram_port = soc.sdram.crossbar.get_port(),
|
||||
upd_clut_fifo = upd_cmap_fifo,
|
||||
hres = hres,
|
||||
vres = vres,
|
||||
base = base,
|
||||
fifo_depth=(64*1024),
|
||||
clock_domain = clock_domain,
|
||||
clock_faster_than_sys = (vtg.video_timings["pix_clk"] > soc.sys_clk_freq),
|
||||
hwcursor = True,
|
||||
upd_overlay_fifo = upd_overlay_fifo,
|
||||
upd_omap_fifo = upd_omap_fifo,
|
||||
truecolor = truecolor,
|
||||
endian = endian,
|
||||
)
|
||||
setattr(self.submodules, name, vfb)
|
||||
|
||||
# Connect Video FrameBuffer to Video PHY.
|
||||
#self.comb += vfb.source.connect(phy if isinstance(phy, stream.Endpoint) else phy.sink)
|
||||
|
||||
# Constants.
|
||||
soc.add_constant("VIDEO_FRAMEBUFFER_BASE", base)
|
||||
soc.add_constant("VIDEO_FRAMEBUFFER_HRES", hres)
|
||||
soc.add_constant("VIDEO_FRAMEBUFFER_VRES", vres)
|
||||
|
||||
# Wishbone
|
||||
self.bus = bus = wishbone.Interface()
|
||||
|
||||
# HW Cursor
|
||||
|
||||
if (hwcursor):
|
||||
hwcursor_x = Signal(12) # FIXME
|
||||
hwcursor_y = Signal(12) # FIXME
|
||||
# HW cursor lut in reg 0x20
|
||||
# HW cursor XY in reg 0x24
|
||||
handle_hwcursor = [ NextValue(hwcursor_x, bus.dat_w[16:28]), # FIXME: endianess
|
||||
NextValue(hwcursor_y, bus.dat_w[ 0:12]), # FIXME: endianess
|
||||
]
|
||||
else:
|
||||
handle_hwcursor = [ ]
|
||||
|
||||
# current cmap logic for the goblin, similar to the cg6, minus the HW cursor
|
||||
bt_mode = Signal(8, reset = 0x3) # bit depth is 2^x ; 0x10 is direct mode (32 bits) # reg 0x0
|
||||
bt_addr = Signal(8, reset = 0) # reg 0x14 ; lut itself in reg 0x18
|
||||
bt_cmap_state = Signal(2, reset = 0)
|
||||
m_vbl_disable = Signal(reset = 1) # reg 0x4
|
||||
|
||||
# for sub-resolution
|
||||
hres_start = Signal(hbits, reset = 0)
|
||||
hres_end = Signal(hbits, reset = hres)
|
||||
vres_start = Signal(vbits, reset = 0)
|
||||
vres_end = Signal(vbits, reset = vres)
|
||||
vres_upd = Signal()
|
||||
|
||||
videoctrl = Signal() # reg 0x8
|
||||
|
||||
vbl_signal = Signal(reset = 0) # reg 0xC
|
||||
self.comb += irq_line.eq(~vbl_signal | m_vbl_disable) # irq_line is active low
|
||||
|
||||
if (endian == "big"):
|
||||
low_byte = slice(0, 8)
|
||||
low_bit = slice(0, 1)
|
||||
else:
|
||||
low_byte = slice(24, 32)
|
||||
low_bit = slice(24, 25)
|
||||
|
||||
self.submodules.wishbone_fsm = wishbone_fsm = FSM(reset_state = "Reset")
|
||||
wishbone_fsm.act("Reset",
|
||||
NextValue(bus.ack, 0),
|
||||
NextState("Idle"))
|
||||
wishbone_fsm.act("Idle",
|
||||
If(bus.cyc & bus.stb & bus.we & ~bus.ack & upd_cmap_fifo.writable, #write
|
||||
# FIXME: should check for prefix?
|
||||
Case(bus.adr[0:18], {
|
||||
"default": [],
|
||||
# gobofb_mode
|
||||
0x0: [ NextValue(bt_mode, bus.dat_w[low_byte]), ],
|
||||
# set vbl
|
||||
0x1: [ NextValue(m_vbl_disable, ~bus.dat_w[low_bit]), ],
|
||||
# gobofb on/off
|
||||
0x2: [ NextValue(videoctrl, bus.dat_w[low_bit]), ],
|
||||
# clear irq
|
||||
0x3: [ NextValue(vbl_signal, 0), ],
|
||||
# 0x4: reset in SW
|
||||
# gobofb_lut_addr
|
||||
0x5: [ NextValue(bt_addr, bus.dat_w[low_byte]),
|
||||
NextValue(bt_cmap_state, 0),
|
||||
],
|
||||
# gobofb_lut
|
||||
0x6: [ upd_cmap_fifo.we.eq(1),
|
||||
upd_cmap_fifo_din.color.eq(bt_cmap_state),
|
||||
upd_cmap_fifo_din.address.eq(bt_addr),
|
||||
upd_cmap_fifo_din.data.eq(bus.dat_w[low_byte]),
|
||||
Case(bt_cmap_state, {
|
||||
0: [ NextValue(bt_cmap_state, 1), ],
|
||||
1: [ NextValue(bt_cmap_state, 2), ],
|
||||
2: [ NextValue(bt_cmap_state, 0), NextValue(bt_addr, (bt_addr+1) & 0xFF), ],
|
||||
"default": NextValue(bt_cmap_state, 0),
|
||||
}),
|
||||
],
|
||||
# 0x7: debug in SW
|
||||
# cursor lut
|
||||
0x8: [ upd_omap_fifo.we.eq(1),
|
||||
upd_omap_fifo_din.color.eq(bt_cmap_state),
|
||||
upd_omap_fifo_din.address.eq(bt_addr[0:2]),
|
||||
upd_omap_fifo_din.data.eq(bus.dat_w[low_byte]),
|
||||
Case(bt_cmap_state, {
|
||||
0: [ NextValue(bt_cmap_state, 1), ],
|
||||
1: [ NextValue(bt_cmap_state, 2), ],
|
||||
2: [ NextValue(bt_cmap_state, 0), NextValue(bt_addr, (bt_addr+1) & 0xFF), ],
|
||||
"default": NextValue(bt_cmap_state, 0),
|
||||
}),
|
||||
],
|
||||
# hw cursor x/y
|
||||
0x9: [ *handle_hwcursor ],
|
||||
# resolution handling
|
||||
# 0x10: hres (r/o)
|
||||
# 0x11: vres (r/o)
|
||||
0x12: [ NextValue(hres_start, bus.dat_w), ], # hres_start
|
||||
0x13: [ NextValue(vres_start, bus.dat_w), ], # vres_start
|
||||
0x14: [ NextValue(hres_end, bus.dat_w), ], # hres_end
|
||||
0x15: [ NextValue(vres_end, bus.dat_w),
|
||||
NextValue(vres_upd, 1),
|
||||
], # vres_end
|
||||
}),
|
||||
Case(bus.adr[5:18], { # mask and bits in registers from 0x80 and 0x100
|
||||
"default": [], # fixme: hwcursor for 0x1/0x2
|
||||
0x1 : [ upd_overlay_fifo.we.eq(1), # 1*32 = 32..63 / 0x20..0x3F
|
||||
upd_overlay_fifo.din.eq(Cat(Signal(1, reset = 0), 31-bus.adr[0:5], bus.dat_w)) # FIXME: endianess
|
||||
],
|
||||
0x2 : [ upd_overlay_fifo.we.eq(1), # 2*32 = 64..95 / 0x40..0x5F
|
||||
upd_overlay_fifo.din.eq(Cat(Signal(1, reset = 1), 31-bus.adr[0:5], bus.dat_w)) # FIXME: endianess
|
||||
],
|
||||
}),
|
||||
NextValue(bus.ack, 1),
|
||||
).Elif(bus.cyc & bus.stb & ~bus.we & ~bus.ack, #read
|
||||
Case(bus.adr[0:18], {
|
||||
# bt_addr
|
||||
0x0: [ NextValue(bus.dat_r[low_byte], bt_mode), ],
|
||||
0x2: [ NextValue(bus.dat_r[low_byte], videoctrl), ],
|
||||
0x3: [ NextValue(bus.dat_r[low_byte], ~irq_line), ], # irq_line is active low
|
||||
"default": [ NextValue(bus.dat_r, 0xDEADBEEF)],
|
||||
0x10: [ NextValue(bus.dat_r, hres), ], # hres (r/o) # FIXME: endianess
|
||||
0x11: [ NextValue(bus.dat_r, vres), ], # vres (r/o) # FIXME: endianess
|
||||
0x12: [ NextValue(bus.dat_r, hres_start), ], # hres_start # FIXME: endianess
|
||||
0x13: [ NextValue(bus.dat_r, vres_start), ], # vres_start # FIXME: endianess
|
||||
0x14: [ NextValue(bus.dat_r, hres_end), ], # hres_end # FIXME: endianess
|
||||
0x15: [ NextValue(bus.dat_r, vres_end), ], # vres_end # FIXME: endianess
|
||||
}),
|
||||
NextValue(bus.ack, 1),
|
||||
).Else(
|
||||
NextValue(bus.ack, 0),
|
||||
),
|
||||
)
|
||||
# mode switch logic
|
||||
#npixels = hres * vres
|
||||
npixels = Signal(hbits + vbits +1, reset = (hres * vres))
|
||||
old_bt_mode = Signal(8) # different from bt_mode
|
||||
in_reset = Signal()
|
||||
post_reset_ctr = Signal(3)
|
||||
previous_videoctrl = Signal()
|
||||
|
||||
hwidth = Signal(hbits)
|
||||
vheight = Signal(vbits)
|
||||
self.sync += [
|
||||
hwidth.eq(hres_end - hres_start),
|
||||
vheight.eq(vres_end - vres_start),
|
||||
npixels.eq(hwidth * vheight),
|
||||
]
|
||||
if (truecolor):
|
||||
handle_truecolor_bit = [ self.video_framebuffer.use_indexed.eq(~bt_mode[4:5]) ]
|
||||
else:
|
||||
handle_truecolor_bit = [ ]
|
||||
|
||||
# this has grown complicated and should be a FSM...
|
||||
self.sync += [ old_bt_mode.eq(bt_mode),
|
||||
If((old_bt_mode != bt_mode) | vres_upd,
|
||||
vres_upd.eq(0),
|
||||
in_reset.eq(1),
|
||||
videoctrl.eq(0), # start a disabling cycle, or stay disabled
|
||||
previous_videoctrl.eq(videoctrl), # preserve old state for restoration later
|
||||
),
|
||||
If(in_reset & ~vtg_enable, # we asked for a reset and by now, the VTG has been turned off (or was off)
|
||||
self.video_framebuffer.indexed_mode.eq(bt_mode[0:2]),
|
||||
*handle_truecolor_bit,
|
||||
in_reset.eq(0),
|
||||
post_reset_ctr.eq(7),
|
||||
# reconfigure the VTG
|
||||
vtg._hres_start.eq(hres_start),
|
||||
vtg._hres_end.eq( hres_end),
|
||||
vtg._vres_start.eq(vres_start),
|
||||
vtg._vres_end.eq( vres_end),
|
||||
),
|
||||
If(post_reset_ctr == 4, # now reconfigure the DMA
|
||||
If(bt_mode[4:5],
|
||||
Case(bt_mode[0:2], {
|
||||
0x0: self.video_framebuffer.fb_dma.length.eq(npixels << 2),
|
||||
0x1: self.video_framebuffer.fb_dma.length.eq(npixels << 1),
|
||||
}),
|
||||
).Else(
|
||||
Case(bt_mode[0:2], {
|
||||
3: self.video_framebuffer.fb_dma.length.eq(npixels ),
|
||||
2: self.video_framebuffer.fb_dma.length.eq(npixels >> 1),
|
||||
1: self.video_framebuffer.fb_dma.length.eq(npixels >> 2),
|
||||
0: self.video_framebuffer.fb_dma.length.eq(npixels >> 3),
|
||||
}),
|
||||
),
|
||||
),
|
||||
If(post_reset_ctr == 1, # we've waited for the mode switch so restore video mode
|
||||
videoctrl.eq(previous_videoctrl),
|
||||
),
|
||||
If(post_reset_ctr != 0,
|
||||
post_reset_ctr.eq(post_reset_ctr - 1),
|
||||
),
|
||||
]
|
||||
|
||||
# videoctrl logic
|
||||
old_videoctrl = Signal()
|
||||
videoctrl_starting = Signal()
|
||||
videoctrl_stopping = Signal()
|
||||
self.sync += [
|
||||
If(~videoctrl_starting & ~videoctrl_stopping, # while we're changing state, delay any new request for change
|
||||
old_videoctrl.eq(videoctrl),
|
||||
),
|
||||
# turn on
|
||||
If(videoctrl & ~old_videoctrl, # pos edge
|
||||
self.video_framebuffer.fb_dma.enable.eq(1), # enable DMA
|
||||
videoctrl_starting.eq(1),
|
||||
),
|
||||
If(videoctrl & (self.video_framebuffer.fb_dma.rsv_level != 0),
|
||||
vtg_enable.eq(1), # there's some data requested, good to go
|
||||
videoctrl_starting.eq(0),
|
||||
),
|
||||
# turn off
|
||||
If(~videoctrl & old_videoctrl, # neg edge
|
||||
self.video_framebuffer.fb_dma.enable.eq(0), # disable DMA
|
||||
videoctrl_stopping.eq(1),
|
||||
),
|
||||
If(~videoctrl & (self.video_framebuffer.fb_dma.rsv_level == 0) & (self.video_framebuffer.underflow),
|
||||
vtg_enable.eq(0), # the DMA FIFO is purged, stop vtg
|
||||
videoctrl_stopping.eq(0),
|
||||
),
|
||||
]
|
||||
|
||||
# VBL logic
|
||||
self.sync += [
|
||||
If(self.video_framebuffer.vblping == 1,
|
||||
vbl_signal.eq(1),
|
||||
),]
|
||||
|
||||
|
||||
|
||||
|
||||
hdmi_width_bits = hbits # 12 enough for 2200 (frame width)
|
||||
hdmi_height_bits = vbits # 12 (more than) enough for 1125 (frame height)
|
||||
|
||||
hdmiext_frame_width = Signal(hdmi_width_bits)
|
||||
hdmiext_frame_height = Signal(hdmi_height_bits)
|
||||
hdmiext_screen_width = Signal(hdmi_width_bits)
|
||||
hdmiext_screen_height = Signal(hdmi_height_bits)
|
||||
|
||||
## INPUTS to the HDMI module
|
||||
hdmiext_audio_clk = Signal() # should be 44.1 kHz clock, fixme
|
||||
hdmiext_reset = Signal() # "synchronous reset back to 0,0"
|
||||
hdmiext_rgb = Signal(24) # three colors at 8 bits each, fixme
|
||||
hdmiext_audio_word_0 = Signal(16) # channel 0 of stereo audio, fixme
|
||||
hdmiext_audio_word_1 = Signal(16) # channel 1 of stereo audio, fixme
|
||||
|
||||
## OUTPUTS from the HDMI module
|
||||
hdmiext_tmds = Signal(3) # high-speed colors to the TMDS bits
|
||||
hdmiext_tmds_clock = Signal() # high-speec clock to the TMDS bits
|
||||
#### for the TMDS above, I think I still need the OBUFDS used in Litex VideoS7HDMIPHY, as the hdmi module only does serialization & TMDS
|
||||
#### mmmm, yes there's some demo code available
|
||||
#### https://github.com/hdl-util/hdmi-demo/blob/d5e8d1f15617b4e021ae135b118ecb3e1795a138/top/sea/sea_top.sv#L50
|
||||
#### Verilog ddrout module added below
|
||||
|
||||
hdmiext_cx = Signal(hdmi_width_bits) # current X
|
||||
hdmiext_cy = Signal(hdmi_height_bits) # current Y
|
||||
|
||||
self.comb += [
|
||||
# always ready
|
||||
vfb.source.ready.eq(1),
|
||||
# ignore vfb.source.valid
|
||||
hdmiext_rgb[ 0: 8].eq(vfb.source.b),
|
||||
hdmiext_rgb[ 8:16].eq(vfb.source.g),
|
||||
hdmiext_rgb[16:24].eq(vfb.source.r),
|
||||
hdmiext_audio_word_0.eq(0), # fixme: implement
|
||||
hdmiext_audio_word_1.eq(0), # fixme: implement
|
||||
# use VTG enable to generate reset, to we have the same relationship to the DMA
|
||||
hdmiext_reset.eq(~vtg_enable),
|
||||
]
|
||||
|
||||
hdmi_sync = getattr(self.sync, "hdmi") # fixme, clock_domain parameter ?
|
||||
|
||||
# in the FB we need to output the color by cycle 1, but are doing so after 3 cycles
|
||||
# so we need to anticipate cx by 2 cycles
|
||||
# we're delaying by 1 extra cycle from the original, so to anticipate by 2 cycles we need to add 3...
|
||||
hdmiext_cx_offset2 = Signal(hdmi_width_bits)
|
||||
hdmiframe_hres = hres + vtg.video_timings["h_blanking"]
|
||||
hdmi_sync += [
|
||||
If(hdmiext_cx == (hdmiframe_hres - 3),
|
||||
hdmiext_cx_offset2.eq(0),
|
||||
).Elif(hdmiext_cx == (hdmiframe_hres - 2),
|
||||
hdmiext_cx_offset2.eq(1),
|
||||
).Elif(hdmiext_cx == (hdmiframe_hres - 1),
|
||||
hdmiext_cx_offset2.eq(2),
|
||||
).Else(
|
||||
hdmiext_cx_offset2.eq(hdmiext_cx + 3)
|
||||
)
|
||||
]
|
||||
|
||||
# replacement for vtg's hactive, vactive
|
||||
hactive = Signal(reset = 0)
|
||||
vactive = Signal(reset = 0)
|
||||
hdmi_sync += [
|
||||
If(hdmiext_cx_offset2 == vtg.hres_start,
|
||||
hactive.eq(1)),
|
||||
If(hdmiext_cx_offset2 == vtg.hres_end,
|
||||
hactive.eq(0)),
|
||||
If(hdmiext_cy == vtg.vres_start,
|
||||
vactive.eq(1)),
|
||||
If(hdmiext_cy == vtg.vres_end,
|
||||
vactive.eq(0)),
|
||||
If(hdmiext_reset,
|
||||
hactive.eq(0),
|
||||
vactive.eq(0)),
|
||||
vfb.last.eq((hdmiext_cx_offset2 == vtg.hres_end) & (hdmiext_cy == vtg.vres_end)),
|
||||
]
|
||||
# replacement for vtg's hinframe, vinframe
|
||||
hinframe = Signal(reset = 0)
|
||||
vinframe = Signal(reset = 0)
|
||||
hdmi_sync += [
|
||||
If(hdmiext_cx_offset2 == 0,
|
||||
hinframe.eq(1)),
|
||||
If(hdmiext_cx_offset2 == hres,
|
||||
hinframe.eq(0)),
|
||||
If(hdmiext_cy == 0,
|
||||
vinframe.eq(1)),
|
||||
If(hdmiext_cy == vres,
|
||||
vinframe.eq(0)),
|
||||
If(hdmiext_reset,
|
||||
hinframe.eq(0),
|
||||
vinframe.eq(0)),
|
||||
]
|
||||
# generate de for the FB
|
||||
self.comb += [
|
||||
vfb.de.eq(hactive & vactive),
|
||||
vfb.inframe.eq(hinframe & vinframe),
|
||||
]
|
||||
|
||||
# basic 44.1 KHz clock based on the HDMI clock
|
||||
audio_max = int((vtg.video_timings["pix_clk"] / 44100.0) + 0.5)
|
||||
audio_max_bits = log2_int(audio_max, False)
|
||||
audio_counter = Signal(audio_max_bits)
|
||||
hdmi_sync += [
|
||||
If(audio_counter == (audio_max - 1),
|
||||
hdmiext_audio_clk.eq(1),
|
||||
audio_counter.eq(0),
|
||||
).Else(
|
||||
hdmiext_audio_clk.eq(0),
|
||||
audio_counter.eq(audio_counter + 1),
|
||||
),
|
||||
]
|
||||
|
||||
self.specials += Instance("hdmi",
|
||||
p_VIDEO_ID_CODE = 16, # CEA-861-D, "4.15 1920x1080p @ 59.94/60Hz (Format 16)", FIXME
|
||||
p_IT_CONTENT = 1,
|
||||
p_BIT_WIDTH = hdmi_width_bits,
|
||||
p_BIT_HEIGHT = hdmi_height_bits,
|
||||
p_DVI_OUTPUT = 0, #
|
||||
# **All parameters below matter ONLY IF you plan on sending auxiliary data (DVI_OUTPUT == 1'b0)**
|
||||
p_VIDEO_REFRESH_RATE = 60.0, # so for 148.5 MHz
|
||||
p_AUDIO_RATE = 44100,
|
||||
p_AUDIO_BIT_WIDTH = 16,
|
||||
p_VENDOR_NAME = "RD\0\0\0\0\0\0", # Must be 8 bytes null-padded 7-bit ASCII
|
||||
p_PRODUCT_DESCRIPTION = "NuBusFPGA HDMI\0\0", # Must be 16 bytes null-padded 7-bit ASCII
|
||||
p_SOURCE_DEVICE_INFORMATION = 9, # See CTA-861-G for the list of valid codes, 9 == 'PC General'
|
||||
p_START_X = 0,
|
||||
p_START_Y = 0,
|
||||
i_clk_pixel_x5 = ClockSignal("hdmi5x"), # fixme, clock_domain parameter ?
|
||||
i_clk_pixel = ClockSignal("hdmi"), # fixme, clock_domain parameter ?
|
||||
i_clk_audio = hdmiext_audio_clk,
|
||||
i_reset = hdmiext_reset,
|
||||
i_rgb = hdmiext_rgb,
|
||||
i_audio_sample_word = Cat(hdmiext_audio_word_0, hdmiext_audio_word_1),
|
||||
# These outputs go to the HDMI port
|
||||
o_tmds = hdmiext_tmds,
|
||||
o_tmds_clock = hdmiext_tmds_clock,
|
||||
# All outputs below this line stay inside the FPGA
|
||||
o_cx = hdmiext_cx, # position in _frame_
|
||||
o_cy = hdmiext_cy, # position in _frame_
|
||||
o_frame_width = hdmiext_frame_width,
|
||||
o_frame_height = hdmiext_frame_height,
|
||||
o_screen_width = hdmiext_screen_width,
|
||||
o_screen_height = hdmiext_screen_height)
|
||||
|
||||
hdmi_pads = platform.request("hdmi")
|
||||
self.specials += Instance("hdmiext_ddrout",
|
||||
i_tmds = hdmiext_tmds,
|
||||
i_tmds_clock = hdmiext_tmds_clock,
|
||||
o_r_pad_p = hdmi_pads.data2_p,
|
||||
o_r_pad_n = hdmi_pads.data2_n,
|
||||
o_g_pad_p = hdmi_pads.data1_p,
|
||||
o_g_pad_n = hdmi_pads.data1_n,
|
||||
o_b_pad_p = hdmi_pads.data0_p,
|
||||
o_b_pad_n = hdmi_pads.data0_n,
|
||||
o_clk_pad_p = hdmi_pads.clk_p,
|
||||
o_clk_pad_n = hdmi_pads.clk_n);
|
||||
|
||||
def add_sources(self, platform):
|
||||
platform.add_source("VintageBusFPGA_Common/hdmiext_ddrout.v", "verilog")
|
||||
platform.add_source("/home/dolbeau4/hdl-util_hdmi/src/hdmi.sv", "verilog")
|
||||
platform.add_source("/home/dolbeau4/hdl-util_hdmi/src/audio_clock_regeneration_packet.sv", "verilog")
|
||||
platform.add_source("/home/dolbeau4/hdl-util_hdmi/src/audio_info_frame.sv", "verilog")
|
||||
platform.add_source("/home/dolbeau4/hdl-util_hdmi/src/audio_sample_packet.sv", "verilog")
|
||||
platform.add_source("/home/dolbeau4/hdl-util_hdmi/src/auxiliary_video_information_info_frame.sv", "verilog")
|
||||
platform.add_source("/home/dolbeau4/hdl-util_hdmi/src/packet_assembler.sv", "verilog")
|
||||
platform.add_source("/home/dolbeau4/hdl-util_hdmi/src/packet_picker.sv", "verilog")
|
||||
platform.add_source("/home/dolbeau4/hdl-util_hdmi/src/serializer.sv", "verilog")
|
||||
platform.add_source("/home/dolbeau4/hdl-util_hdmi/src/source_product_description_info_frame.sv", "verilog")
|
||||
platform.add_source("/home/dolbeau4/hdl-util_hdmi/src/tmds_channel.sv", "verilog")
|
||||
15
hdmiext_ddrout.v
Normal file
15
hdmiext_ddrout.v
Normal file
@ -0,0 +1,15 @@
|
||||
module hdmiext_ddrout(input [2:0] tmds,
|
||||
input tmds_clock,
|
||||
output r_pad_p,
|
||||
output r_pad_n,
|
||||
output g_pad_p,
|
||||
output g_pad_n,
|
||||
output b_pad_p,
|
||||
output b_pad_n,
|
||||
output clk_pad_p,
|
||||
output clk_pad_n);
|
||||
OBUFDS #(.IOSTANDARD("TMDS_33")) obufds_red(.I(tmds[2]), .O(r_pad_p), .OB(r_pad_n));
|
||||
OBUFDS #(.IOSTANDARD("TMDS_33")) obufds_green(.I(tmds[1]), .O(g_pad_p), .OB(g_pad_n));
|
||||
OBUFDS #(.IOSTANDARD("TMDS_33")) obufds_blue(.I(tmds[0]), .O(b_pad_p), .OB(b_pad_n));
|
||||
OBUFDS #(.IOSTANDARD("TMDS_33")) obufds_clock(.I(tmds_clock), .O(clk_pad_p), .OB(clk_pad_n));
|
||||
endmodule
|
||||
Loading…
x
Reference in New Issue
Block a user