1
0
mirror of https://github.com/livingcomputermuseum/UniBone.git synced 2026-01-28 12:49:08 +00:00

Initial stab at MSCP implementation. Strives to be MSCP compliant but is not an emulation

of the UDA50 controller.

Currently works acceptably with RT-11, does not currently boot.  Many holes in implementation.
This commit is contained in:
Josh Dersch
2019-04-16 02:30:40 +02:00
parent f0c33c6549
commit 2189e264c3
6 changed files with 1963 additions and 0 deletions

View File

@@ -0,0 +1,721 @@
#include <assert.h>
#include <pthread.h>
#include <stdio.h>
using namespace std;
#include "logger.hpp"
#include "utils.hpp"
#include "uda.hpp"
#include "mscp_server.hpp"
void* polling_worker(
void *context)
{
mscp_server* server = reinterpret_cast<mscp_server*>(context);
server->Poll();
return nullptr;
}
mscp_server::mscp_server(
uda_c *port) :
device_c(),
_hostTimeout(0),
_controllerFlags(0),
_abort_polling(false),
_pollState(PollingState::Wait),
polling_cond(PTHREAD_COND_INITIALIZER),
polling_mutex(PTHREAD_MUTEX_INITIALIZER),
_unitOnline(false),
_credits(INIT_CREDITS)
{
// Alias the port pointer. We do not own the port, merely reference it.
_port = port;
_diskBuffer.reset(new uint8_t[_diskBufferSize + 512]); // 16mb in-memory disk data
// + 1 block for write protect flag
memset(reinterpret_cast<void*>(_diskBuffer.get()), 0x0, _diskBufferSize + 512);
StartPollingThread();
}
mscp_server::~mscp_server()
{
AbortPollingThread();
}
void
mscp_server::StartPollingThread(void)
{
_abort_polling = false;
_pollState = PollingState::Wait;
//
// Initialize the polling thread and start it.
// It will wait to be woken to do actual work.
//
pthread_attr_t attribs;
pthread_attr_init(&attribs);
int status = pthread_create(
&polling_pthread,
&attribs,
&polling_worker,
reinterpret_cast<void*>(this));
if (status != 0)
{
FATAL("Failed to start mscp server thread. Status 0x%x", status);
}
DEBUG("Polling thread created.");
}
void
mscp_server::AbortPollingThread(void)
{
pthread_mutex_lock(&polling_mutex);
_abort_polling = true;
_pollState = PollingState::Wait;
pthread_cond_signal(&polling_cond);
pthread_mutex_unlock(&polling_mutex);
pthread_cancel(polling_pthread);
uint32_t status = pthread_join(polling_pthread, NULL);
if (status != 0)
{
FATAL("Failed to join polling thread, status 0x%x", status);
}
DEBUG("Polling thread aborted.");
}
void
mscp_server::Poll(void)
{
timeout_c timer;
while(!_abort_polling)
{
//
// Wait to be awoken, then pull commands from the command ring
//
DEBUG("Sleeping until awoken.");
pthread_mutex_lock(&polling_mutex);
while (_pollState == PollingState::Wait)
{
pthread_cond_wait(
&polling_cond,
&polling_mutex);
}
// Shouldn't happen but if it does we just return to the top.
if (_pollState == PollingState::InitRun)
{
_pollState = PollingState::Run;
}
pthread_mutex_unlock(&polling_mutex);
DEBUG("The sleeper awakes.");
if (_abort_polling)
{
break;
}
//
// Pull commands from the ring until the ring is empty, at which
// point we sleep until awoken again.
//
while(!_abort_polling && _pollState == PollingState::Run)
{
shared_ptr<Message> message(_port->GetNextCommand());
if (nullptr == message)
{
DEBUG("Empty command ring; sleeping.");
break;
}
DEBUG("Message received.");
//
// Handle the message. We dispatch on opcodes to the
// appropriate methods. These methods modify the message
// object in place; this message object is then posted back
// to the response ring.
//
ControlMessageHeader* header =
reinterpret_cast<ControlMessageHeader*>(message->Message);
uint16_t *cmdbuf = reinterpret_cast<uint16_t*>(message->Message);
DEBUG("Message opcode 0x%x rsvd 0x%x mod 0x%x",
header->Word3.Command.Opcode,
header->Word3.Command.Reserved,
header->Word3.Command.Modifiers);
/*
for(int i=0;i<8;i++)
{
INFO("o%o", cmdbuf[i]);
}
*/
uint32_t cmdStatus = 0;
switch (header->Word3.Command.Opcode)
{
case Opcodes::GET_UNIT_STATUS:
cmdStatus = GetUnitStatus(message, header->UnitNumber, header->Word3.Command.Modifiers);
break;
case Opcodes::ONLINE:
cmdStatus = Online(message, header->UnitNumber, header->Word3.Command.Modifiers);
break;
case Opcodes::SET_CONTROLLER_CHARACTERISTICS:
cmdStatus = SetControllerCharacteristics(message);
break;
case Opcodes::SET_UNIT_CHARACTERISTICS:
cmdStatus = SetUnitCharacteristics(message, header->UnitNumber, header->Word3.Command.Modifiers);
break;
case Opcodes::READ:
cmdStatus = Read(message, header->UnitNumber, header->Word3.Command.Modifiers);
break;
case Opcodes::WRITE:
cmdStatus = Write(message, header->UnitNumber, header->Word3.Command.Modifiers);
break;
default:
FATAL("Unimplemented MSCP command 0x%x", header->Word3.Command.Opcode);
break;
}
DEBUG("cmd 0x%x st 0x%x fl 0x%x", cmdStatus, GET_STATUS(cmdStatus), GET_FLAGS(cmdStatus));
//
// Set the endcode and status bits
//
header->Word3.End.Status = GET_STATUS(cmdStatus);
header->Word3.End.Flags = GET_FLAGS(cmdStatus);
// Set the End code properly -- for an Invalid Command response
// this is just the End code, for all others it's the End code
// or'd with the opcode.
if ((GET_STATUS(cmdStatus) & 0x1f) == Status::INVALID_COMMAND)
{
// Just the END code, no opcode
header->Word3.End.Endcode = Endcodes::END;
}
else
{
header->Word3.End.Endcode |= Endcodes::END;
}
//
// TODO: credits, etc.
//
if (message->Word1.Info.MessageType == MessageTypes::Sequential &&
header->Word3.End.Endcode & Endcodes::END)
{
//
// We steal the hack from simh:
// The controller gives all of its credits to the host,
// thereafter it supplies one credit for every response
// packet sent.
//
// Max 14 credits, also C++ is flaming garbage, thanks for replacing "min"
// with something so incredibly annoying to use.
//
uint32_t grantedCredits = min(_credits, static_cast<uint32_t>(MAX_CREDITS));
_credits -= grantedCredits;
message->Word1.Info.Credits = grantedCredits + 1;
}
//
// Post the response to the port's response ring.
//
// TODO: is the retry approach appropriate or necessary?
for (int retry=0;retry<10;retry++)
{
if(_port->PostResponse(message))
{
break;
}
timer.wait_us(200);
}
// Hack: give interrupts time to settle before doing another transfer.
timer.wait_us(250);
//
// Go around and pick up the next one.
//
}
DEBUG("MSCP Polling thread going back to sleep.");
pthread_mutex_lock(&polling_mutex);
if (_pollState == PollingState::InitRestart)
{
// Signal the Reset call that we're done so it can return
// and release the Host.
_pollState = PollingState::Wait;
pthread_cond_signal(&polling_cond);
}
else if (_pollState == PollingState::InitRun)
{
_pollState = PollingState::Run;
}
else
{
_pollState = PollingState::Wait;
}
pthread_mutex_unlock(&polling_mutex);
}
DEBUG("MSCP Polling thread exiting.");
}
uint32_t
mscp_server::GetUnitStatus(
shared_ptr<Message> message,
uint16_t unitNumber,
uint16_t modifiers)
{
#pragma pack(push,1)
struct GetUnitStatusResponseParameters
{
uint16_t UnitFlags;
uint16_t MultiUnitCode;
uint32_t Reserved0;
uint64_t UnitIdentifier;
uint32_t MediaTypeIdentifier;
uint16_t Reserved1;
uint16_t ShadowUnit;
uint16_t GroupSize;
uint16_t TrackSize;
uint16_t Reserved2;
uint16_t CylinderSize;
uint32_t RCTStuff;
};
#pragma pack(pop)
if (unitNumber != 0)
{
return STATUS(Status::UNIT_OFFLINE, 3); // unknown -- todo move to enum
}
INFO("gusrp size %d", sizeof(GetUnitStatusResponseParameters));
// Adjust message length for response
message->MessageLength = sizeof(GetUnitStatusResponseParameters) +
HEADER_SIZE;
GetUnitStatusResponseParameters* params =
reinterpret_cast<GetUnitStatusResponseParameters*>(
GetParameterPointer(message));
params->UnitFlags = 0; // TODO: 0 for now, which is sane.
params->MultiUnitCode = 0; // Controller dependent, we don't support multi-unit drives.
params->UnitIdentifier = UNIT_ID; // Unit #0 always for now
params->MediaTypeIdentifier = MEDIA_ID_RA80; // RA80 always for now
params->ShadowUnit = unitNumber; // Always equal to unit number
//
// For group, and cylinder size we return 0 -- this is appropriate for the
// underlying storage (disk image on flash) since there are no physical tracks
// or cylinders to speak of (no seek times, etc.)
//
params->TrackSize = 1; // one block per track, per aa-l619a-tk.
params->GroupSize = 0;
params->CylinderSize = 0;
//
// Since we do no bad block replacement (no bad blocks possible in a disk image file)
// the RCT size is one block as required for the volume write protect information.
// There are no replacement blocks, and no duplicate copies of
// the RCT are present.
//
params->RCTStuff = 0x01000001;
if (_unitOnline)
{
return STATUS(Status::SUCCESS, 0);
}
else
{
return STATUS(Status::UNIT_AVAILABLE, 0);
}
}
uint32_t
mscp_server::Online(
shared_ptr<Message> message,
uint16_t unitNumber,
uint16_t modifiers)
{
#pragma pack(push,1)
struct OnlineParameters
{
uint16_t UnitFlags alignas(2);
uint16_t Reserved0 alignas(2);
uint32_t Reserved1;
uint32_t Reserved2;
uint32_t Reserved3;
uint32_t DeviceParameters;
uint32_t Reserved4;
};
#pragma pack(pop)
//
// TODO: Right now, ignoring all incoming parameters.
// With the exception of write-protection none of them really
// apply.
// We still need to flag errors if someone tries to set
// host-settable flags we can't support.
//
// TODO: "The ONLINE command performs a SET UNIT CHARACTERISTICS
// operation after bringing a unit 'Unit-Online'"
// This code could be refactored w/th S_U_C handler.
//
#pragma pack(push,1)
struct OnlineResponseParameters
{
uint16_t UnitFlags alignas(2);
uint16_t MultiUnitCode alignas(2);
uint32_t Reserved0;
uint64_t UnitIdentifier;
uint32_t MediaTypeIdentifier;
uint32_t Reserved1;
uint32_t UnitSize;
uint32_t VolumeSerialNumber;
};
#pragma pack(pop)
if (unitNumber != 0)
{
return STATUS(Status::UNIT_OFFLINE, 3); // unknown -- move to enum
}
_unitOnline = true;
// Adjust message length for response
message->MessageLength = sizeof(OnlineResponseParameters) +
HEADER_SIZE;
OnlineResponseParameters* params =
reinterpret_cast<OnlineResponseParameters*>(
GetParameterPointer(message));
params->UnitFlags = 0; // TODO: 0 for now, which is sane.
params->MultiUnitCode = 0; // Controller dependent, we don't support multi-unit drives.
params->UnitIdentifier = UNIT_ID; // Unit #0 always for now
params->MediaTypeIdentifier = MEDIA_ID_RA80; // RA80 always for now
params->UnitSize = _diskBufferSize / 512;
params->VolumeSerialNumber = 0; // We report no serial
return STATUS(Status::SUCCESS, 0); // TODO: subcode "Already Online"
}
uint32_t
mscp_server::SetControllerCharacteristics(
shared_ptr<Message> message)
{
#pragma pack(push,1)
struct SetControllerCharacteristicsParameters
{
uint16_t ControllerFlags;
uint16_t MSCPVersion;
uint16_t Reserved;
uint16_t HostTimeout;
uint64_t TimeAndDate;
};
#pragma pack(pop)
SetControllerCharacteristicsParameters* params =
reinterpret_cast<SetControllerCharacteristicsParameters*>(
GetParameterPointer(message));
//
// Check the version, if non-zero we must return an Invalid Command
// end message.
//
if (params->MSCPVersion != 0)
{
return STATUS(Status::INVALID_COMMAND, 0); // TODO: set sub-status
}
else
{
_hostTimeout = params->HostTimeout;
_controllerFlags = params->ControllerFlags;
// At this time we ignore the time and date entirely.
// Prepare the response message
params->ControllerFlags = _controllerFlags & 0xfe; // Mask off 576 byte sectors bit.
// it's read-only and we're a 512
// byte sector shop here.
params->HostTimeout = 0xff; // Controller timeout: return the max value.
params->TimeAndDate = _port->GetControllerIdentifier(); // Controller ID
return STATUS(Status::SUCCESS, 0);
}
}
uint32_t
mscp_server::SetUnitCharacteristics(
shared_ptr<Message> message,
uint16_t unitNumber,
uint16_t modifiers)
{
#pragma pack(push,1)
struct SetUnitCharacteristicsParameters
{
uint16_t UnitFlags;
uint16_t Reserved0;
uint32_t Reserved1;
uint64_t Reserved2;
uint32_t DeviceDependent;
uint16_t Reserved3;
uint16_t Reserved4;
};
#pragma pack(pop)
// TODO: handle Set Write Protect modifier
// Check unit
if (unitNumber != 0)
{
return STATUS(Status::UNIT_OFFLINE, 0);
}
// TODO: mostly same as Online command: should share logic.
#pragma pack(push,1)
struct SetUnitCharacteristicsResponseParameters
{
uint16_t UnitFlags;
uint16_t MultiUnitCode;
uint32_t Reserved0;
uint64_t UnitIdentifier;
uint32_t MediaTypeIdentifier;
uint32_t Reserved1;
uint16_t ShadowUnit;
uint32_t UnitSize;
uint32_t VolumeSerialNumber;
};
#pragma pack(pop)
// Adjust message length for response
message->MessageLength = sizeof(SetUnitCharacteristicsResponseParameters) +
HEADER_SIZE;
SetUnitCharacteristicsResponseParameters* params =
reinterpret_cast<SetUnitCharacteristicsResponseParameters*>(
GetParameterPointer(message));
params->UnitFlags = 0; // TODO: 0 for now, which is sane.
params->MultiUnitCode = 0; // Controller dependent, we don't support multi-unit drives.
params->UnitIdentifier = UNIT_ID; // Unit #0 always for now
params->MediaTypeIdentifier = MEDIA_ID_RA80; // RA80 always for now
params->UnitSize = _diskBufferSize / 512;
params->VolumeSerialNumber = 0; // We report no serial
return STATUS(Status::SUCCESS, 0);
}
uint32_t
mscp_server::Read(
shared_ptr<Message> message,
uint16_t unitNumber,
uint16_t modifiers)
{
#pragma pack(push,1)
struct ReadParameters
{
uint32_t ByteCount;
uint32_t BufferPhysicalAddress; // upper 8 bits are channel address for VAXen
uint32_t Unused0;
uint32_t Unused1;
uint32_t LBN;
};
#pragma pack(pop)
ReadParameters* params =
reinterpret_cast<ReadParameters*>(GetParameterPointer(message));
INFO("MSCP READ unit %d pa o%o count %d lbn %d",
unitNumber,
params->BufferPhysicalAddress & 0x00ffffff,
params->ByteCount,
params->LBN);
// Check unit
if (unitNumber != 0)
{
return STATUS(Status::UNIT_OFFLINE, 0);
}
// TODO: Need to rectify reads/writes to RCT area more cleanly
// and enforce block size of 512 for RCT area.
// Check LBN and byte count
if (params->LBN >= (_diskBufferSize + 512) / 512)
{
return STATUS(Status::INVALID_COMMAND + (0x1c << 8), 0); // TODO: set sub-code
}
if (params->ByteCount > (((_diskBufferSize + 512) / 512) - params->LBN) * 512)
{
return STATUS(Status::INVALID_COMMAND + (0xc << 8), 0); // TODO: as above
}
//
// OK: do the transfer to memory
//
_port->DMAWrite(
params->BufferPhysicalAddress & 0x00ffffff,
params->ByteCount,
_diskBuffer.get() + params->LBN * 512);
// Set parameters for response.
// We leave ByteCount as is (for now anyway)
// And set First Bad Block to 0. (This is unnecessary since we're
// not reporting a bad block, but we're doing it for completeness.)
params->LBN = 0;
return STATUS(Status::SUCCESS,0);
}
uint32_t
mscp_server::Write(
shared_ptr<Message> message,
uint16_t unitNumber,
uint16_t modifiers)
{
#pragma pack(push,1)
struct WriteParameters
{
uint32_t ByteCount;
uint32_t BufferPhysicalAddress; // upper 8 bits are channel address for VAXen
uint32_t Unused0;
uint32_t Unused1;
uint32_t LBN;
};
#pragma pack(pop)
// TODO: Factor this code out (shared w/Read)
WriteParameters* params =
reinterpret_cast<WriteParameters*>(GetParameterPointer(message));
INFO("MSCP WRITE unit %d pa o%o count %d lbn %d",
unitNumber,
params->BufferPhysicalAddress & 0x00ffffff,
params->ByteCount,
params->LBN);
// Check unit
if (unitNumber != 0)
{
return STATUS(Status::UNIT_OFFLINE, 0);
}
// Check LBN
if (params->LBN > (_diskBufferSize + 512) / 512)
{
return STATUS(Status::INVALID_COMMAND + (0x1c << 8), 0); // TODO: set sub-code
}
// Check byte count
if (params->ByteCount > (((_diskBufferSize + 512) / 512) - params->LBN) * 512)
{
return STATUS(Status::INVALID_COMMAND + (0x0c << 8), 0); // TODO: as above
}
//
// OK: do the transfer from the PDP-11 to a buffer
//
unique_ptr<uint8_t> buffer(_port->DMARead(
params->BufferPhysicalAddress & 0x00ffffff,
params->ByteCount));
// Copy the buffer to our in-memory disk buffer
memcpy(_diskBuffer.get() + params->LBN * 512, buffer.get(), params->ByteCount);
// Set parameters for response.
// We leave ByteCount as is (for now anyway)
// And set First Bad Block to 0. (This is unnecessary since we're
// not reporting a bad block, but we're doing it for completeness.)
params->LBN = 0;
return STATUS(Status::SUCCESS,0);
}
uint8_t*
mscp_server::GetParameterPointer(
shared_ptr<Message> message)
{
return reinterpret_cast<ControlMessageHeader*>(message->Message)->Parameters;
}
void
mscp_server::Reset(void)
{
DEBUG("Aborting polling due to reset.");
pthread_mutex_lock(&polling_mutex);
if (_pollState != PollingState::Wait)
{
_pollState = PollingState::InitRestart;
while (_pollState != PollingState::Wait)
{
pthread_cond_wait(
&polling_cond,
&polling_mutex);
}
}
pthread_mutex_unlock(&polling_mutex);
_credits = INIT_CREDITS;
}
void
mscp_server::InitPolling(void)
{
//
// Wake the polling thread if not already awoken.
//
pthread_mutex_lock(&polling_mutex);
if (true) //!_continue_polling)
{
DEBUG("Waking polling thread.");
_pollState = PollingState::InitRun;
pthread_cond_signal(&polling_cond);
}
else
{
DEBUG("Polling already active.");
}
pthread_mutex_unlock(&polling_mutex);
}

View File

@@ -0,0 +1,172 @@
#pragma once
#include <stdint.h>
#include <memory>
class uda_c;
class Message;
// Builds a uint32_t containing the status, flags, and endcode for a response message,
// used to simplify returning the appropriate status bits from command functions.
#define STATUS(status, flags) ((flags) << 8) | ((status) << 16)
#define GET_STATUS(status) (((status) >> 16) & 0xffff)
#define GET_FLAGS(status) (((status) >> 8) & 0xff)
#define MAX_CREDITS 14
#define INIT_CREDITS 32
#define MEDIA_ID_RA80 0x25641050
#define UNIT_ID 0x1234567802020000
// TODO: Dependent on little-endian hardware
//
// ControlMessageHeader encapsulates the standard MSCP control
// message header: a 12-byte header followed by up to 36 bytes of
// parameters.
//
#pragma pack(push,1)
struct ControlMessageHeader
{
uint32_t ReferenceNumber;
uint16_t Reserved;
uint16_t UnitNumber;
union
{
struct
{
uint8_t Opcode : 8;
uint8_t Reserved : 8;
uint16_t Modifiers : 16;
} Command;
struct
{
uint8_t Endcode : 8;
uint8_t Flags : 8;
uint16_t Status : 16;
} End;
} Word3;
uint8_t Parameters[36];
};
#pragma pack(pop)
// Size in bytes of the non-parameter portion of a ControlMessageHeader
#define HEADER_SIZE 12
enum Opcodes
{
ABORT = 0x1,
ACCESS = 0x10,
AVAILABLE = 0x8,
COMPARE_HOST_DATA = 0x20,
DETERMINE_ACCESS_PATHS = 0x0b,
ERASE = 0x12,
GET_COMMAND_STATUS = 0x2,
GET_UNIT_STATUS = 0x3,
ONLINE = 0x9,
READ = 0x21,
REPLACE = 0x14,
SET_CONTROLLER_CHARACTERISTICS = 0x4,
SET_UNIT_CHARACTERISTICS = 0xa,
WRITE = 0x22
};
enum Endcodes
{
END = 0x80,
SERIOUS_EXCEPTION = 0x7,
};
enum Status
{
SUCCESS = 0x0,
INVALID_COMMAND = 0x1,
COMMAND_ABORTED = 0x2,
UNIT_OFFLINE = 0x3,
UNIT_AVAILABLE = 0x4,
MEDIA_FORMAT_ERROR = 0x5,
WRITE_PROTECTED = 0x6,
COMPARE_ERROR = 0x7,
DATA_ERROR = 0x8,
HOST_BUFFER_ACCESS_ERROR = 0x9,
CONTROLLER_ERROR = 0xa,
DRIVE_ERROR = 0xb,
DIAGNOSTIC_MESSAGE = 0x1f
};
enum MessageTypes
{
Sequential = 0,
Datagram = 1,
CreditNotification = 2,
Maintenance = 15,
};
//
// This inherits from device_c solely so the logging macros work.
//
class mscp_server : public device_c
{
public:
mscp_server(uda_c *port);
~mscp_server();
public:
void Reset(void);
void InitPolling(void);
void Poll(void);
public:
void on_power_changed(void) override {}
void on_init_changed(void) override {}
void worker(void) override {}
bool on_param_changed(parameter_c *param) override { return true; }
private:
uint32_t GetUnitStatus(std::shared_ptr<Message> message, uint16_t unitNumber, uint16_t modifiers);
uint32_t Online(std::shared_ptr<Message> message, uint16_t unitNumber, uint16_t modifiers);
uint32_t SetControllerCharacteristics(std::shared_ptr<Message> message);
uint32_t SetUnitCharacteristics(std::shared_ptr<Message> message, uint16_t unitNumber, uint16_t modifiers);
uint32_t Read(std::shared_ptr<Message> message, uint16_t unitNumber, uint16_t modifiers);
uint32_t Write(std::shared_ptr<Message> message, uint16_t unitNumber, uint16_t modifiers);
uint8_t* GetParameterPointer(std::shared_ptr<Message> message);
private:
void StartPollingThread(void);
void AbortPollingThread(void);
private:
uint32_t _hostTimeout;
uint32_t _controllerFlags;
private:
uda_c* _port;
enum PollingState
{
Wait = 0,
Run,
InitRestart,
InitRun
};
bool _abort_polling;
PollingState _pollState;
pthread_t polling_pthread;
pthread_cond_t polling_cond;
pthread_mutex_t polling_mutex;
// Temporary: in-memory buffer for disk access
std::unique_ptr<uint8_t> _diskBuffer;
uint32_t _diskBufferSize = 237212 * 512; // RA80 size
bool _unitOnline;
// Credits available
uint32_t _credits;
};

890
10.02_devices/2_src/uda.cpp Normal file
View File

@@ -0,0 +1,890 @@
#include <string.h>
#include <assert.h>
#include "unibus.h"
#include "unibusadapter.hpp"
#include "unibusdevice.hpp"
#include "storagecontroller.hpp"
#include "uda.hpp"
uda_c::uda_c() :
storagecontroller_c(),
_sa(0),
_server(nullptr),
_ringBase(0),
_commandRingLength(0),
_responseRingLength(0),
_commandRingPointer(0),
_responseRingPointer(0),
_interruptVector(0),
_interruptEnable(false),
_initStep(InitializationStep::Uninitialized),
_next_step(false)
{
name.value = "uda";
type_name.value = "UDA50";
log_label = "uda";
default_base_addr = 0772150;
default_intr_vector = 0154;
default_intr_level = 5;
// The UDA50 controller has two registers.
register_count = 2;
IP_reg = &(this->registers[0]); // @ base addr
strcpy(IP_reg->name, "IP");
IP_reg->active_on_dati = true;
IP_reg->active_on_dato = true;
IP_reg->reset_value = 0;
IP_reg->writable_bits = 0xffff;
SA_reg = &(this->registers[1]); // @ base addr + 2
strcpy(SA_reg->name, "SA");
SA_reg->active_on_dati = false;
SA_reg->active_on_dato = true;
SA_reg->reset_value = 0;
SA_reg->writable_bits = 0xffff;
_server.reset(new mscp_server(this));
}
uda_c::~uda_c()
{
}
void uda_c::Reset(void)
{
DEBUG("UDA reset");
_server->Reset();
_sa = 0;
update_SA();
// Signal the worker to begin the initialization sequence.
StateTransition(InitializationStep::Uninitialized);
}
void uda_c::StateTransition(InitializationStep nextStep)
{
pthread_mutex_lock(&on_after_register_access_mutex);
_initStep = nextStep;
_next_step = true;
pthread_cond_signal(&on_after_register_access_cond);
pthread_mutex_unlock(&on_after_register_access_mutex);
}
void uda_c::worker(void)
{
worker_init_realtime_priority(rt_device);
timeout_c timeout;
while (!worker_terminate)
{
//
// Wait to be awoken.
//
pthread_mutex_lock(&on_after_register_access_mutex);
while (!_next_step)
{
pthread_cond_wait(
&on_after_register_access_cond,
&on_after_register_access_mutex);
}
_next_step = false;
pthread_mutex_unlock(&on_after_register_access_mutex);
switch (_initStep)
{
case InitializationStep::Uninitialized:
INFO("Transition to Init state Uninitialized.");
// SA should already be zero but we'll be extra sure here.
_sa = 0;
update_SA();
StateTransition(InitializationStep::Step1);
break;
case InitializationStep::Step1:
// Wait 100uS, set SA.
timeout.wait_us(10);
INFO("Transition to Init state S1.");
//
// S1 is set, all other bits zero. This indicates that we
// support a host-settable interrupt vector, that we do not
// implement enhanced diagnostics, and that no errors have
// occurred.
//
_sa = 0x0800;
update_SA();
break;
case InitializationStep::Step2:
// Wait 100uS, set SA.
timeout.wait_us(100);
INFO("Transition to Init state S2.");
// update the SA read value for step 2:
// S2 is set, unibus port type (0), SA bits 15-8 written
// by the host in step 1.
_sa = 0x1000 | (_step1Value >> 8);
update_SA();
Interrupt();
break;
case InitializationStep::Step3:
// Wait 100uS, set SA.
timeout.wait_us(100);
INFO("Transition to Init state S3.");
// Update the SA read value for step 3:
// S3 set, plus SA bits 7-0 written by the host in step 1.
_sa = 0x2000 | (_step1Value & 0xff);
update_SA();
Interrupt();
break;
case InitializationStep::Step4:
// Clear communications area, set SA
INFO("Clearing comm area at 0x%x.", _ringBase);
// TODO: -6 and -8 are described; do these always get cleared or only
// on VAXen? ZUDJ diag only expects -2 and -4 to be cleared...
for(uint32_t i = 0;
i < (_responseRingLength + _commandRingLength) * sizeof(Descriptor);
i += 2)
{
DMAWriteWord(_ringBase - 4 + i, 0x0);
}
//
// Set the ownership bit on all descriptors in the response ring
// to indicate that the port owns them.
//
Descriptor blankDescriptor;
blankDescriptor.Word0.Word0 = 0;
blankDescriptor.Word1.Word1 = 0;
blankDescriptor.Word1.Fields.Ownership = 1;
for(uint32_t i = 0; i < _responseRingLength; i++)
{
DMAWrite(
GetResponseDescriptorAddress(i),
sizeof(Descriptor),
reinterpret_cast<uint8_t*>(&blankDescriptor));
}
INFO("Transition to Init state S4.");
// Update the SA read value for step 4:
// Bits 7-0 indicating our control microcode version.
// _sa = 0x4063; //UDA50
_sa = 0x4042;
update_SA();
Interrupt();
break;
case InitializationStep::Complete:
INFO("Transition to Init state Complete. Initializing response ring.");
/*
//
// Set the ownership bit on all descriptors in the response ring
// to indicate that the port owns them.
//
Descriptor blankDescriptor;
blankDescriptor.Word0.Word0 = 0;
blankDescriptor.Word1.Word1 = 0;
blankDescriptor.Word1.Fields.Ownership = 1;
for(uint32_t i = 0; i < _responseRingLength; i++)
{
DMAWrite(
GetResponseDescriptorAddress(i),
sizeof(Descriptor),
reinterpret_cast<uint8_t*>(&blankDescriptor));
} */
break;
}
}
}
void
uda_c::on_after_register_access(
unibusdevice_register_t *device_reg,
uint8_t unibus_control
)
{
switch (device_reg->index)
{
case 0: // IP
if (UNIBUS_CONTROL_DATO == unibus_control)
{
// "When written with any value, it causes a hard initialization
// of the port and the device controller."
DEBUG("Reset due to IP read");
Reset();
}
else
{
// "When read while the port is operating, it causes the controller
// to initiate polling..."
if (_initStep == InitializationStep::Complete)
{
DEBUG("Request to start polling.");
_server->InitPolling();
}
}
break;
case 1: // SA - write only
uint16_t value = SA_reg->active_dato_flipflops;
switch (_initStep)
{
case InitializationStep::Uninitialized:
// Should not occur, we treat it like step1 here.
DEBUG("Write to SA in Uninitialized state.");
case InitializationStep::Step1:
// Host writes the following:
// 15 13 11 10 8 7 6 0
// +-+-+-----+-----+-+-------------+
// |1|W|c rng|r rng|I| int vector |
// | |R| lng | lng |E|(address / 4)|
// +-+-+-----+-----+-+-------------+
// WR = 1 tells the port to enter diagnostic wrap
// mode (which we ignore).
//
// c rng lng is the number of slots (32 bits each)
// in the command ring, expressed as a power of two.
//
// r rng lng is as above, but for the response ring.
//
// IE=1 means the host is requesting an interrupt
// at the end of the completion of init steps 1-3.
//
// int vector determines if interrupts will be generated
// by the port. If this field is non-zero, interupts will
// be generated during normal operation and, if IE=1,
// during initialization.
_step1Value = value;
intr_vector.value = _interruptVector = (value & 0x7f) << 2;
_interruptEnable = !!(value & 0x80);
_responseRingLength = (1 << ((value & 0x700) >> 8));
_commandRingLength = (1 << ((value & 0x3800) >> 11));
DEBUG("Step1: 0x%x", value);
DEBUG("resp ring 0x%x", _responseRingLength);
DEBUG("cmd ring 0x%x", _commandRingLength);
// Move to step 2.
StateTransition(InitializationStep::Step2);
break;
case InitializationStep::Step2:
// Host writes the following:
// 15 1 0
// +-----------------------------+-+
// | ringbase low |P|
// | (address) |I|
// +-----------------------------+-+
// ringbase low is the low-order portion of word
// [ringbase+0] of the communications area. This is a
// 16-bit byte address whose low-order bit is zero implicitly.
//
_ringBase = value & 0xfffe;
_purgeInterruptEnable = !!(value & 0x1);
DEBUG("Step2: 0x%x", value);
// Move to step 3 and interrupt as necessary.
StateTransition(InitializationStep::Step3);
break;
case InitializationStep::Step3:
// Host writes the following:
// 15 0
// +-+-----------------------------+
// |P| ringbase hi |
// |P| (address) |
// +-+-----------------------------+
// PP = 1 means the host is requesting execution of
// purge and poll tests, which we ignore because we can.
//
// ringbase hi is the high-order portion of the address
// [ringbase+0].
_ringBase |= ((value & 0x7fff) << 16);
DEBUG("Step3: 0x%x", value);
// Move to step 4 and interrupt as necessary.
StateTransition(InitializationStep::Step4);
break;
case InitializationStep::Step4:
// Host writes the following:
// 15 8 7 1 0
// +---------------+-----------+-+-+
// | reserved | burst |L|G|
// | | |F|O|
// +---------------+-----------+-+-+
// burst is one less than the max. number of longwords
// the host is willing to allow per DMA transfer.
// If zero, the port uses its default burst count.
//
// LF=1 means that the host wants a "last fail" response
// packet when initialization is complete.
//
// GO=1 means that the controller should enter its functional
// microcode as soon as initialization completes.
//
// Note that if GO=0 when initialization completes, the port
// will continue to read SA until the host forces SA bit 0 to
// make the transition 0->1.
//
// There is no explicit interrupt at the end of Step 4.
//
// TODO: For now we ignore burst settings.
// We also ignore Last Fail report requests since we aren't
// supporting onboard diagnostics and there's nothing to
// report.
//
DEBUG("Step4: 0x%x", value);
if (value & 0x1)
{
//
// GO is set, move to the Complete state. The worker will
// start the controller running.
//
StateTransition(InitializationStep::Complete);
}
else
{
// GO unset, wait until it is.
}
break;
case InitializationStep::Complete:
// "When zeroed by the host during both initialization and normal
// operation, it signals the port that the host has successfully
// completed a bus adapter purge in response to a port-initiated
// purge request.
// Unsure what this means at the moment.
break;
}
break;
}
}
void
uda_c::update_SA()
{
set_register_dati_value(
SA_reg,
_sa,
"update_SA");
}
Message*
uda_c::GetNextCommand(void)
{
timeout_c timer;
// Grab the next descriptor being pointed to
uint32_t descriptorAddress =
GetCommandDescriptorAddress(_commandRingPointer);
DEBUG("Next descriptor address is o%o", descriptorAddress);
// Multiple retries on read, this is a workaround for attempting to do DMA
// while an interrupt is active. Need to find a better solution for this;
// likely at a lower level than this.
std::unique_ptr<Descriptor> cmdDescriptor;
for(int retry = 0 ; retry < 10; retry++)
{
cmdDescriptor.reset(
reinterpret_cast<Descriptor*>(
DMARead(
descriptorAddress,
sizeof(Descriptor))));
if (cmdDescriptor != nullptr)
{
break;
}
timer.wait_us(200);
}
// TODO: if NULL is returned after retry assume a bus error and handle it appropriately.
assert(cmdDescriptor != nullptr);
// Check owner bit: if set, ownership has been passed to us, in which case
// we can attempt to pull the actual message from memory.
if (cmdDescriptor->Word1.Fields.Ownership)
{
bool doInterrupt = false;
uint32_t messageAddress =
cmdDescriptor->Word0.EnvelopeLow |
(cmdDescriptor->Word1.Fields.EnvelopeHigh << 16);
DEBUG("Next message address is o%o, flag %d",
messageAddress, cmdDescriptor->Word1.Fields.Flag);
//
// Grab the message length; this is at messageAddress - 4
//
bool success = false;
uint16_t messageLength =
DMAReadWord(
messageAddress - 4,
success);
//
// TODO: sanity check message length (what is the max length we
// can expect to see?)
//
// std::unique_ptr<Message> cmdMessage(
// reinterpret_cast<Message*>(
uint16_t* data = reinterpret_cast<uint16_t*>(
DMARead(
messageAddress - 4,
messageLength + 4));
/*
for(int i=0;i<(messageLength + 4) / 2; i++)
{
INFO("o%o", data[i]);
}
*/
std::unique_ptr<Message> cmdMessage(reinterpret_cast<Message*>(data));
//
// Handle Ring Transitions (from full to not-full) and associated
// interrupts.
// If the previous entry in the ring is owned by the Port then that indicates
// that the ring was previously full (i.e. the descriptor we're now returning
// is the first free entry.)
//
if (cmdDescriptor->Word1.Fields.Flag)
{
//
// Flag is set, host is requesting a transition interrupt.
// Check the previous entry in the ring.
//
if (_commandRingLength == 1)
{
// Degenerate case: If the ring is of size 1 we always interrupt.
doInterrupt = true;
}
else
{
uint32_t previousDescriptorAddress =
GetCommandDescriptorAddress(
(_commandRingPointer - 1) % _commandRingLength);
std::unique_ptr<Descriptor> previousDescriptor(
reinterpret_cast<Descriptor*>(
DMARead(
previousDescriptorAddress,
sizeof(Descriptor))));
if (previousDescriptor->Word1.Fields.Ownership)
{
// We own the previous descriptor, so the ring was previously
// full.
doInterrupt = true;
}
}
}
//
// Message retrieved; reset the Owner bit of the command descriptor,
// set the Flag bit (to indicate that we've processed it)
// and return a pointer to the message.
//
cmdDescriptor->Word1.Fields.Ownership = 0;
cmdDescriptor->Word1.Fields.Flag = 1;
DMAWrite(
descriptorAddress,
sizeof(Descriptor),
reinterpret_cast<uint8_t*>(cmdDescriptor.get()));
//
// Move to the next descriptor in the ring for next time.
_commandRingPointer = (_commandRingPointer + 1) % _commandRingLength;
// Post an interrupt as necessary.
if (doInterrupt)
{
DEBUG("Ring now empty, interrupting.");
//
// Set ring base - 4 to non-zero to indicate a transition.
//
DMAWriteWord(
_ringBase - 4,
1);
//
// Raise the interrupt
//
Interrupt();
}
return cmdMessage.release();
}
DEBUG("No descriptor found. 0x%x 0x%x", cmdDescriptor->Word0.Word0, cmdDescriptor->Word1.Word1);
// No descriptor available.
return nullptr;
}
bool
uda_c::PostResponse(
shared_ptr<Message> response
)
{
bool res = false;
// Grab the next descriptor.
uint32_t descriptorAddress = GetResponseDescriptorAddress(_responseRingPointer);
std::unique_ptr<Descriptor> cmdDescriptor(
reinterpret_cast<Descriptor*>(
DMARead(
descriptorAddress,
sizeof(Descriptor))));
// TODO: if NULL is returned assume a bus error and handle it appropriately.
//
// Check owner bit: if set, ownership has been passed to us, in which case
// we can use this descriptor and fill in the response buffer it points to.
// If not, we return false to indicate to the caller the need to try again later.
//
if (cmdDescriptor->Word1.Fields.Ownership)
{
bool doInterrupt = false;
uint32_t messageAddress =
cmdDescriptor->Word0.EnvelopeLow |
(cmdDescriptor->Word1.Fields.EnvelopeHigh << 16);
//
// Read the buffer length the host has allocated for this response;
// if it is shorter than the buffer we're writing then we will need to
// split the response into multiple responses.
//
// Message length is at messageAddress - 4 -- this is the size of the command
// not including the two header words.
//
bool success = false;
uint16_t messageLength =
DMAReadWord(
messageAddress - 4,
success);
if (messageLength < response->MessageLength)
{
// TODO: handle this; for now eat flaming death.
FATAL("Response buffer %x > message length %x", response->MessageLength, messageLength);
}
else
{
//
// This will fit; simply copy the response message over the top
// of the buffer allocated on the host -- this updates the header fields
// as necessary and provides the actual response data to the host.
//
DMAWrite(
messageAddress - 4,
response->MessageLength + 4,
reinterpret_cast<uint8_t*>(response.get()));
}
//
// Check if a transition from empty to non-empty occurred, interrupt if requested.
//
// TODO: factor this code out as it's basically identical to the code in GetNextCommand.
//
// If the previous entry in the ring is owned by the Port then that indicates
// that the ring was previously empty (i.e. the descriptor we're now returning
// is the first entry returned to the ring by the Port.)
//
if (cmdDescriptor->Word1.Fields.Flag)
{
//
// Flag is set, host is requesting a transition interrupt.
// Check the previous entry in the ring.
//
if (_responseRingLength == 1)
{
// Degenerate case: If the ring is of size 1 we always interrupt.
doInterrupt = true;
}
else
{
uint32_t previousDescriptorAddress =
GetResponseDescriptorAddress(
(_responseRingPointer - 1) % _responseRingLength);
std::unique_ptr<Descriptor> previousDescriptor(
reinterpret_cast<Descriptor*>(
DMARead(
previousDescriptorAddress,
sizeof(Descriptor))));
if (previousDescriptor->Word1.Fields.Ownership)
{
// We own the previous descriptor, so the ring was previously
// full.
doInterrupt = true;
}
}
}
//
// Message posted; reset the Owner bit of the response descriptor,
// and set the Flag bit (to indicate that we've processed it).
//
cmdDescriptor->Word1.Fields.Ownership = 0;
cmdDescriptor->Word1.Fields.Flag = 1;
DMAWrite(
descriptorAddress,
sizeof(Descriptor),
reinterpret_cast<uint8_t*>(cmdDescriptor.get()));
// Post an interrupt as necessary.
if (doInterrupt)
{
DEBUG("ring no longer empty, interrupting.");
//
// Set ring base - 4 to non-zero to indicate a transition.
//
DMAWriteWord(
_ringBase - 4,
1);
//
// Raise the interrupt
//
Interrupt();
}
res = true;
// Move to the next descriptor in the ring for next time.
_responseRingPointer = (_responseRingPointer + 1) % _responseRingLength;
}
return res;
}
uint64_t
uda_c::GetControllerIdentifier()
{
// TODO: make this not hardcoded
// ID 0x1234568, device class 1 (mass storage), model 2 (UDA50)
return 0x1234567801020000;
}
void
uda_c::Interrupt(void)
{
if (_interruptEnable && _interruptVector != 0)
{
interrupt();
}
}
void
uda_c::on_power_changed(void)
{
storagecontroller_c::on_power_changed();
if (power_down)
{
DEBUG("Reset due to power change");
Reset();
}
}
void
uda_c::on_init_changed(void)
{
if (init_asserted)
{
DEBUG("Reset due to INIT");
Reset();
}
storagecontroller_c::on_init_changed();
}
void
uda_c::on_drive_status_changed(storagedrive_c *drive)
{
}
uint32_t
uda_c::GetCommandDescriptorAddress(
size_t index
)
{
return _ringBase + _responseRingLength * sizeof(Descriptor) +
index * sizeof(Descriptor);
}
uint32_t
uda_c::GetResponseDescriptorAddress(
size_t index
)
{
return _ringBase + index * sizeof(Descriptor);
}
/*
Write a single word to Unibus memory. Returns true
on success; if false is returned this is due to an NXM condition.
*/
bool
uda_c::DMAWriteWord(
uint32_t address,
uint16_t word)
{
return DMAWrite(
address,
sizeof(uint16_t),
reinterpret_cast<uint8_t*>(&word));
}
/*
Read a single word from Unibus memory. Returns the word read on success.
the success field indicates the success or failure of the read.
*/
uint16_t
uda_c::DMAReadWord(
uint32_t address,
bool& success)
{
uint8_t* buffer = DMARead(
address,
sizeof(uint16_t));
if (buffer)
{
success = true;
uint16_t retval = *reinterpret_cast<uint16_t *>(buffer);
delete[] buffer;
return retval;
}
else
{
success = false;
return 0;
}
}
/*
Write data from buffer to Unibus memory. Returns true
on success; if false is returned this is due to an NXM condition.
*/
bool
uda_c::DMAWrite(
uint32_t address,
size_t lengthInBytes,
uint8_t* buffer)
{
bool timeout = false;
timeout_c timer;
assert((lengthInBytes % 2) == 0);
unibusadapter->request_DMA(
this,
UNIBUS_CONTROL_DATO,
address,
reinterpret_cast<uint16_t*>(buffer),
lengthInBytes >> 1);
// Wait for completion
while (true)
{
timer.wait_us(50);
uint32_t last_address = 0;
if (unibusadapter->complete_DMA(
this,
&last_address,
&timeout))
{
break;
}
}
return !timeout;
}
/*
Read data from Unibus memory into the returned buffer.
Buffer returned is nullptr if memory could not be read.
Caller is responsible for freeing the buffer when done.
*/
uint8_t*
uda_c::DMARead(
uint32_t address,
size_t lengthInBytes)
{
assert((lengthInBytes % 2) == 0);
uint16_t* buffer = new uint16_t[lengthInBytes >> 1];
assert(buffer);
bool timeout = false;
timeout_c timer;
unibusadapter->request_DMA(
this,
UNIBUS_CONTROL_DATI,
address,
buffer,
lengthInBytes >> 1);
// Wait for completion
while (true)
{
timer.wait_us(50);
uint32_t last_address = 0;
if (unibusadapter->complete_DMA(
this,
&last_address,
&timeout))
{
break;
}
}
if (timeout)
{
delete[] buffer;
buffer = nullptr;
}
return reinterpret_cast<uint8_t*>(buffer);
}

162
10.02_devices/2_src/uda.hpp Normal file
View File

@@ -0,0 +1,162 @@
/*
uda.hpp: MSCP controller port (UDA50)
*/
#pragma once
#include <memory>
#include "utils.hpp"
#include "unibusdevice.hpp"
#include "storagecontroller.hpp"
#include "mscp_server.hpp"
// TODO: this currently assumes a little-endian machine!
struct Message
{
uint16_t MessageLength alignas(2);
union
{
uint16_t Word1;
struct
{
uint16_t Credits : 4;
uint16_t MessageType : 4;
uint16_t ConnectionID : 8;
} Info;
} Word1 alignas(2);
// 384 bytes is the minimum needed to support
// datagram messages. The underlying buffer will
// be allocated to cover whatever size needed.
uint8_t Message[384] alignas(2);
};
/*
This implements the Transport layer for a Unibus MSCP controller.
Logic for initialization, reset, and communcation with the MSCP Server
is implemented here.
*/
class uda_c : public storagecontroller_c
{
public:
uda_c();
virtual ~uda_c();
void worker(void) override;
void on_after_register_access(
unibusdevice_register_t *device_reg,
uint8_t unibus_control) override;
void on_power_changed(void) override;
void on_init_changed(void) override;
void on_drive_status_changed(storagedrive_c *drive) override;
public:
//
// Returns the next command message from the command ring, if any.
// Returns NULL if the ring is empty.
//
Message* GetNextCommand(void);
//
// Posts a response message to the response ring and memory
// if there is space.
// Returns FALSE if the ring is full.
bool PostResponse(std::shared_ptr<Message> response);
uint64_t GetControllerIdentifier(void);
private:
// TODO: consolidate these private/public groups here
void Reset(void);
void Interrupt(void);
uint32_t GetCommandDescriptorAddress(size_t index);
uint32_t GetResponseDescriptorAddress(size_t index);
public:
bool DMAWriteWord(uint32_t address, uint16_t word);
uint16_t DMAReadWord(uint32_t address, bool& success);
bool DMAWrite(uint32_t address, size_t lengthInBytes, uint8_t* buffer);
uint8_t* DMARead(uint32_t address, size_t lengthInBytes);
private:
void update_SA(void);
// UDA50 registers:
unibusdevice_register_t *IP_reg;
unibusdevice_register_t *SA_reg;
uint16_t _sa;
std::unique_ptr<mscp_server> _server;
uint32_t _ringBase;
// Lengths are in terms of slots (32 bits each) in the
// corresponding rings.
size_t _commandRingLength;
size_t _responseRingLength;
// The current slot in the ring being accessed.
uint32_t _commandRingPointer;
uint32_t _responseRingPointer;
// Interrupt vector -- if zero, no interrupts
// will be generated.
uint32_t _interruptVector;
// Interrupt enable flag
bool _interruptEnable;
// Purge interrupt enable flag
bool _purgeInterruptEnable;
// Value written during step1, saved
// to make manipulation easier.
uint16_t _step1Value;
enum InitializationStep
{
Uninitialized = 0,
Step1 = 1,
Step2 = 2,
Step3 = 4,
Step4 = 8,
Complete,
};
InitializationStep _initStep;
bool _next_step;
void StateTransition(InitializationStep nextStep);
// TODO: this currently assumes a little-endian machine!
struct Descriptor
{
union alignas(2)
{
uint16_t Word0;
uint16_t EnvelopeLow;
} Word0;
union alignas(2)
{
uint16_t Word1;
struct
{
uint16_t EnvelopeHigh : 2;
uint16_t Reserved : 12;
uint16_t Flag : 1;
uint16_t Ownership : 1;
} Fields;
} Word1;
};
};

View File

@@ -91,6 +91,8 @@ OBJECTS = $(OBJDIR)/application.o \
$(OBJDIR)/rl11.o \
$(OBJDIR)/rk11.o \
$(OBJDIR)/rk05.o \
$(OBJDIR)/uda.o \
$(OBJDIR)/mscp_server.o \
$(OBJDIR)/storagedrive.o \
$(OBJDIR)/storagecontroller.o \
$(OBJDIR)/demo_io.o \
@@ -195,6 +197,12 @@ $(OBJDIR)/rk05.o : $(DEVICE_SRC_DIR)/rk05.cpp $(DEVICE_SRC_DIR)/rk05.hpp
$(OBJDIR)/rk11.o : $(DEVICE_SRC_DIR)/rk11.cpp $(DEVICE_SRC_DIR)/rk11.hpp
$(CC) $(CCFLAGS) $< -o $@
$(OBJDIR)/uda.o : $(DEVICE_SRC_DIR)/uda.cpp $(DEVICE_SRC_DIR)/uda.hpp
$(CC) $(CCFLAGS) $< -o $@
$(OBJDIR)/mscp_server.o : $(DEVICE_SRC_DIR)/mscp_server.cpp $(DEVICE_SRC_DIR)/mscp_server.hpp
$(CC) $(CCFLAGS) $< -o $@
$(OBJDIR)/storagedrive.o : $(BASE_SRC_DIR)/storagedrive.cpp $(BASE_SRC_DIR)/storagedrive.hpp
$(CC) $(CCFLAGS) $< -o $@

View File

@@ -49,6 +49,7 @@
#include "demo_regs.hpp"
#include "rl11.hpp"
#include "rk11.hpp"
#include "uda.hpp"
#include "cpu.hpp"
@@ -84,6 +85,9 @@ void menus_c::menu_devices(void) {
// create RK11 + drives
rk11_c RK05;
// Create UDA50
uda_c UDA50;
demo_io.install();
demo_io.worker_start();
@@ -98,6 +102,9 @@ void menus_c::menu_devices(void) {
RK05.install();
RK05.worker_start();
UDA50.install();
UDA50.worker_start();
cpu.install();
cpu.worker_start();
@@ -340,6 +347,9 @@ void menus_c::menu_devices(void) {
RK05.worker_stop();
RK05.uninstall();
UDA50.worker_stop();
UDA50.uninstall();
//demo_regs.worker_stop();
//demo_regs.uninstall();